Merge branch 'master' into concedo_experimental

# Conflicts:
#	.devops/nix/package.nix
#	.github/workflows/build.yml
#	CMakeLists.txt
#	Makefile
#	README.md
#	flake.nix
#	llama.cpp
#	llama.h
#	tests/test-llama-grammar.cpp
This commit is contained in:
Concedo 2024-02-04 19:42:57 +08:00
commit 6dc01297f8
36 changed files with 2917 additions and 10930 deletions

View file

@ -516,7 +516,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
params.lora_adapter.emplace_back(argv[i], 1.0f);
params.use_mmap = false;
} else if (arg == "--lora-scaled") {
if (++i >= argc) {
@ -528,7 +528,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
params.use_mmap = false;
} else if (arg == "--lora-base") {
if (++i >= argc) {
@ -584,20 +584,20 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_gpu_layers = std::stoi(argv[i]);
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
} else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_gpu_layers_draft = std::stoi(argv[i]);
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
} else if (arg == "--main-gpu" || arg == "-mg") {
if (++i >= argc) {
invalid_param = true;
@ -638,11 +638,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
if (split_arg.size() >= LLAMA_MAX_DEVICES) {
if (split_arg.size() >= llama_max_devices()) {
invalid_param = true;
break;
}
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]);
} else {
@ -665,7 +665,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
params.antiprompt.push_back(argv[i]);
params.antiprompt.emplace_back(argv[i]);
} else if (arg == "-ld" || arg == "--logdir") {
if (++i >= argc) {
invalid_param = true;
@ -881,7 +881,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
}
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back(llama_model_kv_override());
params.kv_overrides.emplace_back();
params.kv_overrides.back().key[0] = 0;
}
@ -990,30 +990,30 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
if (llama_mlock_supported()) {
if (llama_supports_mlock()) {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_mmap_supported()) {
if (llama_supports_mmap()) {
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa attempt optimizations that help on some NUMA systems\n");
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -ngld N, --n-gpu-layers-draft N\n");
printf(" number of layers to store in VRAM for the draft model\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT, --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
#endif // LLAMA_SUPPORTS_GPU_OFFLOAD
if (llama_supports_gpu_offload()) {
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -ngld N, --n-gpu-layers-draft N\n");
printf(" number of layers to store in VRAM for the draft model\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT, --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
}
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
printf(" -gan N, --grp-attn-n N\n");
@ -1652,7 +1652,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);