merge, deprecate openblas

This commit is contained in:
Concedo 2024-04-26 19:24:59 +08:00
commit 544c36f751
12 changed files with 275 additions and 100 deletions

View file

@ -53,15 +53,14 @@ when you can't use the precompiled binary directly, we provide an automated buil
## OSX and Linux Manual Compiling
- Otherwise, you will have to compile your binaries from source. A makefile is provided, simply run `make`.
- If you want you can also link your own install of OpenBLAS manually with `make LLAMA_OPENBLAS=1`
- If you want you can also link your own install of CLBlast manually with `make LLAMA_CLBLAST=1`, for this you will need to obtain and link OpenCL and CLBlast libraries.
- For Arch Linux: Install `cblas` `openblas` and `clblast`.
- For Debian: Install `libclblast-dev` and `libopenblas-dev`.
- For Arch Linux: Install `cblas` and `clblast`.
- For Debian: Install `libclblast-dev`.
- You can attempt a CuBLAS build with `LLAMA_CUBLAS=1`. You will need CUDA Toolkit installed. Some have also reported success with the CMake file, though that is more for windows.
- For a full featured build (all backends), do `make LLAMA_OPENBLAS=1 LLAMA_CLBLAST=1 LLAMA_CUBLAS=1 LLAMA_VULKAN=1`
- For a full featured build (all backends), do `make LLAMA_CLBLAST=1 LLAMA_CUBLAS=1 LLAMA_VULKAN=1`
- After all binaries are built, you can run the python script with the command `koboldcpp.py [ggml_model.bin] [port]`
- Note: Many OSX users have found that the using Accelerate is actually faster than OpenBLAS. To try, you may wish to run with `--noblas` and compare speeds.
- Note: OpenBLAS backend is now deprecated and will be removed, as pure CPU is now almost always faster.
### Arch Linux Packages
There are 4 community made AUR packages (Maintained by @AlpinDale) available: [CPU-only](https://aur.archlinux.org/packages/koboldcpp-cpu), [CLBlast](https://aur.archlinux.org/packages/koboldcpp-clblast), [CUBLAS](https://aur.archlinux.org/packages/koboldcpp-cuda), and [HIPBLAS](https://aur.archlinux.org/packages/koboldcpp-hipblas). They are, respectively, for users with no GPU, users with a GPU (vendor-agnostic), users with NVIDIA GPUs, and users with a supported AMD GPU.
@ -89,12 +88,12 @@ You can then run koboldcpp anywhere from the terminal by running `koboldcpp` to
- If you want to generate the .exe file, make sure you have the python module PyInstaller installed with pip ('pip install PyInstaller').
- Run the script make_pyinstaller.bat at a regular terminal (or Windows Explorer).
- The koboldcpp.exe file will be at your dist folder.
- If you wish to use your own version of the additional Windows libraries (OpenCL, CLBlast and OpenBLAS), you can do it with:
- If you wish to use your own version of the additional Windows libraries (OpenCL, CLBlast), you can do it with:
- OpenCL - tested with https://github.com/KhronosGroup/OpenCL-SDK . If you wish to compile it, follow the repository instructions. You will need vcpkg.
- CLBlast - tested with https://github.com/CNugteren/CLBlast . If you wish to compile it you will need to reference the OpenCL files. It will only generate the ".lib" file if you compile using MSVC.
- OpenBLAS - tested with https://github.com/xianyi/OpenBLAS .
- Move the respectives .lib files to the /lib folder of your project, overwriting the older files.
- Also, replace the existing versions of the corresponding .dll files located in the project directory root (e.g. libopenblas.dll).
- Move the respective .lib files to the /lib folder of your project, overwriting the older files.
- Also, replace the existing versions of the corresponding .dll files located in the project directory root
- Make the KoboldCPP project using the instructions above.
- You can attempt a CuBLAS build with using the provided CMake file with visual studio. If you use the CMake file to build, copy the `koboldcpp_cublas.dll` generated into the same directory as the `koboldcpp.py` file. If you are bundling executables, you may need to include CUDA dynamic libraries (such as `cublasLt64_11.dll` and `cublas64_11.dll`) in order for the executable to work correctly on a different PC.
- Make the KoboldCPP project using the instructions above.
@ -128,7 +127,7 @@ You can then run koboldcpp anywhere from the terminal by running `koboldcpp` to
## Considerations
- For Windows: No installation, single file executable, (It Just Works)
- Since v1.0.6, requires libopenblas, the prebuilt windows binaries are included in this repo. If not found, it will fall back to a mode without BLAS.
- Since v1.0.6, required libopenblas, however, it was later removed.
- Since v1.15, requires CLBlast if enabled, the prebuilt windows binaries are included in this repo. If not found, it will fall back to a mode without CLBlast.
- Since v1.33, you can set the context size to be above what the model supports officially. It does increases perplexity but should still work well below 4096 even on untuned models. (For GPT-NeoX, GPT-J, and LLAMA models) Customize this with `--ropeconfig`.
- Since v1.42, supports GGUF models for LLAMA and Falcon
@ -142,7 +141,7 @@ You can then run koboldcpp anywhere from the terminal by running `koboldcpp` to
- The other files are also under the AGPL v3.0 License unless otherwise stated
## Notes
- Generation delay scales linearly with original prompt length. If OpenBLAS is enabled then prompt ingestion becomes about 2-3x faster. This is automatic on windows, but will require linking on OSX and Linux. CLBlast speeds this up even further, and `--gpulayers` + `--useclblast` or `--usecublas` more so.
- Generation delay scales linearly with original prompt length. If CLBlast is enabled then prompt ingestion becomes a few times faster. This is automatic on windows, but will require linking on OSX and Linux. Set `--gpulayers` + `--useclblast` or `--usecublas`.
- I have heard of someone claiming a false AV positive report. The exe is a simple pyinstaller bundle that includes the necessary python scripts and dlls to run. If this still concerns you, you might wish to rebuild everything from source code using the makefile, and you can rebuild the exe yourself with pyinstaller by using `make_pyinstaller.bat`
- API documentation available at `/api` and https://lite.koboldai.net/koboldcpp_api
- Supported GGML models (Includes backward compatibility for older versions/legacy GGML models, though some newer features might be unavailable):

4
examples/gguf-split/tests.sh Normal file → Executable file
View file

@ -21,7 +21,7 @@ set -x
SPLIT=$1/gguf-split
MAIN=$1/main
WORK_PATH=$TMP_DIR/gguf-split
CUR_DIR=$(pwd)
ROOT_DIR=$(realpath $(dirname $0)/../../)
mkdir -p "$WORK_PATH"
@ -31,7 +31,7 @@ rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-merge*.gguf
# 1. Get a model
(
cd $WORK_PATH
"$CUR_DIR"/../../scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf
"$ROOT_DIR"/scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf
)
echo PASS

View file

@ -104,6 +104,7 @@ static std::string format(const char * fmt, ...) {
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
@ -425,6 +426,7 @@ struct clip_vision_model {
// embeddings
struct ggml_tensor * class_embedding;
struct ggml_tensor * patch_embeddings;
struct ggml_tensor * patch_bias;
struct ggml_tensor * position_embeddings;
struct ggml_tensor * pre_ln_w;
@ -501,6 +503,11 @@ struct clip_ctx {
bool use_gelu = false;
int32_t ftype = 1;
bool has_class_embedding = true;
bool has_pre_norm = true;
bool has_post_norm = false;
bool has_patch_bias = false;
struct gguf_context * ctx_gguf;
struct ggml_context * ctx_data;
@ -526,7 +533,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
const int num_positions = num_patches + 1;
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
@ -557,16 +564,23 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
if (ctx->has_patch_bias) {
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
inp = ggml_add(ctx0, inp, model.patch_bias);
}
// concat class_embeddings and patch_embeddings
struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
struct ggml_tensor * embeddings = inp;
if (ctx->has_class_embedding) {
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
embeddings = ggml_acc(ctx0, embeddings, inp,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
}
ggml_set_name(embeddings, "embeddings");
ggml_set_input(embeddings);
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
embeddings = ggml_acc(ctx0, embeddings, inp,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_set_name(positions, "positions");
@ -576,7 +590,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
// pre-layernorm
{
if (ctx->has_pre_norm) {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "pre_ln");
@ -664,6 +678,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = cur;
}
// post-layernorm
if (ctx->has_post_norm) {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
// llava projector
{
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
@ -1149,11 +1171,38 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
try {
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
new_clip->has_class_embedding = true;
} catch (const std::exception& e) {
new_clip->has_class_embedding = false;
}
try {
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
new_clip->has_pre_norm = true;
} catch (std::exception & e) {
new_clip->has_pre_norm = false;
}
try {
vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
new_clip->has_post_norm = true;
} catch (std::exception & e) {
new_clip->has_post_norm = false;
}
try {
vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
new_clip->has_patch_bias = true;
} catch (std::exception & e) {
new_clip->has_patch_bias = false;
}
try {
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
} catch(const std::exception& e) {
LOG_TEE("%s: failed to load vision model tensors\n", __func__);
}
@ -1325,7 +1374,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
}
// Linear interpolation between two points
inline float lerp(float s, float e, float t) {
inline float clip_lerp(float s, float e, float t) {
return s + (e - s) * t;
}
// Bilinear resize function
@ -1347,17 +1396,17 @@ static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int ta
float y_lerp = py - y_floor;
for (int c = 0; c < 3; c++) {
float top = lerp(
float top = clip_lerp(
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
x_lerp
);
float bottom = lerp(
float bottom = clip_lerp(
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
x_lerp
);
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
}
}
}

View file

@ -98,6 +98,7 @@ static void usage(const char * executable) {
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
printf(" --keep-split: will generate quatized model in the same shards as input");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
@ -301,6 +302,8 @@ int main(int argc, char ** argv) {
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--keep-split")) {
params.keep_split = true;
} else {
usage(argv[0]);
}
@ -333,20 +336,28 @@ int main(int argc, char ** argv) {
std::string fname_out;
std::string ftype_str;
std::string suffix = ".gguf";
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
std::string fpath;
const size_t pos = fname_inp.find_last_of("/\\");
if (pos != std::string::npos) {
fpath = fname_inp.substr(0, pos + 1);
}
// export as [inp path]/ggml-model-[ftype].gguf
fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
// export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
fname_out = fpath + "ggml-model-" + ftype_str;
if (!params.keep_split) {
fname_out += suffix;
}
arg_idx++;
if (ftype_str == "COPY") {
params.only_copy = true;
}
} else {
fname_out = argv[arg_idx];
if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
}
arg_idx++;
if (argc <= arg_idx) {

View file

@ -0,0 +1,65 @@
#!/bin/bash
set -eu
if [ $# -lt 1 ]
then
echo "usage: $0 path_to_build_binary [path_to_temp_folder]"
echo "example: $0 ../../build/bin ../../tmp"
exit 1
fi
if [ $# -gt 1 ]
then
TMP_DIR=$2
else
TMP_DIR=/tmp
fi
set -x
SPLIT=$1/gguf-split
QUANTIZE=$1/quantize
MAIN=$1/main
WORK_PATH=$TMP_DIR/quantize
ROOT_DIR=$(realpath $(dirname $0)/../../)
mkdir -p "$WORK_PATH"
# Clean up in case of previously failed test
rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-requant*.gguf
# 1. Get a model
(
cd $WORK_PATH
"$ROOT_DIR"/scripts/hf.sh --repo ggml-org/gemma-1.1-2b-it-Q8_0-GGUF --file gemma-1.1-2b-it.Q8_0.gguf
)
echo PASS
# 2. Split model
$SPLIT --split-max-tensors 28 $WORK_PATH/gemma-1.1-2b-it.Q8_0.gguf $WORK_PATH/ggml-model-split
echo PASS
echo
# 3. Requant model with '--keep_split'
$QUANTIZE --allow-requantize --keep_split $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant.gguf Q4_K
echo PASS
echo
# 3a. Test the requanted model is loading properly
$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --random-prompt --n-predict 32
echo PASS
echo
# 4. Requant mode without '--keep_split'
$QUANTIZE --allow-requantize $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant-merge.gguf Q4_K
echo PASS
echo
# 4b. Test the requanted model is loading properly
$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --random-prompt --n-predict 32
echo PASS
echo
# Clean up
rm -f $WORK_PATH/ggml-model-split*.gguf $WORK_PATH/ggml-model-requant*.gguf

View file

@ -9,4 +9,3 @@ then
else
behave "$@"
fi

View file

@ -11,6 +11,12 @@
#include <string.h> // memcpy
#include <math.h> // fabsf
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#ifdef __cplusplus
extern "C" {
#endif

View file

@ -14,12 +14,6 @@
#include <stdlib.h> // for qsort
#include <stdio.h> // for GGML_ASSERT
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define UNUSED GGML_UNUSED
#ifndef MM256_SET_M128I

12
ggml.c
View file

@ -858,18 +858,6 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
// simd mappings
//
#if defined(__ARM_NEON)
#if !defined(__aarch64__)
// 64-bit compatibility
inline static float vaddvq_f32(float32x4_t v) {
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
}
#endif
#endif
// we define a common set of C macros which map to specific intrinsics based on the current architecture
// we then implement the fundamental computation operations below using only these macros
// adding support for new architectures requires to define the corresponding SIMD macros

View file

@ -1593,15 +1593,15 @@ def show_new_gui():
tabcontent = {}
lib_option_pairs = [
(lib_openblas, "Use OpenBLAS"),
(lib_default, "Use CPU"),
(lib_clblast, "Use CLBlast"),
(lib_cublas, "Use CuBLAS"),
(lib_hipblas, "Use hipBLAS (ROCm)"),
(lib_vulkan, "Use Vulkan"),
(lib_default, "Use No BLAS"),
(lib_openblas, "Use OpenBLAS (Deprecated)"),
(lib_clblast_noavx2, "CLBlast NoAVX2 (Old CPU)"),
(lib_vulkan_noavx2, "Vulkan NoAVX2 (Old CPU)"),
(lib_noavx2, "NoAVX2 Mode (Old CPU)"),
(lib_noavx2, "CPU NoAVX2 (Old CPU)"),
(lib_failsafe, "Failsafe Mode (Old CPU)")]
openblas_option, clblast_option, cublas_option, hipblas_option, vulkan_option, default_option, clblast_noavx2_option, vulkan_noavx2_option, noavx2_option, failsafe_option = (opt if file_exists(lib) or (os.name == 'nt' and file_exists(opt + ".dll")) else None for lib, opt in lib_option_pairs)
# slider data
@ -1613,7 +1613,7 @@ def show_new_gui():
if not any(runopts):
exitcounter = 999
show_gui_msgbox("No Backends Available!","KoboldCPP couldn't locate any backends to use (i.e Default, OpenBLAS, CLBlast, CuBLAS).\n\nTo use the program, please run the 'make' command from the directory.")
show_gui_msgbox("No Backends Available!","KoboldCPP couldn't locate any backends to use (i.e CPU, CLBlast, CuBLAS).\n\nTo use the program, please run the 'make' command from the directory.")
time.sleep(3)
sys.exit(2)
@ -1990,7 +1990,7 @@ def show_new_gui():
# presets selector
makelabel(quick_tab, "Presets:", 1,0,"Select a backend to use.\nOpenBLAS and NoBLAS runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.")
makelabel(quick_tab, "Presets:", 1,0,"Select a backend to use.\nCPU runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.")
runoptbox = ctk.CTkComboBox(quick_tab, values=runopts, width=180,variable=runopts_var, state="readonly")
runoptbox.grid(row=1, column=1,padx=8, stick="nw")
@ -2029,7 +2029,7 @@ def show_new_gui():
hardware_tab = tabcontent["Hardware"]
# presets selector
makelabel(hardware_tab, "Presets:", 1,0,"Select a backend to use.\nOpenBLAS and NoBLAS runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.")
makelabel(hardware_tab, "Presets:", 1,0,"Select a backend to use.\nCPU runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.")
runoptbox = ctk.CTkComboBox(hardware_tab, values=runopts, width=180,variable=runopts_var, state="readonly")
runoptbox.grid(row=1, column=1,padx=8, stick="nw")
runoptbox.set(runopts[0]) # Set to first available option
@ -2206,9 +2206,9 @@ def show_new_gui():
args.noavx2 = True
if gpulayers_var.get():
args.gpulayers = int(gpulayers_var.get())
if runopts_var.get()=="Use No BLAS":
if runopts_var.get()=="Use CPU":
args.noblas = True
if runopts_var.get()=="NoAVX2 Mode (Old CPU)":
if runopts_var.get()=="CPU NoAVX2 (Old CPU)":
args.noavx2 = True
if runopts_var.get()=="Failsafe Mode (Old CPU)":
args.noavx2 = True
@ -3257,7 +3257,7 @@ if __name__ == '__main__':
compatgroup.add_argument("--usecublas", help="Use CuBLAS for GPU Acceleration. Requires CUDA. Select lowvram to not allocate VRAM scratch buffer. Enter a number afterwards to select and use 1 GPU. Leaving no number will use all GPUs. For hipBLAS binaries, please check YellowRoseCx rocm fork.", nargs='*',metavar=('[lowvram|normal] [main GPU ID] [mmq] [rowsplit]'), choices=['normal', 'lowvram', '0', '1', '2', '3', 'mmq', 'rowsplit'])
compatgroup.add_argument("--usevulkan", help="Use Vulkan for GPU Acceleration. Can optionally specify GPU Device ID (e.g. --usevulkan 0).", metavar=('[Device ID]'), nargs='*', type=int, default=None)
compatgroup.add_argument("--useclblast", help="Use CLBlast for GPU Acceleration. Must specify exactly 2 arguments, platform ID and device ID (e.g. --useclblast 1 0).", type=int, choices=range(0,9), nargs=2)
compatgroup.add_argument("--noblas", help="Do not use OpenBLAS for accelerated prompt ingestion", action='store_true')
compatgroup.add_argument("--noblas", help="((THIS COMMAND IS DEPRECATED AND WILL BE REMOVED SOON))", action='store_true')
parser.add_argument("--gpulayers", help="Set number of layers to offload to GPU when using GPU. Requires GPU.",metavar=('[GPU layers]'), nargs='?', const=1, type=int, default=0)
parser.add_argument("--tensor_split", help="For CUDA and Vulkan only, ratio to split tensors across multiple GPUs, space-separated list of proportions, e.g. 7 3", metavar=('[Ratios]'), type=float, nargs='+')
parser.add_argument("--contextsize", help="Controls the memory allocated for maximum context size, only change if you need more RAM for big contexts. (default 2048). Supported values are [256,512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536,98304,131072]. IF YOU USE ANYTHING ELSE YOU ARE ON YOUR OWN.",metavar=('[256,512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536,98304,131072]'), type=check_range(int,256,262144), default=2048)

127
llama.cpp
View file

@ -3029,9 +3029,13 @@ struct llama_model_loader {
ggml_tensor * tensor;
llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
}
}
};
std::vector<llama_tensor_weight> weights;
@ -3070,15 +3074,15 @@ struct llama_model_loader {
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
llm_kv = LLM_KV(llm_arch_from_string(arch_name));
files.emplace_back(new llama_file(fname.c_str(), "rb"));
contexts.emplace_back(ctx);
// Save tensors data offset of the main file.
// For subsidiary files, `meta` tensor data offset must not be used,
// so we build a unified tensors index for weights.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
weights.emplace_back(0, cur->name, meta, cur);
weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
}
files.emplace_back(new llama_file(fname.c_str(), "rb"));
contexts.emplace_back(ctx);
uint16_t n_split = 0;
get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
@ -3112,13 +3116,14 @@ struct llama_model_loader {
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
}
// Save tensors data offset info of the shard.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
weights.emplace_back(idx, cur->name, ctx_gguf, cur);
}
files.emplace_back(new llama_file(split_path, "rb"));
contexts.emplace_back(ctx);
// Save tensors data offset info of the shard.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
}
gguf_free(ctx_gguf);
}
@ -3328,6 +3333,10 @@ struct llama_model_loader {
return nullptr;
}
const llama_tensor_weight * get_weight(int i) const {
return get_weight(get_tensor_name(i));
}
const llama_tensor_weight & require_weight(const char * name) const {
const llama_tensor_weight * weight = get_weight(name);
if (!weight) {
@ -14843,26 +14852,74 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
std::vector<no_init<uint8_t>> work;
std::vector<no_init<float>> f32_conv_buf;
uint16_t n_split = 1;
// Assume split index is continuous
if (params->keep_split) {
for (int i = 0; i < ml.n_tensors; ++i) {
n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
}
}
std::vector<gguf_context*> ctx_outs(n_split, NULL);
ctx_outs[0] = ctx_out;
// populate the original tensors so we get an initial meta data
for (int i = 0; i < ml.n_tensors; ++i) {
const struct ggml_tensor * meta = ml.get_tensor_meta(i);
gguf_add_tensor(ctx_out, meta);
auto weight = ml.get_weight(i);
uint16_t i_split = params->keep_split ? weight->idx : 0;
struct ggml_tensor * tensor = weight->tensor;
if (ctx_outs[i_split] == NULL) {
ctx_outs[i_split] = gguf_init_empty();
}
gguf_add_tensor(ctx_outs[i_split], tensor);
}
std::ofstream fout(fname_out, std::ios::binary);
// Set split info if needed
if (n_split > 1) {
for (size_t i = 0; i < ctx_outs.size(); ++i) {
gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
}
}
int cur_split = -1;
std::ofstream fout;
auto close_ofstream = [&]() {
// Write metadata and close file handler
if (fout.is_open()) {
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
gguf_get_meta_data(ctx_outs[cur_split], data.data());
fout.write((const char *) data.data(), data.size());
fout.close();
}
};
auto new_ofstream = [&](int index) {
cur_split = index;
GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
std::string fname = fname_out;
if (params->keep_split) {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
fname = std::string(split_path);
}
fout = std::ofstream(fname, std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
const size_t meta_size = gguf_get_meta_size(ctx_out);
LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
// placeholder for the meta data
::zeros(fout, meta_size);
};
const auto tn = LLM_TN(model.arch);
new_ofstream(0);
for (int i = 0; i < ml.n_tensors; ++i) {
struct ggml_tensor * tensor = ml.get_tensor_meta(i);
auto weight = ml.get_weight(i);
struct ggml_tensor * tensor = weight->tensor;
if (weight->idx != cur_split && params->keep_split) {
close_ofstream();
new_ofstream(weight->idx);
}
const std::string name = ggml_get_name(tensor);
@ -15017,26 +15074,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
total_size_new += new_size;
// update the gguf meta data as we go
gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
// write tensor data + padding
fout.write((const char *) new_data, new_size);
zeros(fout, GGML_PAD(new_size, align) - new_size);
}
// go back to beginning of file and write the updated meta data
{
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *) data.data(), data.size());
close_ofstream();
for (auto & c:ctx_outs) {
gguf_free(c);
}
fout.close();
gguf_free(ctx_out);
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
@ -15392,6 +15441,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
/*.quantize_output_tensor =*/ true,
/*.only_copy =*/ false,
/*.pure =*/ false,
/*.keep_split =*/ false,
/*.imatrix =*/ nullptr,
/*.kv_overrides =*/ nullptr,
};
@ -16386,6 +16436,8 @@ struct llama_data_file_context : llama_data_context {
*
*/
static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
llama_synchronize(ctx);
// copy rng
{
std::ostringstream rng_ss;
@ -16538,6 +16590,8 @@ size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
// Sets the state reading from the specified source address
size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
llama_synchronize(ctx);
const uint8_t * inp = src;
// set rng
@ -16842,6 +16896,8 @@ size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id)
}
static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
llama_synchronize(ctx);
const auto & kv_self = ctx->kv_self;
GGML_ASSERT(!kv_self.recurrent); // not implemented
@ -16959,6 +17015,8 @@ size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_s
}
size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
llama_synchronize(ctx);
auto & kv_self = ctx->kv_self;
GGML_ASSERT(!kv_self.recurrent); // not implemented
@ -17915,6 +17973,11 @@ const char * llama_print_system_info(void) {
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
#ifdef GGML_USE_LLAMAFILE
s += "LAMMAFILE = 1 | ";
#else
s += "LAMMAFILE = 0 | ";
#endif
return s.c_str();
}

View file

@ -288,6 +288,7 @@ extern "C" {
bool quantize_output_tensor; // quantize output.weight
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
bool pure; // quantize all tensors to the default type
bool keep_split; // quantize to the same number of shards
void * imatrix; // pointer to importance matrix data
void * kv_overrides; // pointer to vector containing overrides
} llama_model_quantize_params;