Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	ci/run.sh
#	ggml/src/CMakeLists.txt
#	ggml/src/ggml-cpu/CMakeLists.txt
#	ggml/src/ggml-cpu/repack.cpp
#	ggml/src/ggml-sycl/binbcast.cpp
#	ggml/src/ggml-sycl/concat.cpp
#	ggml/src/ggml-sycl/conv.cpp
#	ggml/src/ggml-sycl/convert.cpp
#	ggml/src/ggml-sycl/cpy.cpp
#	ggml/src/ggml-sycl/dmmv.cpp
#	ggml/src/ggml-sycl/dpct/helper.hpp
#	ggml/src/ggml-sycl/element_wise.cpp
#	ggml/src/ggml-sycl/getrows.cpp
#	ggml/src/ggml-sycl/ggml-sycl.cpp
#	ggml/src/ggml-sycl/gla.cpp
#	ggml/src/ggml-sycl/im2col.cpp
#	ggml/src/ggml-sycl/mmq.cpp
#	ggml/src/ggml-sycl/mmvq.cpp
#	ggml/src/ggml-sycl/norm.cpp
#	ggml/src/ggml-sycl/rope.cpp
#	ggml/src/ggml-sycl/softmax.cpp
#	ggml/src/ggml-sycl/tsembd.cpp
#	ggml/src/ggml-sycl/wkv.cpp
#	tests/test-backend-ops.cpp
This commit is contained in:
Concedo 2025-06-21 00:32:22 +08:00
commit 4f2fcaa2ef
21 changed files with 443 additions and 81 deletions

View file

@ -2708,6 +2708,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.embd_sep = value;
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
add_opt(common_arg(
{"--cls-separator"}, "STRING",
"separator of classification sequences (default \\t) for example \"<#seq#>\"",
[](common_params & params, const std::string & value) {
params.cls_sep = value;
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
add_opt(common_arg(
{"--host"}, "HOST",
string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),

View file

@ -1298,6 +1298,9 @@ std::vector<llama_token> common_tokenize(
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens == std::numeric_limits<int32_t>::min()) {
throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
}
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);

View file

@ -354,6 +354,7 @@ struct common_params {
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std::string embd_sep = "\n"; // separator of embeddings
std::string cls_sep = "\t"; // separator of classification sequences
// server params
int32_t port = 8080; // server listens on this network port

View file

@ -2145,7 +2145,6 @@ class Llama4Model(LlamaModel):
def set_vocab(self):
self._set_vocab_gpt2()
self.gguf_writer.add_add_bos_token(True)
def set_gguf_parameters(self):
super().set_gguf_parameters()
@ -3918,9 +3917,6 @@ class BertModel(TextModel):
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(True)
@ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
class DistilBertModel(BertModel):
@ -3962,8 +3958,6 @@ class RobertaModel(BertModel):
bpe_tok_path = self.dir_model / "tokenizer.json"
if bpe_tok_path.exists():
self._set_vocab_gpt2()
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(True)
# we need this to validate the size of the token_type embeddings
# though currently we are passing all zeros to the token_type embeddings
@ -4848,8 +4842,6 @@ class JinaBertV2Model(BertModel):
self.gguf_writer.add_token_type_count(2)
else:
raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(True)
@ModelBase.register("OpenELMForCausalLM")
@ -5451,9 +5443,6 @@ class T5Model(TextModel):
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
self.gguf_writer.add_add_bos_token(False)
self.gguf_writer.add_add_eos_token(True)
def set_gguf_parameters(self):
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
logger.warning("Couldn't find context length in config.json, assuming default value of 512")
@ -5591,9 +5580,6 @@ class T5EncoderModel(TextModel):
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
self.gguf_writer.add_add_bos_token(False)
self.gguf_writer.add_add_eos_token(True)
def set_gguf_parameters(self):
if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
logger.warning("Couldn't find context length in config.json, assuming default value of 512")

View file

@ -133,10 +133,36 @@ int main(int argc, char ** argv) {
// max batch size
const uint64_t n_batch = params.n_batch;
// get added sep and eos token, if any
const std::string added_sep_token = llama_vocab_get_add_sep(vocab) ? llama_vocab_get_text(vocab, llama_vocab_sep(vocab)) : "";
const std::string added_eos_token = llama_vocab_get_add_eos(vocab) ? llama_vocab_get_text(vocab, llama_vocab_eos(vocab)) : "";
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
for (const auto & prompt : prompts) {
auto inp = common_tokenize(ctx, prompt, true, true);
std::vector<llama_token> inp;
// split classification pairs and insert expected separator tokens
if (pooling_type == LLAMA_POOLING_TYPE_RANK && prompt.find(params.cls_sep) != std::string::npos) {
std::vector<std::string> pairs = split_lines(prompt, params.cls_sep);
std::string final_prompt;
for (size_t i = 0; i < pairs.size(); i++) {
final_prompt += pairs[i];
if (i != pairs.size() - 1) {
if (!added_eos_token.empty()) {
final_prompt += added_eos_token;
}
if (!added_sep_token.empty()) {
final_prompt += added_sep_token;
}
}
}
inp = common_tokenize(ctx, final_prompt, true, true);
} else {
inp = common_tokenize(ctx, prompt, true, true);
}
if (inp.size() > n_batch) {
LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
__func__, (long long int) inp.size(), (long long int) n_batch);
@ -145,11 +171,11 @@ int main(int argc, char ** argv) {
inputs.push_back(inp);
}
// check if the last token is SEP
// check if the last token is SEP/EOS
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
for (auto & inp : inputs) {
if (inp.empty() || inp.back() != llama_vocab_sep(vocab)) {
LOG_WRN("%s: last token in the prompt is not SEP\n", __func__);
if (inp.empty() || (inp.back() != llama_vocab_sep(vocab) && inp.back() != llama_vocab_eos(vocab))) {
LOG_WRN("%s: last token in the prompt is not SEP or EOS\n", __func__);
LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
}
}

View file

@ -0,0 +1,82 @@
# include "ggml-backend-impl.h"
#if defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__)
#if defined(__linux__)
#include <sys/auxv.h>
#endif
#include <string>
struct powerpc_features {
std::string platform = "";
int power_version = -1;
bool has_vsx = false;
powerpc_features() {
#if defined(__linux__)
unsigned long auxval = getauxval(AT_PLATFORM);
if (auxval) {
platform = std::string(reinterpret_cast<const char*>(auxval));
// TBD: Do systems exist that return this in uppercase?
if (platform.substr(0, 5) == "power") {
// Extractt a numeric suffix, if one exists
int vpos = -1;
for (int i = platform.length() - 1; i >= 0; i--) {
if (std::isdigit(platform[i])) {
vpos = i;
} else {
break;
}
}
if (vpos > -1) {
power_version = std::stoi(platform.substr(vpos));
}
}
}
#endif
if (power_version >= 9) {
has_vsx = true;
}
}
};
static int ggml_backend_cpu_powerpc_score() {
int score = 1;
powerpc_features pf;
// Platform scores
#if defined(GGML_USE_POWER7)
if (pf.power_version < 7) { return 0; }
score += 1<<1;
#endif
#if defined(GGML_USE_POWER8)
if (pf.power_version < 8) { return 0; }
score += 1<<2;
#endif
#if defined(GGML_USE_POWER9)
if (pf.power_version < 9) { return 0; }
score += 1<<3;
#endif
#if defined(GGML_USE_POWER10)
if (pf.power_version < 10) { return 0; }
score += 1<<4;
#endif
#if defined(GGML_USE_POWER11)
if (pf.power_version < 11) { return 0; }
score += 1<<5;
#endif
// Feature scores
#if defined(GGML_USE_VSX)
if (!pf.has_vsx) { return 0; }
score += 1<<6;
#endif
return score;
}
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_powerpc_score)
#endif // defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__)

View file

@ -1180,13 +1180,24 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
// not realy a GGML_TYPE_Q8_0 but same size.
switch (op->op) {
case GGML_OP_MUL_MAT:
size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
return true;
{
size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
return true;
}
case GGML_OP_MUL_MAT_ID:
size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
size = GGML_PAD(size, sizeof(int64_t)); // + padding for next bloc.
size += sizeof(int64_t) * (1+op->src[0]->ne[2]) * op->src[1]->ne[2];
return true;
{
size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
size = GGML_PAD(size, sizeof(int64_t)); // + padding for next bloc.
const int64_t ne02 = op->src[0]->ne[2]; // n_as, n_expert
const int64_t ne12 = op->src[1]->ne[2]; // n_tokens
const size_t sizeof_mmid_row_mapping = sizeof(int64_t);
size += sizeof_mmid_row_mapping*ne02*(ne12 + 1);
return true;
}
default:
// GGML_ABORT("fatal error");
break;
@ -1322,14 +1333,17 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
int32_t i2;
};
GGML_ASSERT(params->wsize >= (GGML_PAD(nbw3, sizeof(int64_t)) + n_as * sizeof(int64_t) +
n_as * ne12 * sizeof(mmid_row_mapping)));
GGML_ASSERT(params->wsize >=
(GGML_PAD(nbw3, sizeof(int64_t)) +
n_as*(ne12 + 1)*sizeof(mmid_row_mapping))
);
auto * wdata = (char *) params->wdata;
auto * wdata_src1_end = (char *) wdata + GGML_PAD(nbw3, sizeof(int64_t));
auto * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
auto * wdata = (char *)params->wdata;
auto * wdata_src1_end = (char *)wdata + GGML_PAD(nbw3, sizeof(int64_t));
struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *) (matrix_row_counts + n_as); // [n_as][ne12]
// total of [n_as][ne12 + 1] elemets of type mmid_row_mapping (2*int32_t = int64_t)
auto * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *) (matrix_row_counts + n_as); // [n_as][ne12]
// src1: float32 => param type
for (int64_t i12 = 0; i12 < ne12; ++i12) {
@ -1414,15 +1428,6 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
}
};
// instance for Q4
static const tensor_traits<block_q4_0, 4, 4, GGML_TYPE_Q8_0> q4_0_4x4_q8_0;
static const tensor_traits<block_q4_0, 8, 4, GGML_TYPE_Q8_0> q4_0_4x8_q8_0;
static const tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
static const tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
// instance for IQ4
static const tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0;
} // namespace ggml::cpu::repack
static void flag_aarch_prepacked_quant(int type)
@ -1435,55 +1440,65 @@ static void flag_aarch_prepacked_quant(int type)
}
static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(const struct ggml_tensor * cur) {
// instance for Q4
static const ggml::cpu::repack::tensor_traits<block_q4_0, 4, 4, GGML_TYPE_Q8_0> q4_0_4x4_q8_0;
static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 4, GGML_TYPE_Q8_0> q4_0_4x8_q8_0;
static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
// instance for IQ4
static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0;
if (cur->type == GGML_TYPE_Q4_0) {
//we shall just use the regular avx2 handling, no repacking
if (/*ggml_cpu_has_avx2() ||*/ (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
if (cur->ne[1] % 8 == 0) {
return &ggml::cpu::repack::q4_0_8x8_q8_0;
return &q4_0_8x8_q8_0;
}
}
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
if (cur->ne[1] % 4 == 0) {
return &ggml::cpu::repack::q4_0_4x8_q8_0;
return &q4_0_4x8_q8_0;
}
}
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
if (cur->ne[1] % 4 == 0) {
return &ggml::cpu::repack::q4_0_4x4_q8_0;
return &q4_0_4x4_q8_0;
}
}
} else if (cur->type == GGML_TYPE_Q4_K) {
// if (ggml_cpu_has_avx2()) { //we shall just use the regular avx2 handling, no repacking otherwise massive slowdown with gpu
// if (cur->ne[1] % 8 == 0) {
// return &ggml::cpu::aarch64::q4_K_8x8_q8_K;
// }
// }
// if (ggml_cpu_has_avx2()) {
// if (cur->ne[1] % 8 == 0) {
// return &q4_K_8x8_q8_K;
// }
// }
} else if (cur->type == GGML_TYPE_IQ4_NL) {
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
if (cur->ne[1] % 4 == 0) {
return &ggml::cpu::repack::iq4_nl_4x4_q8_0;
return &iq4_nl_4x4_q8_0;
}
}
}
else if (cur->type == GGML_TYPE_Q4_0_4_4) //kcpp backport old quant support
{
flag_aarch_prepacked_quant(cur->type);
return &ggml::cpu::repack::q4_0_4x4_q8_0;
return &q4_0_4x4_q8_0;
}
else if (cur->type == GGML_TYPE_Q4_0_4_8)
{
flag_aarch_prepacked_quant(cur->type);
return &ggml::cpu::repack::q4_0_4x8_q8_0;
return &q4_0_4x8_q8_0;
}
else if (cur->type == GGML_TYPE_Q4_0_8_8)
{
flag_aarch_prepacked_quant(cur->type);
return &ggml::cpu::repack::q4_0_8x8_q8_0;
return &q4_0_8x8_q8_0;
}
else if (cur->type == GGML_TYPE_IQ4_NL)
{
flag_aarch_prepacked_quant(cur->type);
return &ggml::cpu::repack::iq4_nl_4x4_q8_0;
return &iq4_nl_4x4_q8_0;
}
return nullptr;

View file

@ -19,10 +19,10 @@
#endif
#include "ggml-common.h"
#include <cstdio>
#include <array>
#include <cassert>
#include <cfloat>
#include <cstdio>
#include <string>
#include <vector>
@ -771,21 +771,7 @@ struct ggml_backend_cuda_context {
name(GGML_CUDA_NAME + std::to_string(device)) {
}
~ggml_backend_cuda_context() {
if (copy_event != nullptr) {
CUDA_CHECK(cudaEventDestroy(copy_event));
}
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
if (streams[i][j] != nullptr) {
CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
}
}
if (cublas_handles[i] != nullptr) {
CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
}
}
}
~ggml_backend_cuda_context();
cudaStream_t stream(int device, int stream) {
if (streams[device][stream] == nullptr) {

View file

@ -0,0 +1,91 @@
#include <algorithm>
#include "conv2d-transpose.cuh"
#include "ggml.h"
__global__ void conv2d_transpose_kernel(const float * __restrict__ input, const half * __restrict__ kernel,
float * __restrict__ output, const int in_w, const int in_h, const int out_w,
const int out_h, const int kernel_w, const int kernel_h, const int stride,
const int c_in, const int c_out, const int batches) {
const int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
const int total_elements = out_w * out_h * c_out * batches;
if (global_idx >= total_elements) {
return;
}
const int out_x_idx = global_idx % out_w;
const int out_y_idx = (global_idx / out_w) % out_h;
const int c_idx = (global_idx / (out_w * out_h)) % c_out;
const int n_idx = global_idx / (out_w * out_h * c_out);
float accumulator = 0;
// For each output idx, find the inputs that contribute to it by checking stride alignment and bounds
for (int c_in_idx = 0; c_in_idx < c_in; c_in_idx++) {
for (int kh = 0; kh < kernel_h; ++kh) {
int in_y = out_y_idx - kh;
if (in_y < 0 || in_y % stride) continue;
in_y /= stride;
if (in_y >= in_h) continue;
for (int kw = 0; kw < kernel_w; ++kw) {
int in_x = out_x_idx - kw;
if (in_x < 0 || in_x % stride) continue;
in_x /= stride;
if (in_x >= in_w) continue;
const int input_idx = (in_w * in_h * c_in) * n_idx + (in_w * in_h) * c_in_idx + (in_w) *in_y + in_x;
const int kernel_idx =
(kernel_h * kernel_w * c_out) * c_in_idx + (kernel_h * kernel_w) * c_idx + (kernel_w) *kh + kw;
float input_val = input[input_idx];
half kern_val = kernel[kernel_idx];
accumulator += input_val * (float) kern_val;
}
}
}
output[(out_w * out_h * c_out) * n_idx + (out_w * out_h) * c_idx + (out_w) *out_y_idx + out_x_idx] = accumulator;
}
//input is (W, H, C_in, N), Kernel is (W, H, C_out, C_in)
void ggml_cuda_conv_2d_transpose_p0(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * kernel = dst->src[0];
const ggml_tensor * input = dst->src[1];
GGML_ASSERT(kernel->type == GGML_TYPE_F16 && input->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
const float * input_data = (const float *) input->data;
float * output_data = (float *) dst->data;
const half * kernel_data = (const half *) kernel->data;
const int input_w = input->ne[0];
const int input_h = input->ne[1];
const int output_w = dst->ne[0];
const int output_h = dst->ne[1];
const int channels_in = input->ne[2];
const int channels_out = kernel->ne[2];
const int kernel_w = kernel->ne[0];
const int kernel_h = kernel->ne[1];
const int stride = dst->op_params[0];
const int batches = input->ne[3];
GGML_ASSERT(channels_in == kernel->ne[3]);
GGML_ASSERT(stride > 0);
cudaStream_t st = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(input));
GGML_ASSERT(ggml_is_contiguous(kernel));
GGML_ASSERT(ggml_is_contiguous(dst));
const int total = (output_w * output_h * channels_out * batches);
const int blocks = (total + CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE - 1) / CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE;
conv2d_transpose_kernel<<<blocks, CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE, 0, st>>>(
input_data, kernel_data, output_data, input_w, input_h, output_w, output_h, kernel_w, kernel_h, stride,
channels_in, channels_out, batches);
}

View file

@ -0,0 +1,4 @@
#include "common.cuh"
#define CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE 256
void ggml_cuda_conv_2d_transpose_p0(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -14,6 +14,7 @@ bool g_mul_mat_q = true;
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/conv2d-dw.cuh"
#include "ggml-cuda/conv2d-transpose.cuh"
#include "ggml-cuda/convert.cuh"
#include "ggml-cuda/count-equal.cuh"
#include "ggml-cuda/cpy.cuh"
@ -50,6 +51,7 @@ bool g_mul_mat_q = true;
#include <atomic>
#include <charconv>
#include <cinttypes>
#include <condition_variable>
#include <cstddef>
#include <cstdint>
#include <float.h>
@ -57,9 +59,8 @@ bool g_mul_mat_q = true;
#include <map>
#include <memory>
#include <mutex>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <vector>
@ -516,6 +517,33 @@ std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(i
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
}
// destroying a cuBLAS handle while a graph is being captured in a different thread can result in a CUDA error
// this lock is used to ensure that no cuBLAS handle is destroyed while a graph is being captured
static std::mutex ggml_cuda_lock;
static std::condition_variable ggml_cuda_lock_cv;
static std::atomic<int> ggml_cuda_lock_counter;
ggml_backend_cuda_context::~ggml_backend_cuda_context() {
std::unique_lock<std::mutex> lock(ggml_cuda_lock);
ggml_cuda_lock_cv.wait(lock, []{ return ggml_cuda_lock_counter.load(std::memory_order_relaxed) == 0; });
if (copy_event != nullptr) {
CUDA_CHECK(cudaEventDestroy(copy_event));
}
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
if (streams[i][j] != nullptr) {
CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
}
}
if (cublas_handles[i] != nullptr) {
CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
}
}
}
// cuda buffer
struct ggml_backend_cuda_buffer_context {
@ -2319,6 +2347,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_CONV_2D_DW:
ggml_cuda_op_conv2d_dw(ctx, dst);
break;
case GGML_OP_CONV_TRANSPOSE_2D:
ggml_cuda_conv_2d_transpose_p0(ctx, dst);
break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_cuda_op_conv_transpose_1d(ctx,dst);
break;
@ -2694,6 +2725,11 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
graph_evaluated_or_captured = true; // CUDA graph has been captured
std::lock_guard<std::mutex> lock(ggml_cuda_lock);
if (ggml_cuda_lock_counter.fetch_sub(1, std::memory_order_relaxed) == 1) {
ggml_cuda_lock_cv.notify_all();
}
} else {
graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
}
@ -2769,7 +2805,13 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
}
}
if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
if (use_cuda_graph && cuda_graph_update_required) {
// Start CUDA graph capture
{
std::lock_guard<std::mutex> lock(ggml_cuda_lock);
ggml_cuda_lock_counter.fetch_add(1, std::memory_order_relaxed);
}
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
@ -3219,6 +3261,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
case GGML_OP_IM2COL:
case GGML_OP_CONV_2D_DW:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_POOL_2D:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:

View file

@ -198,6 +198,7 @@ class Keys:
MASK_ID = "tokenizer.ggml.mask_token_id"
ADD_BOS = "tokenizer.ggml.add_bos_token"
ADD_EOS = "tokenizer.ggml.add_eos_token"
ADD_SEP = "tokenizer.ggml.add_sep_token"
ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"

View file

@ -891,6 +891,9 @@ class GGUFWriter:
def add_add_eos_token(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_EOS, value)
def add_add_sep_token(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_SEP, value)
def add_add_space_prefix(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)

View file

@ -119,6 +119,7 @@ class SpecialVocab:
logger.warning(f'Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping')
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
tokenizer = None
tokenizer_file = path / 'tokenizer.json'
if tokenizer_file.is_file():
with open(tokenizer_file, encoding = 'utf-8') as f:
@ -152,11 +153,87 @@ class SpecialVocab:
added_tokens = tokenizer.get('added_tokens', {})
else:
added_tokens = {}
tokenizer_config = None
tokenizer_config_file = path / 'tokenizer_config.json'
if not tokenizer_config_file.is_file():
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, encoding = 'utf-8') as f:
tokenizer_config = json.load(f)
if tokenizer:
special_bos = (tokenizer_config or {}).get('bos_token')
special_cls = (tokenizer_config or {}).get('cls_token')
special_eos = (tokenizer_config or {}).get('eos_token')
special_sep = (tokenizer_config or {}).get('sep_token')
if not special_bos and special_cls and tokenizer_config:
tokenizer_config['bos_token'] = special_bos = special_cls
if not special_eos and special_sep and tokenizer_config:
tokenizer_config['eos_token'] = special_eos = special_sep
post_processor = tokenizer.get('post_processor', {})
for processor in post_processor.get('processors', [post_processor]):
if processor.get('type') == 'RobertaProcessing':
self.add_special_token['bos'] = True
self.add_special_token['eos'] = True
self.add_special_token['sep'] = True
if not special_cls and tokenizer_config:
special_cls = processor.get('cls', [special_bos])[0]
tokenizer_config['cls_token'] = special_cls
if not special_sep and tokenizer_config:
special_sep = processor.get('sep', [special_eos])[0]
tokenizer_config['sep_token'] = special_sep
continue
# Crude parsing of TemplateProcessing to determine if BOS/SEP/EOS should be added
# Only works with simple templates, **will** get it wrong on unusual sequences
if processor.get('type') == 'TemplateProcessing':
tmpl_single = processor.get('single', [])
tmpl_pair = processor.get('pair', [])
special_first = None
special_last = None
if len(tmpl_single) > 1:
if special_first := tmpl_single[0].get('SpecialToken', {}).get('id'):
if not tokenizer_config:
special_bos = special_first
self.add_special_token['bos'] = True if special_first in (special_bos, special_cls) else False
if special_first not in (special_bos, special_cls):
logger.warning(f'Unknown leading special token {special_first!r} in TemplateProcessing<single>')
if special_last := tmpl_single[-1].get('SpecialToken', {}).get('id'):
if not tokenizer_config:
special_eos = special_last
self.add_special_token['eos'] = True if special_last == special_eos else False
if special_last != special_eos:
logger.warning(f'Unknown trailing special token {special_last!r} in TemplateProcessing<single>')
if tmpl_pair:
seq_start = 1 if tmpl_pair[0].get('SpecialToken', {}).get('id') == special_first else 0
seq_stop = -1 if tmpl_pair[-1].get('SpecialToken', {}).get('id') == special_last else None
if seq_start == 0 or seq_stop is None:
logger.warning('TemplateProcessing<single> leading/trailing special tokens do not match TemplateProcessing<pair>')
if tmpl_pair := tmpl_pair[slice(seq_start, seq_stop)]:
tmpl_a = tmpl_pair[0].get('Sequence', {}).get('id')
tmpl_b = tmpl_pair[-1].get('Sequence', {}).get('id')
if tmpl_a != 'A' or tmpl_b != 'B':
logger.warning(f'Unknown sequence {tmpl_a}...{tmpl_b} in TemplateProcessing<pair>')
# A [sep] [eos] B
if tmpl_a == 'A' and tmpl_b == 'B' and (tmpl_pair := tmpl_pair[1:-1]):
add_sep = False
if special_entry := tmpl_pair[0].get('SpecialToken', {}).get('id'):
if special_entry in (special_sep, special_eos) and not special_last:
add_sep = True
if special_entry not in (special_sep, special_eos):
logger.warning(f'Unknown separator token {special_entry!r} in TemplateProcessing<pair>')
else:
logger.warning(f'Unknown middle sequence {tmpl_pair[0]!r} in TemplateProcessing<pair>')
if len(tmpl_pair) == 2:
if special_entry := tmpl_pair[1].get('SpecialToken', {}).get('id'):
if special_entry in (special_sep, special_eos):
add_sep = True
if special_entry not in (special_sep, special_eos):
logger.warning(f'Unknown second separator token {special_entry!r} in TemplateProcessing<pair>')
else:
logger.warning(f'Unknown second middle sequence {tmpl_pair[1]!r} in TemplateProcessing<pair>')
self.add_special_token['sep'] = add_sep
if add_sep and not special_sep and tokenizer_config:
tokenizer_config['sep_token'] = special_eos
continue
if not tokenizer_config:
return True
with open(tokenizer_config_file, encoding = 'utf-8') as f:
tokenizer_config = json.load(f)
chat_template_alt = None
chat_template_file = path / 'chat_template.json'
if chat_template_file.is_file():

View file

@ -1047,6 +1047,7 @@ extern "C" {
LLAMA_API bool llama_vocab_get_add_bos(const struct llama_vocab * vocab);
LLAMA_API bool llama_vocab_get_add_eos(const struct llama_vocab * vocab);
LLAMA_API bool llama_vocab_get_add_sep(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab);
@ -1090,6 +1091,7 @@ extern "C" {
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
/// @return Returns the number of tokens on success, no more than n_tokens_max
/// @return Returns a negative number on failure - the number of tokens that would have been returned
/// @return Returns INT32_MIN on overflow (e.g., tokenization result size exceeds int32_t limit)
/// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
/// as plaintext. Does not insert a leading space.

View file

@ -198,6 +198,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
{ LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
{ LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
{ LLM_KV_TOKENIZER_ADD_SEP, "tokenizer.ggml.add_sep_token" },
{ LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
{ LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, "tokenizer.ggml.remove_extra_whitespaces" },
{ LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" },

View file

@ -194,6 +194,7 @@ enum llm_kv {
LLM_KV_TOKENIZER_MASK_ID,
LLM_KV_TOKENIZER_ADD_BOS,
LLM_KV_TOKENIZER_ADD_EOS,
LLM_KV_TOKENIZER_ADD_SEP,
LLM_KV_TOKENIZER_ADD_PREFIX,
LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,

View file

@ -228,6 +228,7 @@ void llama_model_saver::add_kv_from_model() {
// add_kv(LLM_KV_TOKENIZER_MASK_ID, ???);
add_kv(LLM_KV_TOKENIZER_ADD_BOS, vocab.get_add_bos());
add_kv(LLM_KV_TOKENIZER_ADD_EOS, vocab.get_add_eos());
add_kv(LLM_KV_TOKENIZER_ADD_SEP, vocab.get_add_sep());
add_kv(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.get_add_space_prefix());
add_kv(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.get_remove_extra_whitespaces());
add_kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, vocab.get_precompiled_charsmap());

View file

@ -1494,6 +1494,7 @@ struct llama_vocab::impl {
bool add_space_prefix = false;
bool add_bos = false;
bool add_eos = false;
bool add_sep = false;
bool ignore_merges = false;
bool clean_spaces = false; // clean_up_tokenization_spaces
bool remove_extra_whitespaces = false;
@ -1647,6 +1648,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
special_sep_id = 102;
special_pad_id = 0;
special_mask_id = 103;
add_sep = true;
} else if (tokenizer_model == "gpt2") {
type = LLAMA_VOCAB_TYPE_BPE;
@ -1786,12 +1789,15 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "jina-es" ||
tokenizer_pre == "jina-de" ||
tokenizer_pre == "gigachat" ||
tokenizer_pre == "jina-v1-en" ||
tokenizer_pre == "jina-v2-es" ||
tokenizer_pre == "jina-v2-de" ||
tokenizer_pre == "jina-v2-de") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
} else if (
tokenizer_pre == "jina-v1-en" ||
tokenizer_pre == "jina-v2-code" ||
tokenizer_pre == "roberta-bpe") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
add_sep = true;
} else if (
tokenizer_pre == "refact") {
pre_type = LLAMA_VOCAB_PRE_TYPE_REFACT;
@ -1901,6 +1907,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
clean_spaces = true;
add_bos = true;
add_eos = false;
add_sep = true;
} else if (type == LLAMA_VOCAB_TYPE_UGM) {
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
add_bos = false;
@ -2040,7 +2047,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
}
}
// Handle add_bos and add_eos
// Handle add_bos, add_eos and add_sep
{
bool temp = true;
@ -2050,6 +2057,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
add_eos = temp;
}
if (ml.get_key(LLM_KV_TOKENIZER_ADD_SEP, temp, false)) {
add_sep = temp;
}
}
// auto-detect special tokens by text
@ -3281,6 +3291,10 @@ bool llama_vocab::get_add_eos() const {
return pimpl->add_eos;
}
bool llama_vocab::get_add_sep() const {
return pimpl->add_sep;
}
bool llama_vocab::get_ignore_merges() const {
return pimpl->ignore_merges;
}
@ -3348,6 +3362,11 @@ int32_t llama_vocab::tokenize(
bool add_special,
bool parse_special) const {
auto res = tokenize(std::string(text, text_len), add_special, parse_special);
if (res.size() >= static_cast<size_t>(std::numeric_limits<int32_t>::max())) {
LLAMA_LOG_ERROR("%s: tokenization result size %zu exceeds int32_t limit\n", __func__, res.size());
return std::numeric_limits<int32_t>::min();
}
if (n_tokens_max < (int) res.size()) {
// LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
return -((int) res.size());
@ -3479,6 +3498,10 @@ bool llama_vocab_get_add_eos(const struct llama_vocab * vocab) {
return vocab->get_add_eos();
}
bool llama_vocab_get_add_sep(const struct llama_vocab * vocab) {
return vocab->get_add_sep();
}
llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab) {
return vocab->token_fim_pre();
}

View file

@ -76,6 +76,7 @@ struct llama_vocab {
bool get_add_space_prefix () const;
bool get_add_bos () const;
bool get_add_eos () const;
bool get_add_sep () const;
bool get_ignore_merges () const;
bool get_clean_spaces () const;
bool get_remove_extra_whitespaces () const;

View file

@ -271,12 +271,20 @@ static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_
}
result.reserve(doc.size() + query.size() + 4);
result.push_back(llama_vocab_bos(vocab));
if (llama_vocab_get_add_bos(vocab)) {
result.push_back(llama_vocab_bos(vocab));
}
result.insert(result.end(), query.begin(), query.end());
result.push_back(eos_token);
result.push_back(llama_vocab_sep(vocab));
if (llama_vocab_get_add_eos(vocab)) {
result.push_back(eos_token);
}
if (llama_vocab_get_add_sep(vocab)) {
result.push_back(llama_vocab_sep(vocab));
}
result.insert(result.end(), doc.begin(), doc.end());
result.push_back(eos_token);
if (llama_vocab_get_add_eos(vocab)) {
result.push_back(eos_token);
}
return result;
}