llama : initial Mamba-2 support (#9126)

* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* cuda : graceful fallback for Mamba-1 models with weird embd size
This commit is contained in:
compilade 2025-07-02 13:10:24 -04:00 committed by GitHub
parent e17991c466
commit 5d46babdc2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
24 changed files with 1075 additions and 311 deletions

View file

@ -208,23 +208,27 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w
} break;
case GGML_OP_SSM_CONV:
{
// FIXME
ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
const int64_t n_seq_tokens = 512;
const int64_t n_seqs = 3;
ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0] - 1 + n_seq_tokens, w->ne[1], n_seqs);
op_tensor = ggml_ssm_conv(ctx, conv_x, w);
} break;
case GGML_OP_SSM_SCAN:
{
// FIXME
const int64_t d_state = w->ne[0];
const int64_t d_inner = w->ne[1];
// w is ssm_a, which is used to distinguish Mamba-1 and Mamba-2
const int64_t d_state = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0];
const int64_t n_head = w->ne[1];
const int64_t head_dim = hparams.ssm_d_inner / n_head;
const int64_t n_group = hparams.ssm_n_group ? hparams.ssm_n_group : 1;
const int64_t n_seq_tokens = 512;
const int64_t n_seqs = 1;
ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
const int64_t n_seqs = 3;
ggml_tensor * s = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs);
ggml_tensor * x = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_dim, n_head, n_seq_tokens, n_seqs);
ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_head, n_seq_tokens, n_seqs);
ggml_tensor * B = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
ggml_tensor * C = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C, ids);
} break;
case GGML_OP_RWKV_WKV6:
{
@ -1081,6 +1085,38 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_MAMBA2:
{
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 24:
switch (hparams.n_embd) {
case 768: type = LLM_TYPE_SMALL; break;
default: type = LLM_TYPE_UNKNOWN;
} break;
case 48:
switch (hparams.n_embd) {
case 1024: type = LLM_TYPE_MEDIUM; break;
case 1536: type = LLM_TYPE_LARGE; break;
case 2048: type = LLM_TYPE_XL; break;
default: type = LLM_TYPE_UNKNOWN;
} break;
case 64:
switch (hparams.n_embd) {
case 2560: type = LLM_TYPE_3B; break;
case 4096: type = LLM_TYPE_7B; break;
default: type = LLM_TYPE_UNKNOWN;
} break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_XVERSE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -3120,6 +3156,54 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
// out_proj
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
}
} break;
case LLM_ARCH_MAMBA2:
{
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t n_head = hparams.ssm_dt_rank;
const int64_t n_group = hparams.ssm_n_group;
const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_head;
// only an expansion factor of 2 is supported for now
GGML_ASSERT(2 * n_embd == d_inner);
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
{
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed, duplicated to allow offloading
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
// norm
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, 0);
layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_head}, 0);
// no "weight" suffix for these
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0);
layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_head}, 0);
layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
// out_proj
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
}
@ -4630,10 +4714,14 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
}
if (arch == LLM_ARCH_MAMBA || arch == LLM_ARCH_MAMBA2) {
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
if (!classifier_labels.empty()) {
@ -9665,9 +9753,7 @@ struct llm_build_starcoder2 : public llm_graph_context {
};
struct llm_build_mamba : public llm_graph_context {
const llama_model & model;
llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
@ -9685,7 +9771,11 @@ struct llm_build_mamba : public llm_graph_context {
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
cur = build_mamba_layer(rs_inp, gf, cur, ubatch, il);
if (model.arch == LLM_ARCH_MAMBA2) {
cur = build_mamba2_layer(rs_inp, gf, cur, model, ubatch, il);
} else {
cur = build_mamba_layer(rs_inp, gf, cur, model, ubatch, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
@ -9719,11 +9809,11 @@ struct llm_build_mamba : public llm_graph_context {
ggml_build_forward_expand(gf, cur);
}
// TODO: split
ggml_tensor * build_mamba_layer(
llm_graph_input_rs * inp,
ggml_cgraph * gf,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
int il) const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
@ -9734,6 +9824,8 @@ struct llm_build_mamba : public llm_graph_context {
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t dt_rank = hparams.ssm_dt_rank;
const int64_t n_head = d_inner;
const int64_t head_dim = 1;
const int64_t n_seqs = ubatch.n_seqs;
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
@ -9749,15 +9841,8 @@ struct llm_build_mamba : public llm_graph_context {
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
// (ab)using the KV cache to store the states
ggml_tensor * conv = build_rs(
inp, gf, conv_states_all,
hparams.n_embd_r(), n_seqs);
ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs);
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
ggml_tensor * ssm = build_rs(
inp, gf, ssm_states_all,
hparams.n_embd_s(), n_seqs);
ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
@ -9806,8 +9891,8 @@ struct llm_build_mamba : public llm_graph_context {
ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
// split
ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
ggml_tensor * B = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
ggml_tensor * C = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
// Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
if (ssm_dt_b_c_rms) {
@ -9820,23 +9905,36 @@ struct llm_build_mamba : public llm_graph_context {
dt = build_lora_mm(model.layers[il].ssm_dt, dt);
dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
// Custom operator to optimize the parallel associative scan
// as described in the Annex D of the Mamba paper.
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
cur = x;
x = ggml_reshape_4d(ctx0, x, head_dim, n_head, n_seq_tokens, n_seqs);
ggml_tensor * A = model.layers[il].ssm_a;
// use the states and the indices provided by build_recurrent_state
// (this is necessary in order to properly use the states before they are overwritten,
// while avoiding to make unnecessary copies of the states)
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
// Custom operator to optimize the parallel associative scan
// as described in the Annex D of the Mamba paper.
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
};
ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
// store last states
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]*x->ne[3]),
ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[2], x->nb[3], 0);
// TODO: skip computing output earlier for unused tokens
// {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, model.layers[il].ssm_d));
y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
@ -9845,7 +9943,136 @@ struct llm_build_mamba : public llm_graph_context {
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
//cb(cur, "mamba_out", il);
// cb(cur, "mamba_out", il);
return cur;
}
ggml_tensor * build_mamba2_layer(
llm_graph_input_rs * inp,
ggml_cgraph * gf,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
int il) const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
const auto kv_head = mctx_cur->get_head();
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t n_head = hparams.ssm_dt_rank;
const int64_t head_dim = d_inner / n_head;
const int64_t n_group = hparams.ssm_n_group;
const int64_t n_seqs = ubatch.n_seqs;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs);
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs);
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
// d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
// {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
// split the above in three
ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner*ggml_element_size(zxBCdt));
ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
// conv
{
// => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
// copy last (d_conv - 1) columns back into the state cache
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
ggml_build_forward_expand(gf,
ggml_cpy(ctx0, last_conv,
ggml_view_1d(ctx0, conv_states_all,
(d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
// 1D convolution
// The equivalent is to make a self-overlapping view of conv_x
// over d_conv columns at each stride in the 3rd dimension,
// then element-wise multiply that with the conv1d weight,
// then sum the elements of each row,
// (the last two steps are a dot product over rows (also doable with mul_mat))
// then permute away the ne[0] dimension,
// and then you're left with the resulting x tensor.
// For simultaneous sequences, all sequences need to have the same length.
xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
// bias
xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
xBC = ggml_silu(ctx0, xBC);
}
// ssm
{
// These correspond to V K Q in SSM/attention duality
ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner*ggml_element_size(xBC));
ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
// {n_head, n_seq_tokens, n_seqs}
dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
ggml_tensor * A = model.layers[il].ssm_a;
// use the states and the indices provided by build_recurrent_state
// (this is necessary in order to properly use the states before they are overwritten,
// while avoiding to make unnecessary copies of the states)
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
// TODO: use semistructured matrices to implement state-space duality
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
};
ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
// store last states
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, ggml_nelements(x)*x->nb[0]),
ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
// TODO: skip computing output earlier for unused tokens
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
// grouped RMS norm
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
cur = build_lora_mm(model.layers[il].ssm_out, y);
}
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
// cb(cur, "mamba_out", il);
return cur;
}
@ -14668,6 +14895,7 @@ llm_graph_result_ptr llama_model::build_graph(
llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
} break;
case LLM_ARCH_MAMBA:
case LLM_ARCH_MAMBA2:
{
llm = std::make_unique<llm_build_mamba>(*this, params, gf);
} break;
@ -14928,6 +15156,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_REFACT:
case LLM_ARCH_BLOOM:
case LLM_ARCH_MAMBA:
case LLM_ARCH_MAMBA2:
case LLM_ARCH_JINA_BERT_V2:
case LLM_ARCH_T5:
case LLM_ARCH_T5ENCODER: