mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 09:34:37 +00:00
Merge branch 'upstream' into concedo_experimental
# Conflicts: # .github/workflows/build.yml # ggml/CMakeLists.txt # ggml/cmake/ggml-config.cmake.in # ggml/src/CMakeLists.txt # models/templates/README.md # tools/imatrix/imatrix.cpp
This commit is contained in:
commit
7590a0ea39
22 changed files with 1122 additions and 421 deletions
|
@ -26,6 +26,7 @@
|
|||
#include <cstdarg>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <list>
|
||||
#include <regex>
|
||||
#include <set>
|
||||
#include <string>
|
||||
|
@ -2377,20 +2378,35 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
throw std::invalid_argument("unknown buffer type");
|
||||
}
|
||||
// FIXME: this leaks memory
|
||||
params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
|
||||
// keep strings alive and avoid leaking memory by storing them in a static vector
|
||||
static std::list<std::string> buft_overrides;
|
||||
buft_overrides.push_back(tensor_name);
|
||||
params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
|
||||
}
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-moe"},
|
||||
"use CPU for Mixture of Experts (MoE) weights",
|
||||
{"--cpu-moe", "-cmoe"},
|
||||
"keep all Mixture of Experts (MoE) weights in the CPU",
|
||||
[](common_params & params) {
|
||||
params.tensor_buft_overrides.push_back({"\\.ffn_up_exps\\.weight$", ggml_backend_cpu_buffer_type()});
|
||||
params.tensor_buft_overrides.push_back({"\\.ffn_down_exps\\.weight$", ggml_backend_cpu_buffer_type()});
|
||||
params.tensor_buft_overrides.push_back({"\\.ffn_gate_exps\\.weight$", ggml_backend_cpu_buffer_type()});
|
||||
params.tensor_buft_overrides.push_back({"\\.ffn_(up|down|gate)_exps", ggml_backend_cpu_buffer_type()});
|
||||
}
|
||||
).set_env("LLAMA_ARG_CPU_MOE"));
|
||||
add_opt(common_arg(
|
||||
{"--n-cpu-moe", "-ncmoe"}, "N",
|
||||
"keep the Mixture of Experts (MoE) weights of the first N layers in the CPU",
|
||||
[](common_params & params, int value) {
|
||||
if (value < 0) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
for (int i = 0; i < value; ++i) {
|
||||
// keep strings alive and avoid leaking memory by storing them in a static vector
|
||||
static std::list<std::string> buft_overrides;
|
||||
buft_overrides.push_back(string_format("blk\\.%d\\.ffn_(up|down|gate)_exps", i));
|
||||
params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()});
|
||||
}
|
||||
}
|
||||
).set_env("LLAMA_ARG_N_CPU_MOE"));
|
||||
add_opt(common_arg(
|
||||
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
||||
"number of layers to store in VRAM",
|
||||
|
@ -2651,10 +2667,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
|
||||
add_opt(common_arg(
|
||||
{"--output-format"}, "{gguf,dat}",
|
||||
string_format("output format for imatrix file (default: %s)", params.imat_dat ? "dat" : "gguf"),
|
||||
string_format("output format for imatrix file (default: %s)", params.imat_dat > 0 ? "dat" : "gguf"),
|
||||
[](common_params & params, const std::string & value) {
|
||||
/**/ if (value == "gguf") { params.imat_dat = false; }
|
||||
else if (value == "dat") { params.imat_dat = true; }
|
||||
/**/ if (value == "gguf") { params.imat_dat = -1; }
|
||||
else if (value == "dat") { params.imat_dat = 1; }
|
||||
else { throw std::invalid_argument("invalid output format"); }
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue