Quadratic Sampling UI (#652)

* Quadratic Sampling UI

Kalomaze's Quadratic Sampling, now has a UI within KCPP.

* remove debug prints

* cleanup, add smooth sampler to dynatemp

---------

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
This commit is contained in:
Alexander Abushady 2024-02-04 03:26:27 -05:00 committed by GitHub
parent 504300784f
commit 4cb956c7db
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 57 additions and 38 deletions

View file

@ -79,6 +79,7 @@ struct gpt_params {
float tfs_z = 1.00f; // 1.0 = disabled float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled float temp = 0.80f; // 1.0 = disabled
float smoothing_factor = 0.00f; // 0.00 = disabled
float repeat_penalty = 1.10f; // 1.0 = disabled float repeat_penalty = 1.10f; // 1.0 = disabled
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float frequency_penalty = 0.00f; // 0.0 = disabled float frequency_penalty = 0.00f; // 0.0 = disabled

View file

@ -150,9 +150,9 @@ static void sampler_queue(
if (dynatemp_range > 0) { if (dynatemp_range > 0) {
float dynatemp_min = std::max(0.0f, temp - dynatemp_range); float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
float dynatemp_max = std::max(0.0f, temp + dynatemp_range); float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent); llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent, 0);
} else { } else {
llama_sample_temp(ctx_main, &cur_p, temp); llama_sample_temp(ctx_main, &cur_p, temp, 0);
} }
break; break;
default : break; default : break;

View file

@ -18,6 +18,7 @@ typedef struct llama_sampling_params {
float tfs_z = 1.00f; // 1.0 = disabled float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float smoothing_factor = 0.00f; // 0.00 = disabled
float dynatemp_range = 0.00f; // 0.0 = disabled float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)

View file

@ -84,6 +84,7 @@ struct generation_inputs
const bool quiet = false; const bool quiet = false;
const float dynatemp_range = 0.0f; const float dynatemp_range = 0.0f;
const float dynatemp_exponent = 1.0f; const float dynatemp_exponent = 1.0f;
const float smoothing_factor = 0.0f;
const logit_bias logit_biases[logit_bias_max]; const logit_bias logit_biases[logit_bias_max];
}; };

View file

@ -83,9 +83,7 @@ static int n_batch = 8;
static bool useSmartContext = false; static bool useSmartContext = false;
static bool useContextShift = false; static bool useContextShift = false;
static int blasbatchsize = 512; static int blasbatchsize = 512;
static int dontblasbatchsize = 16; static int smallbatchsize = 16;
static int normalbatchsize = 32;
static int smallbatchsize = 8;
static int debugmode = 0; //-1 = hide all, 0 = normal, 1 = showall static int debugmode = 0; //-1 = hide all, 0 = normal, 1 = showall
static std::string modelname; static std::string modelname;
static std::vector<gpt_vocab::id> last_n_tokens; static std::vector<gpt_vocab::id> last_n_tokens;
@ -427,18 +425,18 @@ void sample_rep_pen(int n_ctx, int rep_pen_range, float rep_pen, float presence_
} }
void sample_temperature(llama_token_data_array * candidates_p, float temp) void sample_temperature(llama_token_data_array * candidates_p, float temp, float smoothing_factor)
{ {
if (temp <= 0) if (temp <= 0)
{ {
// Imitate greedy sampling // Imitate greedy sampling
temp = 0.00390625f; //cannot be zero else div0, this is 1/256 temp = 0.00390625f; //cannot be zero else div0, this is 1/256
llama_sample_temperature(nullptr, candidates_p, temp); llama_sample_temperature(nullptr, candidates_p, temp, 0);
llama_sample_top_k(nullptr, candidates_p, 1, 1); //only want first candidate llama_sample_top_k(nullptr, candidates_p, 1, 1); //only want first candidate
} }
else else
{ {
llama_sample_temperature(nullptr, candidates_p, temp); llama_sample_temperature(nullptr, candidates_p, temp, smoothing_factor);
} }
} }
@ -482,7 +480,7 @@ void sample_grammar(FileFormat file_format, int32_t n_vocab, llama_token_data_ar
} }
int SampleLogits(const float * logits, int n_ctx, int n_vocab, int rep_pen_range, float rep_pen, float presence_penalty, float top_k, float top_a, float top_p, float min_p, float typical_p, float tfs, float temp, std::mt19937 & rng, int SampleLogits(const float * logits, int n_ctx, int n_vocab, int rep_pen_range, float rep_pen, float presence_penalty, float top_k, float top_a, float top_p, float min_p, float typical_p, float tfs, float temp, std::mt19937 & rng,
int mirostat, float mirostat_tau, float mirostat_eta, const std::vector<samplers> & sampler_order, llama_grammar * grammar, float dynatemp_range, float dynatemp_exponent) int mirostat, float mirostat_tau, float mirostat_eta, const std::vector<samplers> & sampler_order, llama_grammar * grammar, float dynatemp_range, float dynatemp_exponent, float smoothing_factor)
{ {
int id = 0; int id = 0;
std::vector<llama_token_data> candidates; std::vector<llama_token_data> candidates;
@ -508,7 +506,7 @@ int mirostat, float mirostat_tau, float mirostat_eta, const std::vector<samplers
static float mirostat_mu = 2.0f * mirostat_tau; static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100; const int mirostat_m = 100;
sample_rep_pen(n_ctx, rep_pen_range, rep_pen, presence_penalty, &candidates_p); sample_rep_pen(n_ctx, rep_pen_range, rep_pen, presence_penalty, &candidates_p);
sample_temperature(&candidates_p, temp); sample_temperature(&candidates_p, temp, smoothing_factor);
if (mirostat == 1) if (mirostat == 1)
{ {
id = sample_token_mirostat(n_vocab, &candidates_p, rng, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); id = sample_token_mirostat(n_vocab, &candidates_p, rng, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
@ -549,11 +547,11 @@ int mirostat, float mirostat_tau, float mirostat_eta, const std::vector<samplers
dynatemp_min = dynatemp_min<0?0:dynatemp_min; dynatemp_min = dynatemp_min<0?0:dynatemp_min;
dynatemp_max = dynatemp_max<0?0:dynatemp_max; dynatemp_max = dynatemp_max<0?0:dynatemp_max;
dynatemp_exponent = dynatemp_exponent<0?0:dynatemp_exponent; dynatemp_exponent = dynatemp_exponent<0?0:dynatemp_exponent;
llama_sample_entropy(nullptr, &candidates_p, dynatemp_min, dynatemp_max, dynatemp_exponent); llama_sample_entropy(nullptr, &candidates_p, dynatemp_min, dynatemp_max, dynatemp_exponent, smoothing_factor);
} }
else else
{ {
sample_temperature(&candidates_p, temp); sample_temperature(&candidates_p, temp, smoothing_factor);
} }
break; break;
case KCPP_SAMPLER_REP_PEN: case KCPP_SAMPLER_REP_PEN:
@ -698,7 +696,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_blasthreads = kcpp_params->n_threads_batch = inputs.blasthreads; n_blasthreads = kcpp_params->n_threads_batch = inputs.blasthreads;
bool isGguf = (file_format == FileFormat::GGUF_GENERIC); bool isGguf = (file_format == FileFormat::GGUF_GENERIC);
n_batch = kcpp_params->n_batch = (isGguf?normalbatchsize:smallbatchsize); n_batch = kcpp_params->n_batch = smallbatchsize;
modelname = kcpp_params->model = inputs.model_filename; modelname = kcpp_params->model = inputs.model_filename;
useSmartContext = inputs.use_smartcontext; useSmartContext = inputs.use_smartcontext;
useContextShift = inputs.use_contextshift; useContextShift = inputs.use_contextshift;
@ -706,7 +704,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
blasbatchsize = inputs.blasbatchsize; blasbatchsize = inputs.blasbatchsize;
if(blasbatchsize<=0) if(blasbatchsize<=0)
{ {
blasbatchsize = (isGguf?dontblasbatchsize:smallbatchsize); blasbatchsize = smallbatchsize;
} }
auto clamped_max_context_length = inputs.max_context_length; auto clamped_max_context_length = inputs.max_context_length;
@ -1533,6 +1531,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
kcpp_params->n_batch = n_batch; kcpp_params->n_batch = n_batch;
kcpp_params->n_threads = n_threads; kcpp_params->n_threads = n_threads;
kcpp_params->n_threads_batch = n_blasthreads; kcpp_params->n_threads_batch = n_blasthreads;
kcpp_params->smoothing_factor = inputs.smoothing_factor;
bool stream_sse = inputs.stream_sse; bool stream_sse = inputs.stream_sse;
@ -1675,7 +1674,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
file_format == FileFormat::GPTJ_2 || file_format == FileFormat::GPTJ_2 ||
file_format == FileFormat::RWKV_1 || file_format == FileFormat::RWKV_1 ||
file_format==FileFormat::RWKV_2); file_format==FileFormat::RWKV_2);
bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas() && blasbatchsize!=-1); bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas() && blasbatchsize>=32);
// bool blasmode = false; // bool blasmode = false;
int original_batch = kcpp_params->n_batch; int original_batch = kcpp_params->n_batch;
int original_threads = kcpp_params->n_threads; int original_threads = kcpp_params->n_threads;
@ -1930,6 +1929,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
const float tfs_z = kcpp_params->tfs_z; const float tfs_z = kcpp_params->tfs_z;
const float dynatemp_range = kcpp_params->dynatemp_range; const float dynatemp_range = kcpp_params->dynatemp_range;
const float dynatemp_exponent = kcpp_params->dynatemp_exponent; const float dynatemp_exponent = kcpp_params->dynatemp_exponent;
const float smoothing_factor = kcpp_params->smoothing_factor;
if (!startedsampling) if (!startedsampling)
{ {
@ -1985,7 +1985,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
id = SampleLogits(logitsPtr, nctx, n_vocab, last_n_size, repeat_penalty, presence_penalty, id = SampleLogits(logitsPtr, nctx, n_vocab, last_n_size, repeat_penalty, presence_penalty,
top_k, top_a, top_p, min_p, typical_p, tfs_z, temp, rng, top_k, top_a, top_p, min_p, typical_p, tfs_z, temp, rng,
kcpp_params->mirostat, kcpp_params->mirostat_tau, kcpp_params->mirostat_eta, sampler_order, grammar, dynatemp_range, dynatemp_exponent); kcpp_params->mirostat, kcpp_params->mirostat_tau, kcpp_params->mirostat_eta, sampler_order, grammar, dynatemp_range, dynatemp_exponent, smoothing_factor);
if (grammar != nullptr) { if (grammar != nullptr) {
grammar_accept_token(file_format, n_vocab, grammar, id); grammar_accept_token(file_format, n_vocab, grammar, id);

5
koboldcpp.py Executable file → Normal file
View file

@ -81,6 +81,7 @@ class generation_inputs(ctypes.Structure):
("quiet", ctypes.c_bool), ("quiet", ctypes.c_bool),
("dynatemp_range", ctypes.c_float), ("dynatemp_range", ctypes.c_float),
("dynatemp_exponent", ctypes.c_float), ("dynatemp_exponent", ctypes.c_float),
("smoothing_factor", ctypes.c_float),
("logit_biases", logit_bias * logit_bias_max)] ("logit_biases", logit_bias * logit_bias_max)]
class generation_outputs(ctypes.Structure): class generation_outputs(ctypes.Structure):
@ -328,7 +329,7 @@ def load_model(model_filename):
ret = handle.load_model(inputs) ret = handle.load_model(inputs)
return ret return ret
def generate(prompt, memory="", max_length=32, max_context_length=512, temperature=0.7, top_k=100, top_a=0.0, top_p=0.92, min_p=0.0, typical_p=1.0, tfs=1.0, rep_pen=1.0, rep_pen_range=128, presence_penalty=0.0, mirostat=0, mirostat_tau=5.0, mirostat_eta=0.1, sampler_order=[6,0,1,3,4,2,5], seed=-1, stop_sequence=[], use_default_badwordsids=False, stream_sse=False, grammar='', grammar_retain_state=False, genkey='', trimstop=False, quiet=False, dynatemp_range=0.0, dynatemp_exponent=1.0, logit_biases={}): def generate(prompt, memory="", max_length=32, max_context_length=512, temperature=0.7, top_k=100, top_a=0.0, top_p=0.92, min_p=0.0, typical_p=1.0, tfs=1.0, rep_pen=1.0, rep_pen_range=128, presence_penalty=0.0, mirostat=0, mirostat_tau=5.0, mirostat_eta=0.1, sampler_order=[6,0,1,3,4,2,5], seed=-1, stop_sequence=[], use_default_badwordsids=False, stream_sse=False, grammar='', grammar_retain_state=False, genkey='', trimstop=False, quiet=False, dynatemp_range=0.0, dynatemp_exponent=1.0, smoothing_factor=0.0, logit_biases={}):
global maxctx, args, currentusergenkey, totalgens, pendingabortkey global maxctx, args, currentusergenkey, totalgens, pendingabortkey
inputs = generation_inputs() inputs = generation_inputs()
outputs = ctypes.create_unicode_buffer(ctypes.sizeof(generation_outputs)) outputs = ctypes.create_unicode_buffer(ctypes.sizeof(generation_outputs))
@ -359,6 +360,7 @@ def generate(prompt, memory="", max_length=32, max_context_length=512, temperatu
inputs.quiet = quiet inputs.quiet = quiet
inputs.dynatemp_range = dynatemp_range inputs.dynatemp_range = dynatemp_range
inputs.dynatemp_exponent = dynatemp_exponent inputs.dynatemp_exponent = dynatemp_exponent
inputs.smoothing_factor = smoothing_factor
inputs.grammar = grammar.encode("UTF-8") inputs.grammar = grammar.encode("UTF-8")
inputs.grammar_retain_state = grammar_retain_state inputs.grammar_retain_state = grammar_retain_state
inputs.unban_tokens_rt = not use_default_badwordsids inputs.unban_tokens_rt = not use_default_badwordsids
@ -588,6 +590,7 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
quiet=is_quiet, quiet=is_quiet,
dynatemp_range=genparams.get('dynatemp_range', 0.0), dynatemp_range=genparams.get('dynatemp_range', 0.0),
dynatemp_exponent=genparams.get('dynatemp_exponent', 1.0), dynatemp_exponent=genparams.get('dynatemp_exponent', 1.0),
smoothing_factor=genparams.get('smoothing_factor', 0.0),
logit_biases=genparams.get('logit_bias', {}) logit_biases=genparams.get('logit_bias', {})
) )

View file

@ -8769,7 +8769,7 @@ void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * c
} }
} }
void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) { void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val, float smoothing_factor) {
const int64_t t_start_sample_us = ggml_time_us(); const int64_t t_start_sample_us = ggml_time_us();
// no need to do anything if there is only one (or zero) candidates // no need to do anything if there is only one (or zero) candidates
@ -8797,15 +8797,6 @@ void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * c
// Map the normalized entropy to the desired temperature range using the power function // Map the normalized entropy to the desired temperature range using the power function
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
#ifdef DEBUG
LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
LLAMA_LOG_INFO("Entropy: %f\n", entropy);
LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
#endif
// Apply the dynamically calculated temperature scaling // Apply the dynamically calculated temperature scaling
for (size_t i = 0; i < candidates_p->size; ++i) { for (size_t i = 0; i < candidates_p->size; ++i) {
candidates_p->data[i].logit /= dyn_temp; candidates_p->data[i].logit /= dyn_temp;
@ -8823,34 +8814,54 @@ void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * c
candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
} }
#ifdef DEBUG // Only apply smoothing if smoothing_factor is > 0. Do not change base implementation otherwise.
// Print the updated top 25 probabilities after temperature scaling if (smoothing_factor > 0 && candidates_p->size > 1) {
LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) { llama_sample_softmax(ctx, candidates_p);
LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f); float h = candidates_p->data[0].logit; // Find the maximum logit for h to be added after the transformation
// Apply quadratic transformation using the smoothing_factor
for (size_t i = 0; i < candidates_p->size; ++i)
{
float logit_shifted = candidates_p->data[i].logit - h;
candidates_p->data[i].logit = -smoothing_factor * logit_shifted * logit_shifted + h;
}
llama_sample_softmax(ctx, candidates_p);
} }
#endif
if (ctx) { if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
} }
} }
void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp, float smoothing_factor) {
const int64_t t_start_sample_us = ggml_time_us(); const int64_t t_start_sample_us = ggml_time_us();
for (size_t i = 0; i < candidates_p->size; ++i) { for (size_t i = 0; i < candidates_p->size; ++i) {
candidates_p->data[i].logit /= temp; candidates_p->data[i].logit /= temp;
} }
// Only apply smoothing if smoothing_factor is > 0. Do not change base implementation otherwise.
if (smoothing_factor > 0 && candidates_p->size > 1) {
llama_sample_softmax(ctx, candidates_p);
float h = candidates_p->data[0].logit; // Find the maximum logit for h to be added after the transformation
// Apply quadratic transformation using the smoothing_factor
for (size_t i = 0; i < candidates_p->size; ++i)
{
float logit_shifted = candidates_p->data[i].logit - h;
candidates_p->data[i].logit = -smoothing_factor * logit_shifted * logit_shifted + h;
}
llama_sample_softmax(ctx, candidates_p);
}
if (ctx) { if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
} }
} }
void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp, float smoothing_factor) {
llama_sample_temp(ctx, candidates_p, temp); llama_sample_temp(ctx, candidates_p, temp, smoothing_factor);
} }
// The llama.cpp repetition penalty code goes unused in kobold's API // The llama.cpp repetition penalty code goes unused in kobold's API

View file

@ -789,12 +789,14 @@ extern "C" {
llama_token_data_array * candidates_p, llama_token_data_array * candidates_p,
float min_temp, float min_temp,
float max_temp, float max_temp,
float exponent_val); float exponent_val,
float smoothing_factor);
LLAMA_API void llama_sample_temp( LLAMA_API void llama_sample_temp(
struct llama_context * ctx, struct llama_context * ctx,
llama_token_data_array * candidates, llama_token_data_array * candidates,
float temp); float temp,
float smoothing_factor);
LLAMA_API DEPRECATED(void llama_sample_temperature( LLAMA_API DEPRECATED(void llama_sample_temperature(
struct llama_context * ctx, struct llama_context * ctx,