mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 17:14:36 +00:00
rephrase tensor moved warning, cleanup and prepare for ci
This commit is contained in:
parent
fbf1345a66
commit
50648de0af
13 changed files with 25 additions and 2867 deletions
|
@ -70,6 +70,11 @@ add_compile_definitions(LOG_DISABLE_LOGS)
|
||||||
add_compile_definitions(GGML_USE_CPU)
|
add_compile_definitions(GGML_USE_CPU)
|
||||||
add_compile_definitions(GGML_USE_CPU_AARCH64)
|
add_compile_definitions(GGML_USE_CPU_AARCH64)
|
||||||
|
|
||||||
|
if (MSVC)
|
||||||
|
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
|
||||||
|
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
|
||||||
|
endif()
|
||||||
|
|
||||||
file(GLOB GGML_SOURCES_CUDA "ggml/src/ggml-cuda/*.cu")
|
file(GLOB GGML_SOURCES_CUDA "ggml/src/ggml-cuda/*.cu")
|
||||||
list(APPEND GGML_SOURCES_CUDA "ggml/src/ggml-cuda/ggml-cuda.cu")
|
list(APPEND GGML_SOURCES_CUDA "ggml/src/ggml-cuda/ggml-cuda.cu")
|
||||||
file(GLOB SRCS "ggml/src/ggml-cuda/template-instances/fattn-wmma*.cu")
|
file(GLOB SRCS "ggml/src/ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||||
|
|
|
@ -1,11 +0,0 @@
|
||||||
set( CMAKE_SYSTEM_NAME Windows )
|
|
||||||
set( CMAKE_SYSTEM_PROCESSOR x86_64 )
|
|
||||||
|
|
||||||
set( CMAKE_C_COMPILER clang )
|
|
||||||
set( CMAKE_CXX_COMPILER clang++ )
|
|
||||||
|
|
||||||
set( arch_c_flags "-march=native" )
|
|
||||||
|
|
||||||
set( CMAKE_C_FLAGS_INIT "${arch_c_flags}" )
|
|
||||||
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags}" )
|
|
||||||
|
|
|
@ -1,220 +0,0 @@
|
||||||
#include "amx.h"
|
|
||||||
#include "common.h"
|
|
||||||
#include "mmq.h"
|
|
||||||
#include "ggml-backend-impl.h"
|
|
||||||
#include "ggml-backend.h"
|
|
||||||
#include "ggml-impl.h"
|
|
||||||
#include "ggml-cpu.h"
|
|
||||||
#include "ggml-cpu-traits.h"
|
|
||||||
|
|
||||||
#if defined(__gnu_linux__)
|
|
||||||
#include <sys/syscall.h>
|
|
||||||
#include <unistd.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include <cstdlib>
|
|
||||||
#include <cstring>
|
|
||||||
#include <memory>
|
|
||||||
|
|
||||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
|
||||||
|
|
||||||
// AMX type_trais
|
|
||||||
namespace ggml::cpu::amx {
|
|
||||||
class tensor_traits : public ggml::cpu::tensor_traits {
|
|
||||||
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
|
|
||||||
size = ggml_backend_amx_desired_wsize(op);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) override {
|
|
||||||
if (op->op == GGML_OP_MUL_MAT) {
|
|
||||||
ggml_backend_amx_mul_mat(params, op);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struct ggml_tensor *) {
|
|
||||||
static tensor_traits traits;
|
|
||||||
return &traits;
|
|
||||||
}
|
|
||||||
} // namespace ggml::cpu::amx
|
|
||||||
|
|
||||||
// AMX buffer interface
|
|
||||||
static void ggml_backend_amx_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
||||||
free(buffer->context);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
||||||
return (void *) (buffer->context);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_backend_amx_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
|
||||||
tensor->extra = (void *) ggml::cpu::amx::get_tensor_traits(buffer, tensor);
|
|
||||||
|
|
||||||
GGML_UNUSED(buffer);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
|
||||||
uint8_t value, size_t offset, size_t size) {
|
|
||||||
memset((char *) tensor->data + offset, value, size);
|
|
||||||
|
|
||||||
GGML_UNUSED(buffer);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_backend_amx_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
|
||||||
const void * data, size_t offset, size_t size) {
|
|
||||||
if (qtype_has_amx_kernels(tensor->type)) {
|
|
||||||
GGML_LOG_DEBUG("%s: amx repack tensor %s of type %s\n", __func__, tensor->name, ggml_type_name(tensor->type));
|
|
||||||
ggml_backend_amx_convert_weight(tensor, data, offset, size);
|
|
||||||
} else {
|
|
||||||
memcpy((char *) tensor->data + offset, data, size);
|
|
||||||
}
|
|
||||||
|
|
||||||
GGML_UNUSED(buffer);
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
// need to figure what we need to do with buffer->extra.
|
|
||||||
static void ggml_backend_amx_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
||||||
GGML_ASSERT(!qtype_has_amx_kernels(tensor->type));
|
|
||||||
memcpy(data, (const char *)tensor->data + offset, size);
|
|
||||||
|
|
||||||
GGML_UNUSED(buffer);
|
|
||||||
}
|
|
||||||
|
|
||||||
static bool ggml_backend_amx_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
||||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
|
||||||
if (qtype_has_amx_kernels(src->type)) {
|
|
||||||
ggml_backend_amx_convert_weight(dst, src->data, 0, ggml_nbytes(dst));
|
|
||||||
} else {
|
|
||||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
|
|
||||||
GGML_UNUSED(buffer);
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
|
|
||||||
static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
||||||
memset(buffer->context, value, buffer->size);
|
|
||||||
}
|
|
||||||
|
|
||||||
static ggml_backend_buffer_i ggml_backend_amx_buffer_interface = {
|
|
||||||
/* .free_buffer = */ ggml_backend_amx_buffer_free_buffer,
|
|
||||||
/* .get_base = */ ggml_backend_amx_buffer_get_base,
|
|
||||||
/* .init_tensor = */ ggml_backend_amx_buffer_init_tensor,
|
|
||||||
/* .memset_tensor = */ ggml_backend_amx_buffer_memset_tensor,
|
|
||||||
/* .set_tensor = */ ggml_backend_amx_buffer_set_tensor,
|
|
||||||
/* .get_tensor = */ nullptr,
|
|
||||||
/* .cpy_tensor = */ nullptr,
|
|
||||||
/* .clear = */ ggml_backend_amx_buffer_clear,
|
|
||||||
/* .reset = */ nullptr,
|
|
||||||
};
|
|
||||||
|
|
||||||
static const char * ggml_backend_amx_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
|
||||||
return "AMX";
|
|
||||||
|
|
||||||
GGML_UNUSED(buft);
|
|
||||||
}
|
|
||||||
|
|
||||||
static ggml_backend_buffer_t ggml_backend_amx_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
||||||
void * data = ggml_aligned_malloc(size);
|
|
||||||
if (data == NULL) {
|
|
||||||
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
return ggml_backend_buffer_init(buft, ggml_backend_amx_buffer_interface, data, size);
|
|
||||||
}
|
|
||||||
|
|
||||||
static size_t ggml_backend_amx_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
|
||||||
return TENSOR_ALIGNMENT;
|
|
||||||
|
|
||||||
GGML_UNUSED(buft);
|
|
||||||
}
|
|
||||||
|
|
||||||
namespace ggml::cpu::amx {
|
|
||||||
class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
|
||||||
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
|
|
||||||
// handle only 2d gemm for now
|
|
||||||
auto is_contiguous_2d = [](const struct ggml_tensor * t) {
|
|
||||||
return ggml_is_contiguous(t) && t->ne[3] == 1 && t->ne[2] == 1;
|
|
||||||
};
|
|
||||||
|
|
||||||
if (op->op == GGML_OP_MUL_MAT && is_contiguous_2d(op->src[0]) && // src0 must be contiguous
|
|
||||||
is_contiguous_2d(op->src[1]) && // src1 must be contiguous
|
|
||||||
op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_amx_buffer_type() &&
|
|
||||||
op->ne[0] % (TILE_N * 2) == 0 && // out_features is 32x
|
|
||||||
(qtype_has_amx_kernels(op->src[0]->type) || (op->src[0]->type == GGML_TYPE_F16))) {
|
|
||||||
// src1 must be host buffer
|
|
||||||
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
// src1 must be float32
|
|
||||||
if (op->src[1]->type == GGML_TYPE_F32) {
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
|
|
||||||
if (op->op == GGML_OP_MUL_MAT && op->src[0]->buffer &&
|
|
||||||
op->src[0]->buffer->buft == ggml_backend_amx_buffer_type()) {
|
|
||||||
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
|
|
||||||
}
|
|
||||||
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
} // namespace ggml::cpu::amx
|
|
||||||
|
|
||||||
static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
|
||||||
return ggml_backend_amx_get_alloc_size(tensor);
|
|
||||||
|
|
||||||
GGML_UNUSED(buft);
|
|
||||||
}
|
|
||||||
|
|
||||||
#define ARCH_GET_XCOMP_PERM 0x1022
|
|
||||||
#define ARCH_REQ_XCOMP_PERM 0x1023
|
|
||||||
#define XFEATURE_XTILECFG 17
|
|
||||||
#define XFEATURE_XTILEDATA 18
|
|
||||||
|
|
||||||
static bool ggml_amx_init() {
|
|
||||||
#if defined(__gnu_linux__)
|
|
||||||
if (syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA)) {
|
|
||||||
fprintf(stderr, "AMX is not ready to be used!\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
#elif defined(_WIN32)
|
|
||||||
return true;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type() {
|
|
||||||
static struct ggml_backend_buffer_type ggml_backend_buffer_type_amx = {
|
|
||||||
/* .iface = */ {
|
|
||||||
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
|
|
||||||
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
|
|
||||||
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
|
|
||||||
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
|
|
||||||
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
|
|
||||||
/* .is_host = */ nullptr,
|
|
||||||
},
|
|
||||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
|
||||||
/* .context = */ new ggml::cpu::amx::extra_buffer_type(),
|
|
||||||
};
|
|
||||||
|
|
||||||
if (!ggml_amx_init()) {
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
return &ggml_backend_buffer_type_amx;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif // defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
|
|
@ -1,8 +0,0 @@
|
||||||
#include "ggml-backend.h"
|
|
||||||
#include "ggml-cpu-impl.h"
|
|
||||||
|
|
||||||
// GGML internal header
|
|
||||||
|
|
||||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
|
||||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
|
|
||||||
#endif
|
|
|
@ -1,91 +0,0 @@
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include "ggml.h"
|
|
||||||
#include "ggml-cpu-impl.h"
|
|
||||||
|
|
||||||
#include <algorithm>
|
|
||||||
#include <memory>
|
|
||||||
#include <type_traits>
|
|
||||||
|
|
||||||
#if defined(GGML_USE_OPENMP)
|
|
||||||
#include <omp.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#define TILE_M 16
|
|
||||||
#define TILE_N 16
|
|
||||||
#define TILE_K 32
|
|
||||||
#define VNNI_BLK 4
|
|
||||||
|
|
||||||
#define AMX_BLK_SIZE 32
|
|
||||||
|
|
||||||
#define TMM0 0
|
|
||||||
#define TMM1 1
|
|
||||||
#define TMM2 2
|
|
||||||
#define TMM3 3
|
|
||||||
#define TMM4 4
|
|
||||||
#define TMM5 5
|
|
||||||
#define TMM6 6
|
|
||||||
#define TMM7 7
|
|
||||||
|
|
||||||
// parallel routines
|
|
||||||
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
|
||||||
inline T div_up(T x, T y) { return (x + y - 1) / y; }
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
|
|
||||||
#if 0
|
|
||||||
// onednn partition pattern
|
|
||||||
T& n_my = n_end;
|
|
||||||
if (nth <= 1 || n == 0) {
|
|
||||||
n_start = 0;
|
|
||||||
n_my = n;
|
|
||||||
} else {
|
|
||||||
T n1 = div_up(n, nth);
|
|
||||||
T n2 = n1 - 1;
|
|
||||||
T T1 = n - n2 * nth;
|
|
||||||
n_my = ith < T1 ? n1 : n2;
|
|
||||||
n_start = ith <= T1 ? ith*n1 : T1 * n1 + (ith - T1) * n2;
|
|
||||||
}
|
|
||||||
n_end += n_start;
|
|
||||||
#else
|
|
||||||
// pytorch aten partition pattern
|
|
||||||
T n_my = div_up(n, nth);
|
|
||||||
n_start = ith * n_my;
|
|
||||||
n_end = std::min(n_start + n_my, n);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename func_t>
|
|
||||||
inline void parallel_for(int n, const func_t& f) {
|
|
||||||
#if defined(GGML_USE_OPENMP)
|
|
||||||
#pragma omp parallel
|
|
||||||
{
|
|
||||||
int nth = omp_get_num_threads();
|
|
||||||
int ith = omp_get_thread_num();
|
|
||||||
int tbegin, tend;
|
|
||||||
balance211(n, nth, ith, tbegin, tend);
|
|
||||||
f(tbegin, tend);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
f(0, n);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename func_t>
|
|
||||||
inline void parallel_for_ggml(const ggml_compute_params * params, int n, const func_t & f) {
|
|
||||||
int tbegin, tend;
|
|
||||||
balance211(n, params->nth, params->ith, tbegin, tend);
|
|
||||||
f(tbegin, tend);
|
|
||||||
}
|
|
||||||
|
|
||||||
// quantized types that have AMX support
|
|
||||||
inline bool qtype_has_amx_kernels(const enum ggml_type type) {
|
|
||||||
// TODO: fix padding for vnni format
|
|
||||||
return (type == GGML_TYPE_Q4_0) ||
|
|
||||||
(type == GGML_TYPE_Q4_1) ||
|
|
||||||
(type == GGML_TYPE_Q8_0) ||
|
|
||||||
(type == GGML_TYPE_Q4_K) ||
|
|
||||||
(type == GGML_TYPE_Q5_K) ||
|
|
||||||
(type == GGML_TYPE_Q6_K) ||
|
|
||||||
(type == GGML_TYPE_IQ4_XS);
|
|
||||||
}
|
|
File diff suppressed because it is too large
Load diff
|
@ -1,10 +0,0 @@
|
||||||
#pragma once
|
|
||||||
#include "common.h"
|
|
||||||
|
|
||||||
size_t ggml_backend_amx_desired_wsize(const struct ggml_tensor * dst);
|
|
||||||
|
|
||||||
size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor);
|
|
||||||
|
|
||||||
void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
||||||
|
|
||||||
void ggml_backend_amx_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
|
|
@ -4167,7 +4167,8 @@ static void flag_aarch_prepacked_quant(int type)
|
||||||
|
|
||||||
static const ggml::cpu::tensor_traits * ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * cur) {
|
static const ggml::cpu::tensor_traits * ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * cur) {
|
||||||
if (cur->type == GGML_TYPE_Q4_0) {
|
if (cur->type == GGML_TYPE_Q4_0) {
|
||||||
if (ggml_cpu_has_avx2() || (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
|
//we shall just use the regular avx2 handling, no repacking
|
||||||
|
if (/*ggml_cpu_has_avx2() ||*/ (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
|
||||||
if (cur->ne[1] % 8 == 0) {
|
if (cur->ne[1] % 8 == 0) {
|
||||||
return &ggml::cpu::aarch64::q4_0_8x8_q8_0;
|
return &ggml::cpu::aarch64::q4_0_8x8_q8_0;
|
||||||
}
|
}
|
||||||
|
|
|
@ -10,7 +10,7 @@
|
||||||
#include "ggml-quants.h"
|
#include "ggml-quants.h"
|
||||||
#include "ggml-cpu-quants.h"
|
#include "ggml-cpu-quants.h"
|
||||||
#include "ggml-threading.h"
|
#include "ggml-threading.h"
|
||||||
#include "amx/amx.h"
|
// #include "amx/amx.h"
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
|
||||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||||
|
|
|
@ -4,7 +4,7 @@
|
||||||
#include "ggml-cpu-aarch64.h"
|
#include "ggml-cpu-aarch64.h"
|
||||||
#include "ggml-cpu-traits.h"
|
#include "ggml-cpu-traits.h"
|
||||||
#include "ggml-impl.h"
|
#include "ggml-impl.h"
|
||||||
#include "amx/amx.h"
|
// #include "amx/amx.h"
|
||||||
|
|
||||||
#include <cctype>
|
#include <cctype>
|
||||||
#include <string>
|
#include <string>
|
||||||
|
@ -33,11 +33,11 @@ std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type
|
||||||
static std::vector<ggml_backend_buffer_type_t> bufts = []() {
|
static std::vector<ggml_backend_buffer_type_t> bufts = []() {
|
||||||
std::vector<ggml_backend_buffer_type_t> bufts;
|
std::vector<ggml_backend_buffer_type_t> bufts;
|
||||||
|
|
||||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
// #if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||||
if (ggml_backend_amx_buffer_type()) {
|
// if (ggml_backend_amx_buffer_type()) {
|
||||||
bufts.push_back(ggml_backend_amx_buffer_type());
|
// bufts.push_back(ggml_backend_amx_buffer_type());
|
||||||
}
|
// }
|
||||||
#endif
|
// #endif
|
||||||
|
|
||||||
#ifdef GGML_USE_CPU_AARCH64
|
#ifdef GGML_USE_CPU_AARCH64
|
||||||
if (ggml_backend_cpu_aarch64_buffer_type()) {
|
if (ggml_backend_cpu_aarch64_buffer_type()) {
|
||||||
|
|
|
@ -7825,6 +7825,7 @@ static bool llm_load_tensors(
|
||||||
}
|
}
|
||||||
|
|
||||||
int n_moved_tensors = 0;
|
int n_moved_tensors = 0;
|
||||||
|
int n_total_tensors = 0;
|
||||||
ggml_tensor * first_moved_tensor = nullptr;
|
ggml_tensor * first_moved_tensor = nullptr;
|
||||||
ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
|
ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
|
||||||
ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
|
ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
|
||||||
|
@ -7909,6 +7910,7 @@ static bool llm_load_tensors(
|
||||||
first_moved_to_buft = buft;
|
first_moved_to_buft = buft;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
n_total_tensors++;
|
||||||
|
|
||||||
ggml_context * ctx = ctx_for_buft(buft);
|
ggml_context * ctx = ctx_for_buft(buft);
|
||||||
|
|
||||||
|
@ -9732,12 +9734,13 @@ static bool llm_load_tensors(
|
||||||
throw std::runtime_error("unknown architecture");
|
throw std::runtime_error("unknown architecture");
|
||||||
}
|
}
|
||||||
|
|
||||||
if (n_moved_tensors > 1) { //only warn if more than 1 moved tensor
|
// if (n_moved_tensors > 1) { //only warn if more than 1 moved tensor
|
||||||
LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
|
// LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
|
||||||
__func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
|
// __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
|
||||||
ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
|
// ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
|
||||||
LLAMA_LOG_DEBUG("(This is not an error, it just means some tensors will use CPU instead.)\n");
|
// LLAMA_LOG_DEBUG("(This is not an error, it just means some tensors will use CPU instead.)\n");
|
||||||
}
|
// }
|
||||||
|
LLAMA_LOG_DEBUG("%s: relocated tensors: %d of %d\n", __func__, n_moved_tensors, n_total_tensors);
|
||||||
}
|
}
|
||||||
|
|
||||||
ml.done_getting_tensors();
|
ml.done_getting_tensors();
|
||||||
|
|
|
@ -18,7 +18,7 @@ VSVersionInfo(
|
||||||
StringStruct(u'CompanyName', u'Your Company Name'),
|
StringStruct(u'CompanyName', u'Your Company Name'),
|
||||||
StringStruct(u'FileDescription', u'KoboldCpp'),
|
StringStruct(u'FileDescription', u'KoboldCpp'),
|
||||||
StringStruct(u'InternalName', u'KoboldCpp'),
|
StringStruct(u'InternalName', u'KoboldCpp'),
|
||||||
StringStruct(u'LegalCopyright', u'KoboldCppIsFreeAndOpenSource'),
|
StringStruct(u'LegalCopyright', u'AGPLv3'),
|
||||||
StringStruct(u'OriginalFilename', u'koboldcpp.exe'),
|
StringStruct(u'OriginalFilename', u'koboldcpp.exe'),
|
||||||
StringStruct(u'ProductName', u'koboldcpp'),
|
StringStruct(u'ProductName', u'koboldcpp'),
|
||||||
]
|
]
|
||||||
|
|
|
@ -18,7 +18,7 @@ VSVersionInfo(
|
||||||
StringStruct(u'CompanyName', u'Your Company Name'),
|
StringStruct(u'CompanyName', u'Your Company Name'),
|
||||||
StringStruct(u'FileDescription', u'KoboldCpp'),
|
StringStruct(u'FileDescription', u'KoboldCpp'),
|
||||||
StringStruct(u'InternalName', u'KoboldCpp'),
|
StringStruct(u'InternalName', u'KoboldCpp'),
|
||||||
StringStruct(u'LegalCopyright', u'KoboldCppIsFreeAndOpenSource'),
|
StringStruct(u'LegalCopyright', u'AGPLv3'),
|
||||||
StringStruct(u'OriginalFilename', u'koboldcpp.exe'),
|
StringStruct(u'OriginalFilename', u'koboldcpp.exe'),
|
||||||
StringStruct(u'ProductName', u'koboldcpp'),
|
StringStruct(u'ProductName', u'koboldcpp'),
|
||||||
]
|
]
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue