mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 17:44:38 +00:00
Merge branch 'upstream' into concedo_experimental
# Conflicts: # ci/run.sh # docs/backend/SYCL.md # docs/build.md # ggml/src/ggml-vulkan/CMakeLists.txt # ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt # tests/test-chat-template.cpp
This commit is contained in:
commit
4e740311fe
5 changed files with 100 additions and 31 deletions
|
@ -2606,14 +2606,18 @@ inline std::shared_ptr<Context> Context::builtins() {
|
|||
auto & text = args.at("text");
|
||||
return text.is_null() ? text : Value(strip(text.get<std::string>()));
|
||||
}));
|
||||
globals.set("lower", simple_function("lower", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto text = args.at("text");
|
||||
if (text.is_null()) return text;
|
||||
std::string res;
|
||||
auto str = text.get<std::string>();
|
||||
std::transform(str.begin(), str.end(), std::back_inserter(res), ::tolower);
|
||||
return Value(res);
|
||||
}));
|
||||
auto char_transform_function = [](const std::string & name, const std::function<char(char)> & fn) {
|
||||
return simple_function(name, { "text" }, [=](const std::shared_ptr<Context> &, Value & args) {
|
||||
auto text = args.at("text");
|
||||
if (text.is_null()) return text;
|
||||
std::string res;
|
||||
auto str = text.get<std::string>();
|
||||
std::transform(str.begin(), str.end(), std::back_inserter(res), fn);
|
||||
return Value(res);
|
||||
});
|
||||
};
|
||||
globals.set("lower", char_transform_function("lower", ::tolower));
|
||||
globals.set("upper", char_transform_function("upper", ::toupper));
|
||||
globals.set("default", Value::callable([=](const std::shared_ptr<Context> &, ArgumentsValue & args) {
|
||||
args.expectArgs("default", {2, 3}, {0, 1});
|
||||
auto & value = args.args[0];
|
||||
|
|
|
@ -145,8 +145,13 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
|
|||
* Clang 19
|
||||
* Ninja
|
||||
* Visual Studio 2022
|
||||
* Powershell 7
|
||||
|
||||
Powershell is used for the following instructions.
|
||||
Visual Studio provides necessary headers and libraries although it is not directly used for building.
|
||||
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
|
||||
|
||||
Powershell 7 is used for the following commands.
|
||||
If an older version of Powershell is used, these commands may not work as they are.
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
|
@ -196,10 +201,9 @@ ninja
|
|||
|
||||
## Known Issues
|
||||
|
||||
- Qwen2.5 0.5B model produces gibberish output with Adreno kernels.
|
||||
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
|
||||
|
||||
## TODO
|
||||
|
||||
- Fix Qwen2.5 0.5B
|
||||
- Optimization for Q6_K
|
||||
- Support and optimization for Q4_K
|
||||
|
|
|
@ -299,7 +299,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||
const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations
|
||||
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
|
||||
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies && cc < GGML_CUDA_CC_ADA_LOVELACE && !mma_needs_data_conversion;
|
||||
const bool can_use_vector_kernel = (Q->ne[0] % (2*warp_size) == 0) && (prec == GGML_PREC_DEFAULT || Q->ne[0] <= 128);
|
||||
const bool can_use_vector_kernel = Q->ne[0] % (2*warp_size) == 0;
|
||||
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
|
|
|
@ -33,6 +33,28 @@
|
|||
#include <future>
|
||||
#include <thread>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
# define NOMINMAX 1
|
||||
# include <windows.h>
|
||||
# define YIELD() YieldProcessor()
|
||||
#elif defined(__clang__) || defined(__GNUC__)
|
||||
# if defined(__x86_64__) ||defined(__i386__)
|
||||
# include <immintrin.h>
|
||||
# define YIELD() _mm_pause()
|
||||
# elif defined(__arm__) || defined(__aarch64__)
|
||||
# if defined(__clang__)
|
||||
# include <arm_acle.h>
|
||||
# define YIELD() __yield()
|
||||
# else
|
||||
# define YIELD() asm volatile("yield")
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined(YIELD)
|
||||
#define YIELD()
|
||||
#endif
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
|
@ -796,7 +818,8 @@ struct ggml_backend_vk_context {
|
|||
ggml_vk_garbage_collector gc;
|
||||
size_t prealloc_size_x, prealloc_size_y, prealloc_size_split_k;
|
||||
vk_buffer prealloc_x, prealloc_y, prealloc_split_k;
|
||||
vk::Fence fence;
|
||||
vk::Fence fence, almost_ready_fence;
|
||||
bool almost_ready_fence_pending {};
|
||||
|
||||
vk_buffer buffer_pool[MAX_VK_BUFFERS];
|
||||
|
||||
|
@ -887,6 +910,39 @@ typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
|
||||
static void ggml_backend_vk_free(ggml_backend_t backend);
|
||||
|
||||
// Wait for ctx->fence to be signaled.
|
||||
static void ggml_vk_wait_for_fence(ggml_backend_vk_context * ctx) {
|
||||
// Use waitForFences while most of the graph executes. Hopefully the CPU can sleep
|
||||
// during this wait.
|
||||
if (ctx->almost_ready_fence_pending) {
|
||||
VK_CHECK(ctx->device->device.waitForFences({ ctx->almost_ready_fence }, true, UINT64_MAX), "almost_ready_fence");
|
||||
ctx->device->device.resetFences({ ctx->almost_ready_fence });
|
||||
ctx->almost_ready_fence_pending = false;
|
||||
}
|
||||
|
||||
// Spin (w/pause) waiting for the graph to finish executing.
|
||||
vk::Result result;
|
||||
while ((result = ctx->device->device.getFenceStatus(ctx->fence)) != vk::Result::eSuccess) {
|
||||
if (result != vk::Result::eNotReady) {
|
||||
fprintf(stderr, "ggml_vulkan: error %s at %s:%d\n", to_string(result).c_str(), __FILE__, __LINE__);
|
||||
exit(1);
|
||||
}
|
||||
for (uint32_t i = 0; i < 100; ++i) {
|
||||
YIELD();
|
||||
YIELD();
|
||||
YIELD();
|
||||
YIELD();
|
||||
YIELD();
|
||||
YIELD();
|
||||
YIELD();
|
||||
YIELD();
|
||||
YIELD();
|
||||
YIELD();
|
||||
}
|
||||
}
|
||||
ctx->device->device.resetFences({ ctx->fence });
|
||||
}
|
||||
|
||||
// variables to track number of compiles in progress
|
||||
static uint32_t compile_count = 0;
|
||||
static std::mutex compile_count_mutex;
|
||||
|
@ -3372,6 +3428,7 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) {
|
|||
ctx->prealloc_size_split_k = 0;
|
||||
|
||||
ctx->fence = ctx->device->device.createFence({});
|
||||
ctx->almost_ready_fence = ctx->device->device.createFence({});
|
||||
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS");
|
||||
|
@ -7976,11 +8033,11 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
|
|||
}
|
||||
}
|
||||
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_tensor* tensor, int tensor_idx, bool use_fence);
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_tensor* tensor, int tensor_idx, bool use_fence, bool almost_ready);
|
||||
|
||||
// Returns true if node has enqueued work into the queue, false otherwise
|
||||
// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
|
||||
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool last_node, bool submit){
|
||||
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool last_node, bool almost_ready, bool submit){
|
||||
if (ggml_is_empty(node) || !node->buffer) {
|
||||
return false;
|
||||
}
|
||||
|
@ -8352,7 +8409,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||
|
||||
ctx->compute_ctx.reset();
|
||||
|
||||
bool ok = ggml_vk_compute_forward(ctx, node_begin, node_idx_begin, false);
|
||||
bool ok = ggml_vk_compute_forward(ctx, node_begin, node_idx_begin, false, almost_ready);
|
||||
if (!ok) {
|
||||
if (node->op == GGML_OP_UNARY) {
|
||||
std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast<ggml_unary_op>(node->op_params[0])) << ")" << std::endl;
|
||||
|
@ -8366,7 +8423,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||
return true;
|
||||
}
|
||||
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx, bool use_fence = true){
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx, bool use_fence = true, bool almost_ready = false) {
|
||||
ggml_backend_buffer * buf = nullptr;
|
||||
|
||||
switch (tensor->op) {
|
||||
|
@ -8469,12 +8526,15 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
|
|||
memcpy(cpy.dst, cpy.src, cpy.n);
|
||||
}
|
||||
|
||||
ggml_vk_submit(subctx, use_fence ? ctx->fence : vk::Fence{});
|
||||
if (almost_ready && !ctx->almost_ready_fence_pending && !use_fence) {
|
||||
ggml_vk_submit(subctx, ctx->almost_ready_fence);
|
||||
ctx->almost_ready_fence_pending = true;
|
||||
} else {
|
||||
ggml_vk_submit(subctx, use_fence ? ctx->fence : vk::Fence{});
|
||||
}
|
||||
|
||||
if (use_fence) {
|
||||
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
|
||||
|
||||
ctx->device->device.resetFences({ ctx->fence });
|
||||
ggml_vk_wait_for_fence(ctx);
|
||||
}
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
ggml_vk_check_results_1(tensor);
|
||||
|
@ -8560,6 +8620,7 @@ static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) {
|
|||
ctx->gc.events.clear();
|
||||
|
||||
ctx->device->device.destroyFence(ctx->fence);
|
||||
ctx->device->device.destroyFence(ctx->almost_ready_fence);
|
||||
}
|
||||
|
||||
static int ggml_vk_get_device_count() {
|
||||
|
@ -8906,8 +8967,7 @@ static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
|
|||
}
|
||||
|
||||
ggml_vk_submit(transfer_ctx, ctx->fence);
|
||||
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_backend_vk_synchronize waitForFences");
|
||||
ctx->device->device.resetFences({ ctx->fence });
|
||||
ggml_vk_wait_for_fence(ctx);
|
||||
|
||||
for (auto& cpy : transfer_ctx->out_memcpys) {
|
||||
memcpy(cpy.dst, cpy.src, cpy.n);
|
||||
|
@ -8926,7 +8986,7 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
|
||||
uint64_t total_mat_mul_bytes = 0;
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false, false);
|
||||
ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false, false, false);
|
||||
if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT || cgraph->nodes[i]->op == GGML_OP_MUL_MAT_ID) {
|
||||
total_mat_mul_bytes += ggml_nbytes(cgraph->nodes[i]->src[0]);
|
||||
}
|
||||
|
@ -8968,11 +9028,14 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
mul_mat_bytes += ggml_nbytes(cgraph->nodes[i]->src[0]);
|
||||
}
|
||||
|
||||
// Signal the almost_ready fence when the graph is mostly complete (< 20% remaining)
|
||||
bool almost_ready = (cgraph->n_nodes - i) < cgraph->n_nodes / 5;
|
||||
bool submit = (submitted_nodes >= nodes_per_submit) ||
|
||||
(mul_mat_bytes >= mul_mat_bytes_per_submit) ||
|
||||
(i == last_node);
|
||||
(i == last_node) ||
|
||||
(almost_ready && !ctx->almost_ready_fence_pending);
|
||||
|
||||
bool enqueued = ggml_vk_build_graph(ctx, cgraph->nodes[i], i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i == last_node, submit);
|
||||
bool enqueued = ggml_vk_build_graph(ctx, cgraph->nodes[i], i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i == last_node, almost_ready, submit);
|
||||
|
||||
if (enqueued) {
|
||||
++submitted_nodes;
|
||||
|
@ -8984,7 +9047,7 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
#endif
|
||||
}
|
||||
|
||||
if (submit) {
|
||||
if (submit && enqueued) {
|
||||
first_node_in_batch = true;
|
||||
submitted_nodes = 0;
|
||||
mul_mat_bytes = 0;
|
||||
|
|
|
@ -2461,14 +2461,12 @@ void llama_vocab::impl::tokenizer_st_partition(std::forward_list<fragment_buffer
|
|||
// find the first occurrence of a given special token in this fragment
|
||||
// passing offset argument only limit the "search area" but match coordinates
|
||||
// are still relative to the source full raw_text
|
||||
auto match = raw_text.find(text, raw_text_base_offset);
|
||||
// string_view begins at pos 0 for the same reason
|
||||
auto match = std::string_view(raw_text.data(), raw_text_base_offset + raw_text_base_length).find(text, raw_text_base_offset);
|
||||
|
||||
// no occurrences found, stop processing this fragment for a given special token
|
||||
if (match == std::string::npos) break;
|
||||
|
||||
// check if match is within bounds of offset <-> length
|
||||
if (match + text.length() > raw_text_base_offset + raw_text_base_length) break;
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
|
||||
#endif
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue