added toggle for vae tiling, use custom memory buffer

This commit is contained in:
Concedo 2025-01-08 13:12:03 +08:00
parent d752846116
commit 568e476997
5 changed files with 44 additions and 2 deletions

View file

@ -149,6 +149,7 @@ struct sd_load_model_inputs
const int threads = 0; const int threads = 0;
const int quant = 0; const int quant = 0;
const bool taesd = false; const bool taesd = false;
const bool notile = false;
const char * t5xxl_filename = nullptr; const char * t5xxl_filename = nullptr;
const char * clipl_filename = nullptr; const char * clipl_filename = nullptr;
const char * clipg_filename = nullptr; const char * clipg_filename = nullptr;

View file

@ -234,6 +234,7 @@ class sd_load_model_inputs(ctypes.Structure):
("threads", ctypes.c_int), ("threads", ctypes.c_int),
("quant", ctypes.c_int), ("quant", ctypes.c_int),
("taesd", ctypes.c_bool), ("taesd", ctypes.c_bool),
("notile", ctypes.c_bool),
("t5xxl_filename", ctypes.c_char_p), ("t5xxl_filename", ctypes.c_char_p),
("clipl_filename", ctypes.c_char_p), ("clipl_filename", ctypes.c_char_p),
("clipg_filename", ctypes.c_char_p), ("clipg_filename", ctypes.c_char_p),
@ -1121,6 +1122,7 @@ def sd_load_model(model_filename,vae_filename,lora_filename,t5xxl_filename,clipl
inputs.threads = thds inputs.threads = thds
inputs.quant = quant inputs.quant = quant
inputs.taesd = True if args.sdvaeauto else False inputs.taesd = True if args.sdvaeauto else False
inputs.notile = True if args.sdnotile else False
inputs.vae_filename = vae_filename.encode("UTF-8") inputs.vae_filename = vae_filename.encode("UTF-8")
inputs.lora_filename = lora_filename.encode("UTF-8") inputs.lora_filename = lora_filename.encode("UTF-8")
inputs.lora_multiplier = args.sdloramult inputs.lora_multiplier = args.sdloramult
@ -2980,6 +2982,7 @@ def show_gui():
sd_clipl_var = ctk.StringVar() sd_clipl_var = ctk.StringVar()
sd_clipg_var = ctk.StringVar() sd_clipg_var = ctk.StringVar()
sd_vaeauto_var = ctk.IntVar(value=0) sd_vaeauto_var = ctk.IntVar(value=0)
sd_notile_var = ctk.IntVar(value=0)
sd_clamped_var = ctk.StringVar(value="0") sd_clamped_var = ctk.StringVar(value="0")
sd_threads_var = ctk.StringVar(value=str(default_threads)) sd_threads_var = ctk.StringVar(value=str(default_threads))
sd_quant_var = ctk.IntVar(value=0) sd_quant_var = ctk.IntVar(value=0)
@ -3548,6 +3551,7 @@ def show_gui():
sdvaeitem2.grid() sdvaeitem2.grid()
sdvaeitem3.grid() sdvaeitem3.grid()
makecheckbox(images_tab, "Use TAE SD (AutoFix Broken VAE)", sd_vaeauto_var, 22,command=toggletaesd,tooltiptxt="Replace VAE with TAESD. May fix bad VAE.") makecheckbox(images_tab, "Use TAE SD (AutoFix Broken VAE)", sd_vaeauto_var, 22,command=toggletaesd,tooltiptxt="Replace VAE with TAESD. May fix bad VAE.")
makecheckbox(images_tab, "No VAE Tiling", sd_notile_var, 24,tooltiptxt="Disables VAE tiling, may not work for large images.")
# audio tab # audio tab
audio_tab = tabcontent["Audio"] audio_tab = tabcontent["Audio"]
@ -3738,6 +3742,7 @@ def show_gui():
args.sdthreads = (0 if sd_threads_var.get()=="" else int(sd_threads_var.get())) args.sdthreads = (0 if sd_threads_var.get()=="" else int(sd_threads_var.get()))
args.sdclamped = (0 if int(sd_clamped_var.get())<=0 else int(sd_clamped_var.get())) args.sdclamped = (0 if int(sd_clamped_var.get())<=0 else int(sd_clamped_var.get()))
args.sdnotile = (True if sd_notile_var.get()==1 else False)
if sd_vaeauto_var.get()==1: if sd_vaeauto_var.get()==1:
args.sdvaeauto = True args.sdvaeauto = True
args.sdvae = "" args.sdvae = ""
@ -3919,6 +3924,7 @@ def show_gui():
sd_clipl_var.set(dict["sdclipl"] if ("sdclipl" in dict and dict["sdclipl"]) else "") sd_clipl_var.set(dict["sdclipl"] if ("sdclipl" in dict and dict["sdclipl"]) else "")
sd_clipg_var.set(dict["sdclipg"] if ("sdclipg" in dict and dict["sdclipg"]) else "") sd_clipg_var.set(dict["sdclipg"] if ("sdclipg" in dict and dict["sdclipg"]) else "")
sd_vaeauto_var.set(1 if ("sdvaeauto" in dict and dict["sdvaeauto"]) else 0) sd_vaeauto_var.set(1 if ("sdvaeauto" in dict and dict["sdvaeauto"]) else 0)
sd_notile_var.set(1 if ("sdnotile" in dict and dict["sdnotile"]) else 0)
sd_lora_var.set(dict["sdlora"] if ("sdlora" in dict and dict["sdlora"]) else "") sd_lora_var.set(dict["sdlora"] if ("sdlora" in dict and dict["sdlora"]) else "")
sd_loramult_var.set(str(dict["sdloramult"]) if ("sdloramult" in dict and dict["sdloramult"]) else "1.0") sd_loramult_var.set(str(dict["sdloramult"]) if ("sdloramult" in dict and dict["sdloramult"]) else "1.0")
@ -5237,6 +5243,7 @@ if __name__ == '__main__':
sdparsergrouplora.add_argument("--sdquant", help="If specified, loads the model quantized to save memory.", action='store_true') sdparsergrouplora.add_argument("--sdquant", help="If specified, loads the model quantized to save memory.", action='store_true')
sdparsergrouplora.add_argument("--sdlora", metavar=('[filename]'), help="Specify a stable diffusion LORA safetensors model to be applied. Cannot be used with quant models.", default="") sdparsergrouplora.add_argument("--sdlora", metavar=('[filename]'), help="Specify a stable diffusion LORA safetensors model to be applied. Cannot be used with quant models.", default="")
sdparsergroup.add_argument("--sdloramult", metavar=('[amount]'), help="Multiplier for the LORA model to be applied.", type=float, default=1.0) sdparsergroup.add_argument("--sdloramult", metavar=('[amount]'), help="Multiplier for the LORA model to be applied.", type=float, default=1.0)
sdparsergroup.add_argument("--sdnotile", help="Disables VAE tiling, may not work for large images.", action='store_true')
whisperparsergroup = parser.add_argument_group('Whisper Transcription Commands') whisperparsergroup = parser.add_argument_group('Whisper Transcription Commands')
whisperparsergroup.add_argument("--whispermodel", metavar=('[filename]'), help="Specify a Whisper bin model to enable Speech-To-Text transcription.", default="") whisperparsergroup.add_argument("--whispermodel", metavar=('[filename]'), help="Specify a Whisper bin model to enable Speech-To-Text transcription.", default="")

View file

@ -52,6 +52,25 @@
#define __STATIC_INLINE__ static inline #define __STATIC_INLINE__ static inline
#endif #endif
__STATIC_INLINE__ void* sd_aligned_malloc(size_t required_bytes, size_t alignment)
{
void* p1; // original block
void** p2; // aligned block
int offset = alignment - 1 + sizeof(void*);
if ((p1 = (void*)calloc(1, required_bytes + offset)) == NULL)
{
return NULL;
}
p2 = (void**)(((size_t)(p1) + offset) & ~(alignment - 1));
p2[-1] = p1;
return p2;
}
__STATIC_INLINE__ void sd_aligned_free(void *p)
{
free(((void**)p)[-1]);
}
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) { __STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) {
(void)level; (void)level;
(void)user_data; (void)user_data;
@ -507,15 +526,23 @@ __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const
params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk
params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk
params.mem_size += 3 * ggml_tensor_overhead(); params.mem_size += 3 * ggml_tensor_overhead();
params.mem_size += 512; //extra 512 bytes why not, we will use and handle our own memory
params.mem_size = GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
params.mem_buffer = NULL; params.mem_buffer = NULL;
params.no_alloc = false; params.no_alloc = false;
LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f); LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
params.mem_buffer = sd_aligned_malloc(params.mem_size,64);
// draft context // draft context
struct ggml_context* tiles_ctx = ggml_init(params); struct ggml_context* tiles_ctx = ggml_init(params);
if (!tiles_ctx) { if (!tiles_ctx) {
LOG_ERROR("ggml_init() failed"); LOG_ERROR("ggml_init() failed");
if(params.mem_buffer!=NULL)
{
sd_aligned_free(params.mem_buffer);
}
return; return;
} }
@ -554,6 +581,10 @@ __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const
pretty_progress(num_tiles, num_tiles, last_time); pretty_progress(num_tiles, num_tiles, last_time);
} }
ggml_free(tiles_ctx); ggml_free(tiles_ctx);
if(params.mem_buffer!=NULL)
{
sd_aligned_free(params.mem_buffer);
}
} }
__STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx, __STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx,

View file

@ -135,6 +135,7 @@ std::string base64_encode(const unsigned char* data, unsigned int data_length) {
} }
static std::string sdplatformenv, sddeviceenv, sdvulkandeviceenv; static std::string sdplatformenv, sddeviceenv, sdvulkandeviceenv;
static bool notiling = false;
bool sdtype_load_model(const sd_load_model_inputs inputs) { bool sdtype_load_model(const sd_load_model_inputs inputs) {
executable_path = inputs.executable_path; executable_path = inputs.executable_path;
@ -144,6 +145,7 @@ bool sdtype_load_model(const sd_load_model_inputs inputs) {
std::string t5xxl_filename = inputs.t5xxl_filename; std::string t5xxl_filename = inputs.t5xxl_filename;
std::string clipl_filename = inputs.clipl_filename; std::string clipl_filename = inputs.clipl_filename;
std::string clipg_filename = inputs.clipg_filename; std::string clipg_filename = inputs.clipg_filename;
notiling = inputs.notile;
printf("\nImageGen Init - Load Model: %s\n",inputs.model_filename); printf("\nImageGen Init - Load Model: %s\n",inputs.model_filename);
if(lorafilename!="") if(lorafilename!="")
{ {
@ -352,7 +354,7 @@ sd_generation_outputs sdtype_generate(const sd_generation_inputs inputs)
sd_params->width = newwidth; sd_params->width = newwidth;
sd_params->height = newheight; sd_params->height = newheight;
} }
bool dotile = (sd_params->width>768 || sd_params->height>768); bool dotile = (sd_params->width>768 || sd_params->height>768) && !notiling;
set_sd_vae_tiling(sd_ctx,dotile); //changes vae tiling, prevents memory related crash/oom set_sd_vae_tiling(sd_ctx,dotile); //changes vae tiling, prevents memory related crash/oom
//for img2img //for img2img

View file

@ -1084,7 +1084,8 @@ public:
ggml_tensor_scale_output(result); ggml_tensor_scale_output(result);
} }
} else { } else {
if (vae_tiling && decode) { // TODO: support tiling vae encode //koboldcpp never use tiling with taesd
if (false && vae_tiling && decode) { // TODO: support tiling vae encode
// split latent in 64x64 tiles and compute in several steps // split latent in 64x64 tiles and compute in several steps
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) { auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
tae_first_stage->compute(n_threads, in, decode, &out); tae_first_stage->compute(n_threads, in, decode, &out);