mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 17:44:38 +00:00
ggml-cpu: enable IBM NNPA Vector Intrinsics (#14317)
* ggml-cpu: add nnpa compile flag Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> (cherry picked from commit 4a9f60c201573128f73a65999b3e5cc497fae5c1) * ggml-cpu: add fp16->fp32 nnpa first Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> (cherry picked from commit 8d4a7987f9c1887f716be96250f2caeee0253929) * ggml-cpu: add fp32->fp16 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> (cherry picked from commit 0ff0d6516247a41d2ade42b42cf0d676a4dd1627) * ggml-cpu: better variable names Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> (cherry picked from commit 2f58bbcbb89c183340e252362b2a40651f573f1f) * docs: update s390x docs Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> (cherry picked from commit 01b929491b50071a5d0572235dcf5a449da70aa7) * ggml-cpu: add debugging prints to see if dlf16 is correct Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fix print vs printf Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fix float placeholder Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: ensure fp16 and fp32 load and stores are called Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fp16 load ensured to hit Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: remove sigint from fp16 store for some reason, the function is not getting a hit when debugged with gdb. we will need to investigate further Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: activate nnpa for ggml_cpu_fp16_to_fp32 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: nnpa activate ggml_cpu_fp16_to_fp32 for 8 elements Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: nnpa switch to vec_xst test Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: switch to vec_xst for 4 element loops also Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: rework noop Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: remove noop, general code cleanup Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: clarify variable naming Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: activate nnpa for ggml_cpu_fp32_to_fp16 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: add breakpoint for debugging Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: test fix for conversion failure Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: disable fp32->fp16 nnpa conversions for now there are some conversion failures in nnpa that requires the eyes of an ibm stsm. will create a separate pr to introduce the fp32->fp16 change. Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: switch to elif macro Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: reattempt fp32->fp16 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fix typo Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: reattempt fp32->fp16 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fix compiler types Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: change to typedef vector types Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: add 4 element loops for fp32->fp16 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: clarified vector naming Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: bring back fp32->fp16 store nnpa Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: activate nnpa fp32->fp16 or fp16->fp32 compute Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: add nnpa macro check in ggml-impl Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: add missing __func__ Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: diagnose why __NNPA__ macro is not being defined Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: import vecintrin.h to fix compiler errors Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: update macro tests Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: move s390x typedef to own header file Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * Revert "ggml-cpu: move s390x typedef to own header file" This reverts commit 157f856c34589566151630e294563a420702db39. Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: switch to importing ggml-cpu-impl instead Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fix macro declaration Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: test more macros Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: add debug prints Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: bruteforce macro definitions Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: move macro definitions Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: add ggml-impl.h to cmakelists Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: switch to private macros Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: move s390x typedef to own header file Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> (cherry picked from commit 157f856c34589566151630e294563a420702db39) * ggml-cpu: move things around Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: bring back compile macros Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: switch to quotes for import Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: add compiler error macro Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: add s390x detection in ggml-src Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: bring back compile definitions Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: undo cmakelists work Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * Revert "ggml-cpu: move s390x typedef to own header file" This reverts commit 18d79e1a30b39d9aaa0bd58400c5cf2c32135c9a. Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: remove typedefs.h Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: remove typedef from cmakelists Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: add ggml-impl.h future notes Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: add todo comment for future reference Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: clarify naming of dlf16 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: remove unnecessary target compile definitions Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: move nnpa fp16->fp32 and fp32->fp16 to simd-mappings Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml: refactor fp32->fp16 and fp16->fp32 simd to ggml-cpu Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * docs: update broken huggingface link for s390x Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fix duplicate func names during compile Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * Revert "ggml-cpu: fix duplicate func names during compile" This reverts commit fbb733451f27677063b914d4f6c9a9841d45b38d. Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * Revert "ggml: refactor fp32->fp16 and fp16->fp32 simd to ggml-cpu" This reverts commit bd288e8fa52b5244f65cee21cb61062f1a9e0ca5. Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml: refactor fp16<->fp32 simd to ggml-cpu Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fix missing simd-mappings.h import in quants.c Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fix missing simd-mappings.h within repack Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fix amx mmq missing simd-mappings.h Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: attempt at fixing loongarch failing build Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: move nnpa together with other fp16<->fp32 simd Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: fix wrong refactor of ggml-base ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164176555 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml: remove dependency on ggml-cpu from ggml-base Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: rename all fp16<->fp32 macros to prefix with ggml_cpu ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164449406 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: remove mistaken fallback macro fallback logic was already implemented but i was too sleepy to realise Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml: move ggml_table_f32_f16 to ggml-cpu ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164775006 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: move ggml_table_f32_f16 back to ggml-base due to ci failures Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * Revert "ggml-cpu: move ggml_table_f32_f16 back to ggml-base due to ci failures" This reverts commit 32a3533564bdb7902cefb9c89b1c9e956a81ce29. Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * Revert "ggml: move ggml_table_f32_f16 to ggml-cpu" This reverts commit 9e40d984ad27d7b60392fb2b7548885201864fe4. Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml: move ggml_table_f32_f16 to ggml-cpu ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164775006 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> (cherry picked from commit 9e40d984ad27d7b60392fb2b7548885201864fe4) * ggml: move ggml_table_f32_f16 to ggml-cpu.c Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: extern c ggml_table_f32_f16 + chore docs Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: dedup ggml_table_f32_f16 from simd-mappings.h we rely on the variable declaration in ggml-cpu.c instead Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * Revert "ggml-cpu: dedup ggml_table_f32_f16 from simd-mappings.h" This reverts commit f71b21d2f74f5e03ec0c2b4fefd3cbf395aecf16. Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * ggml-cpu: bring back ggml_table_f32_f16 Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * Revert "ggml-cpu: bring back ggml_table_f32_f16" This reverts commit 2dce119178bed5ef5c8398c4230ddd14fef80e49. Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> * fix ggml time initialization * fix f32_f16 table init * remove extra line --------- Signed-off-by: Aaron Teo <aaron.teo1@ibm.com> Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
b193d53069
commit
60ef23d6c1
29 changed files with 1005 additions and 862 deletions
|
@ -58,7 +58,7 @@ inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf
|
|||
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
|
||||
inline static void ggml_vec_add_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) + GGML_FP16_TO_FP32(y[i]));
|
||||
z[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(x[i]) + GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
|
||||
|
@ -67,7 +67,7 @@ inline static void ggml_vec_acc1_f32(const int n, float * y, const float v)
|
|||
inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
|
||||
inline static void ggml_vec_sub_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) - GGML_FP16_TO_FP32(y[i]));
|
||||
z[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(x[i]) - GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
|
@ -75,20 +75,20 @@ inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x)
|
|||
inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
|
||||
inline static void ggml_vec_neg_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(-GGML_FP16_TO_FP32(x[i]));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(-GGML_CPU_FP16_TO_FP32(x[i]));
|
||||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
|
||||
inline static void ggml_vec_mul_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) * GGML_FP16_TO_FP32(y[i]));
|
||||
z[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(x[i]) * GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
|
||||
inline static void ggml_vec_div_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) / GGML_FP16_TO_FP32(y[i]));
|
||||
z[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(x[i]) / GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -131,13 +131,13 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
|
|||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
|
||||
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int i = 0; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
|
||||
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -280,12 +280,12 @@ inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y,
|
|||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
@ -430,12 +430,12 @@ inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float
|
|||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
@ -444,103 +444,103 @@ inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) {
|
|||
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
|
||||
inline static void ggml_vec_sqr_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16(v*v);
|
||||
float v = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(v*v);
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
|
||||
inline static void ggml_vec_sqrt_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(sqrtf(GGML_FP16_TO_FP32(x[i])));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(sqrtf(GGML_CPU_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
|
||||
inline static void ggml_vec_log_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(logf(GGML_FP16_TO_FP32(x[i])));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(logf(GGML_CPU_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
|
||||
inline static void ggml_vec_sin_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(sinf(GGML_FP16_TO_FP32(x[i])));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(sinf(GGML_CPU_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
|
||||
inline static void ggml_vec_cos_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(cosf(GGML_FP16_TO_FP32(x[i])));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(cosf(GGML_CPU_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
|
||||
inline static void ggml_vec_abs_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(fabsf(GGML_FP16_TO_FP32(x[i])));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(fabsf(GGML_CPU_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
|
||||
inline static void ggml_vec_sgn_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16((v > 0.f) ? 1.f : ((v < 0.f) ? -1.f : 0.f));
|
||||
float v = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16((v > 0.f) ? 1.f : ((v < 0.f) ? -1.f : 0.f));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
|
||||
inline static void ggml_vec_step_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16((GGML_FP16_TO_FP32(x[i]) > 0.f) ? 1.f : 0.f);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16((GGML_CPU_FP16_TO_FP32(x[i]) > 0.f) ? 1.f : 0.f);
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
|
||||
inline static void ggml_vec_tanh_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(tanhf(GGML_FP16_TO_FP32(x[i])));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(tanhf(GGML_CPU_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
|
||||
inline static void ggml_vec_elu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(expm1f(GGML_FP16_TO_FP32(x[i])));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(expm1f(GGML_CPU_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
|
||||
inline static void ggml_vec_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16((v > 0.f) ? v : 0.f);
|
||||
float v = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16((v > 0.f) ? v : 0.f);
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
|
||||
inline static void ggml_vec_leaky_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const float ns) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16(((v > 0.f) ? v : 0.f) + ns * ((v < 0.0f) ? v : 0.f));
|
||||
float v = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(((v > 0.f) ? v : 0.f) + ns * ((v < 0.0f) ? v : 0.f));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
|
||||
inline static void ggml_vec_sigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(1.f / (1.f + expf(-GGML_FP16_TO_FP32(x[i]))));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(1.f / (1.f + expf(-GGML_CPU_FP16_TO_FP32(x[i]))));
|
||||
}
|
||||
}
|
||||
// TODO: optimize performance
|
||||
inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
|
||||
inline static void ggml_vec_hardswish_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16(v * fminf(1.0f, fmaxf(0.0f, (v + 3.0f) / 6.0f)));
|
||||
float v = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(v * fminf(1.0f, fmaxf(0.0f, (v + 3.0f) / 6.0f)));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
|
||||
inline static void ggml_vec_hardsigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(fminf(1.0f, fmaxf(0.0f, (GGML_FP16_TO_FP32(x[i]) + 3.0f) / 6.0f)));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(fminf(1.0f, fmaxf(0.0f, (GGML_CPU_FP16_TO_FP32(x[i]) + 3.0f) / 6.0f)));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
|
||||
inline static void ggml_vec_exp_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(expf(GGML_FP16_TO_FP32(x[i])));
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(expf(GGML_CPU_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -562,9 +562,9 @@ inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp
|
|||
|
||||
inline static void ggml_vec_gelu_erf_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float xi = GGML_FP16_TO_FP32(x[i]);
|
||||
float xi = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
float res = 0.5f*xi*(1.0f + erff(xi*SQRT_2_INV));
|
||||
y[i] = GGML_FP32_TO_FP16(res);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(res);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -577,9 +577,9 @@ inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
|||
} else if (x[i] >= 10.0f) {
|
||||
y[i] = x[i];
|
||||
} else {
|
||||
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
||||
ggml_fp16_t fp16 = GGML_CPU_FP32_TO_FP16(x[i]);
|
||||
memcpy(&t, &fp16, sizeof(uint16_t));
|
||||
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
|
||||
y[i] = GGML_CPU_FP16_TO_FP32(ggml_table_gelu_f16[t]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -613,9 +613,9 @@ inline static float ggml_gelu_quick_f32(float x) {
|
|||
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
|
||||
uint16_t t;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
||||
ggml_fp16_t fp16 = GGML_CPU_FP32_TO_FP16(x[i]);
|
||||
memcpy(&t, &fp16, sizeof(uint16_t));
|
||||
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
|
||||
y[i] = GGML_CPU_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
|
||||
}
|
||||
}
|
||||
#else
|
||||
|
@ -628,8 +628,8 @@ inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float *
|
|||
|
||||
inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16(v*(1.0f/(1.0f+expf(GELU_QUICK_COEF*v))));
|
||||
float v = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(v*(1.0f/(1.0f+expf(GELU_QUICK_COEF*v))));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -638,8 +638,8 @@ inline static float ggml_silu_f32(float x) {
|
|||
return x/(1.0f + expf(-x));
|
||||
}
|
||||
inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) {
|
||||
float v = GGML_FP16_TO_FP32(x);
|
||||
return GGML_FP32_TO_FP16(v/(1.0f + expf(-v)));
|
||||
float v = GGML_CPU_FP16_TO_FP32(x);
|
||||
return GGML_CPU_FP32_TO_FP16(v/(1.0f + expf(-v)));
|
||||
}
|
||||
|
||||
#if __FINITE_MATH_ONLY__
|
||||
|
@ -888,9 +888,9 @@ inline static float ggml_silu_backward_f32(float x, float dy) {
|
|||
}
|
||||
|
||||
inline static ggml_fp16_t ggml_silu_backward_f16(ggml_fp16_t x, ggml_fp16_t dy) {
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
const float v = GGML_CPU_FP16_TO_FP32(x);
|
||||
const float s = 1.0f/(1.0f + expf(-v));
|
||||
return GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(dy)*s*(1.0f + v*(1.0f - s)));
|
||||
return GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(dy)*s*(1.0f + v*(1.0f - s)));
|
||||
}
|
||||
|
||||
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
|
||||
|
@ -928,7 +928,7 @@ inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float
|
|||
inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
|
||||
float sum = 0.0f;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sum += GGML_FP16_TO_FP32(x[i]);
|
||||
sum += GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
*s = sum;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue