arranged files, updated kobold lite, modified makefile for extra link args on linux, started RWKV implementation

This commit is contained in:
Concedo 2023-04-17 17:31:45 +08:00
parent 9581171a9f
commit 763ad172c0
21 changed files with 13597 additions and 46 deletions

View file

@ -17,6 +17,7 @@
#include "otherarch/gptj_v2.cpp"
#include "otherarch/gpt2_v1.cpp"
#include "otherarch/gpt2_v2.cpp"
#include "otherarch/rwkv.cpp"
//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt)
static FileFormat file_format = FileFormat::BADFORMAT;
@ -25,6 +26,7 @@ static gptj_model_v1 model_v1;
static gptj_model model_v2;
static gpt2_v1_model model_gpt2_v1;
static gpt2_model model_gpt2_v2;
static rwkv_context * rwkv_context_v1;
static gpt_params params;
static int n_past = 0;
static int n_threads = 4;
@ -59,7 +61,45 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
params.n_ctx = inputs.max_context_length;
model_v1.hparams.n_ctx = model_v2.hparams.n_ctx = model_gpt2_v1.hparams.n_ctx = model_gpt2_v2.hparams.n_ctx = params.n_ctx;
if (file_format == FileFormat::GPT2_1)
if (file_format == FileFormat::RWKV_1)
{
rwkv_context_v1 = rwkv_init_from_file(modelname.c_str(), n_threads);
//setup buffers for rwkv state
auto padding = 512u;
auto statebufsiz = rwkv_get_state_buffer_element_count(rwkv_context_v1) * sizeof(float) + padding;
auto logitbufsiz = rwkv_get_logits_buffer_element_count(rwkv_context_v1) * sizeof(float) + padding;
printf("\nRWKV Init: State Buffer:%u, Logit Buffer:%u\n", statebufsiz, logitbufsiz);
rwkv_context_v1->state_out = (float *)malloc(statebufsiz);
rwkv_context_v1->logits_out = (float *)malloc(logitbufsiz);
rwkv_context_v1->state_in = nullptr;
n_batch = 1;
std::string word;
for (int i = 0; i < 20; i++) {
uint32_t len;
word = ('a'+i);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
int vocabsiz = vocab.token_to_id.size();
bool testeval = rwkv_eval(rwkv_context_v1, 0, rwkv_context_v1->state_in, rwkv_context_v1->state_out, rwkv_context_v1->logits_out);
if(!testeval)
{
printf("\nError: RWKV Init Eval Failed!\n");
}
logits.resize(vocabsiz);
memcpy(logits.data(), rwkv_context_v1->logits_out, sizeof(float)*vocabsiz);
if (rwkv_context_v1 == NULL)
{
return ModelLoadResult::FAIL;
}
return ModelLoadResult::SUCCESS;
}
else if (file_format == FileFormat::GPT2_1)
{
ModelLoadResult res = legacy_gpt2_model_load(params.model, model_gpt2_v1, vocab, file_format);
if(res==ModelLoadResult::FAIL)
@ -209,7 +249,10 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
n_past = 0;
ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, useSmartContext);
if(file_format!=FileFormat::RWKV_1)
{
ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, useSmartContext);
}
//if using BLAS and prompt is big enough, switch to single thread and use a huge batch
bool approved_format = (file_format!=FileFormat::GPT2_1 && file_format!=FileFormat::GPTJ_1 && file_format!=FileFormat::GPTJ_2);
@ -228,6 +271,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
current_context_tokens.resize(n_past);
int remaining_tokens = params.n_predict;
int stopper_unused_tokens = 0;
int input_consumed = 0;
std::mt19937 rng(params.seed);
std::string concat_output = "";
@ -254,12 +298,17 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
{
n_vocab = model_gpt2_v2.hparams.n_vocab;
}
else if(file_format == FileFormat::RWKV_1)
{
n_vocab = vocab.id_to_token.size(); //handled seperately
}
else
{
printf("Bad format!");
}
printf("\n");
while (remaining_tokens > 0)
{
gpt_vocab::id id = 0;
@ -278,9 +327,12 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
}
bool evalres = false;
//print_tok_vec(logits);
if(file_format==FileFormat::GPT2_1)
if(file_format==FileFormat::RWKV_1)
{
evalres = rwkv_eval(rwkv_context_v1, embd[0], rwkv_context_v1->state_in, rwkv_context_v1->state_out, rwkv_context_v1->logits_out);
}
else if(file_format==FileFormat::GPT2_1)
{
evalres = legacy_gpt2_eval(model_gpt2_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
}
@ -326,14 +378,14 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
}
{
// set the logit of the eos token (2) to zero to avoid sampling it
logits[50256] = (logits[50256]<0?logits[50256]:0);
// set the logit of the eos token (2) to zero to avoid sampling it
if(logits.size()>50256)
{
logits[50256] = (logits[50256]<0?logits[50256]:0);
}
//gpt2 uses negative logits, so we cant zero it
id = gptj_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
current_context_tokens.push_back(id);
@ -352,6 +404,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
{
if (concat_output.find(matched) != std::string::npos)
{
stopper_unused_tokens = remaining_tokens;
remaining_tokens = 0;
printf("\n(Stop sequence triggered: <%s>)",matched.c_str());
break;
@ -378,7 +431,8 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
}
time2 = timer_check();
float pt1 = (time1*1000.0/(embd_inp_size==0?1:embd_inp_size));
float pt2 = (time2*1000.0/(params.n_predict==0?1:params.n_predict));
int realnpredict = params.n_predict-stopper_unused_tokens;
float pt2 = (time2*1000.0/(realnpredict==0?1:realnpredict));
printf("\nTime Taken - Processing:%.1fs (%.0fms/T), Generation:%.1fs (%.0fms/T), Total:%.1fs", time1, pt1, time2, pt2, (time1 + time2));
fflush(stdout);
output.status = 1;