server : Support multimodal completion and embeddings prompts in JSON format (#15108)

- Use server_tokens in more places in server and util.cpp
- Convert most functions that used llama_tokens to server_tokens
- Modify input tokenizer to handle JSON objects as subprompts
- Break out MTMD prompt parsing into utility function
- Support JSON objects with multimodal_data arrays for MTMD prompts along with other existing types
- Add capability to model endpoint to indicate if client can send multimodal data
- Add tests.
This commit is contained in:
65a 2025-08-22 08:10:14 +00:00 committed by GitHub
parent e288693669
commit 4afb0a746f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 323 additions and 138 deletions

View file

@ -226,6 +226,10 @@ services:
### Multimodal support
Multimodal support was added in [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) and is currently an experimental feature.
It is currently available in the following endpoints:
- The OAI-compatible chat endpoint.
- The non-OAI-compatible completions endpoint.
- The non-OAI-compatible embeddings endpoint.
For more details, please refer to [multimodal documentation](../../docs/multimodal.md)
@ -400,12 +404,15 @@ These input shapes and data type are allowed for `prompt`:
- Single string: `"string"`
- Single sequence of tokens: `[12, 34, 56]`
- Mixed tokens and strings: `[12, 34, "string", 56, 78]`
- A JSON object which optionally contains multimodal data: `{ "prompt_string": "string", "multimodal_data": ["base64"] }`
Multiple prompts are also supported. In this case, the completion result will be an array.
- Only strings: `["string1", "string2"]`
- Strings and sequences of tokens: `["string1", [12, 34, 56]]`
- Mixed types: `[[12, 34, "string", 56, 78], [12, 34, 56], "string"]`
- Strings, JSON objects, and sequences of tokens: `["string1", [12, 34, 56], { "prompt_string": "string", "multimodal_data": ["base64"]}]`
- Mixed types: `[[12, 34, "string", 56, 78], [12, 34, 56], "string", { "prompt_string": "string" }]`
Note for `multimodal_data` in JSON object prompts. This should be an array of strings, containing base64 encoded multimodal data such as images and audio. There must be an identical number of MTMD media markers in the string prompt element which act as placeholders for the data provided to this parameter. The multimodal data files will be substituted in order. The marker string (e.g. `<__media__>`) can be found by calling `mtmd_default_marker()` defined in [the MTMD C API](https://github.com/ggml-org/llama.cpp/blob/5fd160bbd9d70b94b5b11b0001fd7f477005e4a0/tools/mtmd/mtmd.h#L87). A client *must not* specify this field unless the server has the multimodal capability. Clients should check `/models` or `/v1/models` for the `multimodal` capability before a multimodal request.
`temperature`: Adjust the randomness of the generated text. Default: `0.8`
@ -477,8 +484,6 @@ These words will not be included in the completion, so make sure to add them to
`t_max_predict_ms`: Set a time limit in milliseconds for the prediction (a.k.a. text-generation) phase. The timeout will trigger if the generation takes more than the specified time (measured since the first token was generated) and if a new-line character has already been generated. Useful for FIM applications. Default: `0`, which is disabled.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1`
`cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `true`
@ -638,12 +643,12 @@ Returns a JSON object with a field `prompt` containing a string of the input mes
The same as [the embedding example](../embedding) does.
This endpoint also supports multimodal embeddings. See the documentation for the `/completions` endpoint for details on how to send a multimodal prompt.
*Options:*
`content`: Set the text to process.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`embd_normalize`: Normalization for pooled embeddings. Can be one of the following values:
```
-1: No normalization

View file

@ -4309,6 +4309,7 @@ int main(int argc, char ** argv) {
};
const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
bool has_mtmd = ctx_server.mctx != nullptr;
json data = {
{
"template", common_chat_templates_source(ctx_server.chat_templates.get()),
@ -4330,7 +4331,7 @@ int main(int argc, char ** argv) {
{"quantization_level", ""}
}},
{"model_info", ""},
{"capabilities", {"completion"}}
{"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}
};
res_ok(res, data);
@ -4356,56 +4357,15 @@ int main(int argc, char ** argv) {
// TODO: this log can become very long, put it behind a flag or think about a more compact format
//SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
// process files
mtmd::bitmaps bitmaps;
const bool has_mtmd = ctx_server.mctx != nullptr;
{
if (!has_mtmd && !files.empty()) {
throw std::runtime_error("This server does not support multimodal");
}
for (auto & file : files) {
mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(ctx_server.mctx, file.data(), file.size()));
if (!bmp.ptr) {
throw std::runtime_error("Failed to load image or audio file");
}
// calculate bitmap hash (for KV caching)
std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
bmp.set_id(hash.c_str());
bitmaps.entries.push_back(std::move(bmp));
}
}
// process prompt
std::vector<server_tokens> inputs;
if (oaicompat && has_mtmd) {
// multimodal
std::string prompt_str = prompt.get<std::string>();
mtmd_input_text inp_txt = {
prompt_str.c_str(),
/* add_special */ true,
/* parse_special */ true,
};
mtmd::input_chunks chunks(mtmd_input_chunks_init());
auto bitmaps_c_ptr = bitmaps.c_ptr();
int32_t tokenized = mtmd_tokenize(ctx_server.mctx,
chunks.ptr.get(),
&inp_txt,
bitmaps_c_ptr.data(),
bitmaps_c_ptr.size());
if (tokenized != 0) {
throw std::runtime_error("Failed to tokenize prompt");
}
server_tokens tmp(chunks, true);
inputs.push_back(std::move(tmp));
if (oaicompat && ctx_server.mctx != nullptr) {
// This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
} else {
// non-multimodal version
auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
for (auto & p : tokenized_prompts) {
auto tmp = server_tokens(p, ctx_server.mctx != nullptr);
inputs.push_back(std::move(tmp));
}
// Everything else, including multimodal completions.
inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
}
tasks.reserve(inputs.size());
@ -4574,7 +4534,7 @@ int main(int argc, char ** argv) {
data["input_extra"] = input_extra; // default to empty array if it's not exist
std::string prompt = json_value(data, "prompt", std::string());
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
std::vector<server_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true);
SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
data["prompt"] = format_infill(
ctx_server.vocab,
@ -4585,7 +4545,7 @@ int main(int argc, char ** argv) {
ctx_server.params_base.n_predict,
ctx_server.slots[0].n_ctx, // TODO: there should be a better way
ctx_server.params_base.spm_infill,
tokenized_prompts[0]
tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal.
);
std::vector<raw_buffer> files; // dummy
@ -4634,7 +4594,7 @@ int main(int argc, char ** argv) {
if (current_state == SERVER_STATE_READY) {
model_meta = ctx_server.model_meta();
}
bool has_mtmd = ctx_server.mctx != nullptr;
json models = {
{"models", {
{
@ -4646,7 +4606,7 @@ int main(int argc, char ** argv) {
{"type", "model"},
{"description", ""},
{"tags", {""}},
{"capabilities", {"completion"}},
{"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})},
{"parameters", ""},
{"details", {
{"parent_model", ""},
@ -4763,7 +4723,7 @@ int main(int argc, char ** argv) {
}
}
auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
for (const auto & tokens : tokenized_prompts) {
// this check is necessary for models that do not add BOS token to the input
if (tokens.empty()) {
@ -4791,7 +4751,7 @@ int main(int argc, char ** argv) {
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;
task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr);
task.prompt_tokens = std::move(tokenized_prompts[i]);
// OAI-compat
task.params.oaicompat = oaicompat;
@ -4878,7 +4838,10 @@ int main(int argc, char ** argv) {
return;
}
llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
std::vector<server_tokens> tokenized_queries = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, query, /* add_special */ false, true);
if (tokenized_queries.size() != 1) {
res_error(res, format_error_response("\"query\" must contain only a single prompt", ERROR_TYPE_INVALID_REQUEST));
}
// create and queue the task
json responses = json::array();
@ -4886,14 +4849,14 @@ int main(int argc, char ** argv) {
std::unordered_set<int> task_ids;
{
std::vector<server_task> tasks;
auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, documents, /* add_special */ false, true);
tasks.reserve(tokenized_docs.size());
for (size_t i = 0; i < tokenized_docs.size(); i++) {
auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
auto tmp = format_rerank(ctx_server.vocab, tokenized_queries[0], tokenized_docs[i]);
server_task task = server_task(SERVER_TASK_TYPE_RERANK);
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;
task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr);
task.prompt_tokens = std::move(tmp);
tasks.push_back(std::move(task));
}

View file

@ -6,6 +6,8 @@ from utils import *
server = ServerPreset.tinyllama2()
JSON_MULTIMODAL_KEY = "multimodal_data"
JSON_PROMPT_STRING_KEY = "prompt_string"
@pytest.fixture(autouse=True)
def create_server():
@ -231,6 +233,28 @@ def test_nocache_long_input_prompt():
})
assert res.status_code == 400
def test_json_prompt_no_mtmd():
global server
server.start()
res = server.make_request("POST", "/completion", data={
"prompt": { JSON_PROMPT_STRING_KEY: "I believe the meaning of life is" },
"seed": 42,
"temperature": 1.0,
"cache_prompt": False,
})
assert res.status_code == 200
def test_json_prompt_mtm_error_when_not_supported():
global server
server.start()
res = server.make_request("POST", "/completion", data={
"prompt": { JSON_PROMPT_STRING_KEY: "I believe the meaning of life is <__media__>", JSON_MULTIMODAL_KEY: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=" },
"seed": 42,
"temperature": 1.0,
"cache_prompt": False,
})
# MTMD is disabled on this model, so this should fail.
assert res.status_code != 200
def test_completion_with_tokens_input():
global server
@ -269,6 +293,20 @@ def test_completion_with_tokens_input():
assert len(res.body) == 2
assert res.body[0]["content"] == res.body[1]["content"]
# mixed JSON and tokens
res = server.make_request("POST", "/completion", data={
"prompt": [
tokens,
{
JSON_PROMPT_STRING_KEY: "I believe the meaning of life is",
},
],
})
assert res.status_code == 200
assert type(res.body) == list
assert len(res.body) == 2
assert res.body[0]["content"] == res.body[1]["content"]
# mixed string and tokens in one sequence
res = server.make_request("POST", "/completion", data={
"prompt": [1, 2, 3, 4, 5, 6, prompt_str, 7, 8, 9, 10, prompt_str],

View file

@ -10,21 +10,48 @@ IMG_URL_1 = "https://huggingface.co/ggml-org/tinygemma3-GGUF/resolve/main/test/9
response = requests.get(IMG_URL_0)
response.raise_for_status() # Raise an exception for bad status codes
IMG_BASE64_0 = "data:image/png;base64," + base64.b64encode(response.content).decode("utf-8")
IMG_BASE64_URI_0 = "data:image/png;base64," + base64.b64encode(response.content).decode("utf-8")
IMG_BASE64_0 = base64.b64encode(response.content).decode("utf-8")
response = requests.get(IMG_URL_1)
response.raise_for_status() # Raise an exception for bad status codes
IMG_BASE64_URI_1 = "data:image/png;base64," + base64.b64encode(response.content).decode("utf-8")
IMG_BASE64_1 = base64.b64encode(response.content).decode("utf-8")
JSON_MULTIMODAL_KEY = "multimodal_data"
JSON_PROMPT_STRING_KEY = "prompt_string"
@pytest.fixture(autouse=True)
def create_server():
global server
server = ServerPreset.tinygemma3()
def test_models_supports_multimodal_capability():
global server
server.start() # vision model may take longer to load due to download size
res = server.make_request("GET", "/models", data={})
assert res.status_code == 200
model_info = res.body["models"][0]
print(model_info)
assert "completion" in model_info["capabilities"]
assert "multimodal" in model_info["capabilities"]
def test_v1_models_supports_multimodal_capability():
global server
server.start() # vision model may take longer to load due to download size
res = server.make_request("GET", "/v1/models", data={})
assert res.status_code == 200
model_info = res.body["models"][0]
print(model_info)
assert "completion" in model_info["capabilities"]
assert "multimodal" in model_info["capabilities"]
@pytest.mark.parametrize(
"prompt, image_url, success, re_content",
[
# test model is trained on CIFAR-10, but it's quite dumb due to small size
("What is this:\n", IMG_URL_0, True, "(cat)+"),
("What is this:\n", "IMG_BASE64_0", True, "(cat)+"), # exceptional, so that we don't cog up the log
("What is this:\n", "IMG_BASE64_URI_0", True, "(cat)+"), # exceptional, so that we don't cog up the log
("What is this:\n", IMG_URL_1, True, "(frog)+"),
("Test test\n", IMG_URL_1, True, "(frog)+"), # test invalidate cache
("What is this:\n", "malformed", False, None),
@ -36,8 +63,8 @@ def create_server():
def test_vision_chat_completion(prompt, image_url, success, re_content):
global server
server.start(timeout_seconds=60) # vision model may take longer to load due to download size
if image_url == "IMG_BASE64_0":
image_url = IMG_BASE64_0
if image_url == "IMG_BASE64_URI_0":
image_url = IMG_BASE64_URI_0
res = server.make_request("POST", "/chat/completions", data={
"temperature": 0.0,
"top_k": 1,
@ -58,3 +85,61 @@ def test_vision_chat_completion(prompt, image_url, success, re_content):
else:
assert res.status_code != 200
@pytest.mark.parametrize(
"prompt, image_data, success, re_content",
[
# test model is trained on CIFAR-10, but it's quite dumb due to small size
("What is this: <__media__>\n", IMG_BASE64_0, True, "(cat)+"),
("What is this: <__media__>\n", IMG_BASE64_1, True, "(frog)+"),
("What is this: <__media__>\n", "malformed", False, None), # non-image data
("What is this:\n", "", False, None), # empty string
]
)
def test_vision_completion(prompt, image_data, success, re_content):
global server
server.start() # vision model may take longer to load due to download size
res = server.make_request("POST", "/completions", data={
"temperature": 0.0,
"top_k": 1,
"prompt": { JSON_PROMPT_STRING_KEY: prompt, JSON_MULTIMODAL_KEY: [ image_data ] },
})
if success:
assert res.status_code == 200
content = res.body["content"]
assert match_regex(re_content, content)
else:
assert res.status_code != 200
@pytest.mark.parametrize(
"prompt, image_data, success",
[
# test model is trained on CIFAR-10, but it's quite dumb due to small size
("What is this: <__media__>\n", IMG_BASE64_0, True), # exceptional, so that we don't cog up the log
("What is this: <__media__>\n", IMG_BASE64_1, True),
("What is this: <__media__>\n", "malformed", False), # non-image data
("What is this:\n", "base64", False), # non-image data
]
)
def test_vision_embeddings(prompt, image_data, success):
global server
server.server_embeddings=True
server.n_batch=512
server.start() # vision model may take longer to load due to download size
res = server.make_request("POST", "/embeddings", data={
"content": [
{ JSON_PROMPT_STRING_KEY: prompt, JSON_MULTIMODAL_KEY: [ image_data ] },
{ JSON_PROMPT_STRING_KEY: prompt, JSON_MULTIMODAL_KEY: [ image_data ] },
{ JSON_PROMPT_STRING_KEY: prompt, },
],
})
if success:
assert res.status_code == 200
content = res.body
# Ensure embeddings are stable when multimodal.
assert content[0]['embedding'] == content[1]['embedding']
# Ensure embeddings without multimodal but same prompt do not match multimodal embeddings.
assert content[0]['embedding'] != content[2]['embedding']
else:
assert res.status_code != 200

View file

@ -123,6 +123,19 @@ static bool json_is_array_of_mixed_numbers_strings(const json & data) {
return false;
}
// does array have any individual integers/tokens?
static bool json_is_array_and_contains_numbers(const json & data) {
if (data.is_array()) {
for (const auto & e : data) {
if (e.is_number_integer()) {
return true;
}
}
return false;
}
return false;
}
// get value by path(key1 / key2)
static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
json result = json::object();
@ -186,48 +199,6 @@ static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_
return prompt_tokens;
}
/**
* break the input "prompt" object into multiple prompt if needed, then tokenize them
* this supports these cases:
* - "prompt": "string"
* - "prompt": [12, 34, 56]
* - "prompt": [12, 34, "string", 56, 78]
* and multiple prompts (multi-tasks):
* - "prompt": ["string1", "string2"]
* - "prompt": ["string1", [12, 34, 56]]
* - "prompt": [[12, 34, 56], [78, 90, 12]]
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
*/
static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
std::vector<llama_tokens> result;
if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
// string or mixed
result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special));
} else if (json_is_array_of_numbers(json_prompt)) {
// array of tokens
result.push_back(json_prompt.get<llama_tokens>());
} else if (json_prompt.is_array()) {
// array of prompts
result.reserve(json_prompt.size());
for (const auto & p : json_prompt) {
if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
result.push_back(tokenize_mixed(vocab, p, add_special, parse_special));
} else if (json_is_array_of_numbers(p)) {
// array of tokens
result.push_back(p.get<llama_tokens>());
} else {
throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
}
}
} else {
throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
}
if (result.empty()) {
throw std::runtime_error("\"prompt\" must not be empty");
}
return result;
}
// return the last index of character that can form a valid string
// if the last character is potentially cut in half, return the index before the cut
// if validate_utf8(text) == text.size(), then the whole text is valid utf8
@ -262,35 +233,6 @@ static size_t validate_utf8(const std::string& text) {
// template utils
//
// format rerank task: [BOS]query[EOS][SEP]doc[EOS]
static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) {
llama_tokens result;
// Get EOS token - use SEP token as fallback if EOS is not available
llama_token eos_token = llama_vocab_eos(vocab);
if (eos_token == LLAMA_TOKEN_NULL) {
eos_token = llama_vocab_sep(vocab);
}
result.reserve(doc.size() + query.size() + 4);
if (llama_vocab_get_add_bos(vocab)) {
result.push_back(llama_vocab_bos(vocab));
}
result.insert(result.end(), query.begin(), query.end());
if (llama_vocab_get_add_eos(vocab)) {
result.push_back(eos_token);
}
if (llama_vocab_get_add_sep(vocab)) {
result.push_back(llama_vocab_sep(vocab));
}
result.insert(result.end(), doc.begin(), doc.end());
if (llama_vocab_get_add_eos(vocab)) {
result.push_back(eos_token);
}
return result;
}
// format infill task
static llama_tokens format_infill(
const llama_vocab * vocab,
@ -1186,6 +1128,24 @@ public:
}
}
// appends server tokens, updates the media map. copies media chunks.
void push_back(server_tokens & tokens) {
size_t start_pos = size();
for (size_t i = 0; i < tokens.size(); i++) {
push_back(tokens[i]);
}
if (tokens.has_mtmd) {
// Assert if we are copying MTMD chunks to a server_tokens that does not have mtmd.
// We could also just check, but this will prevent silently dropping MTMD data.
GGML_ASSERT(has_mtmd);
for (auto it = tokens.map_pos_to_media.begin(); it != tokens.map_pos_to_media.end(); ) {
auto chunk = tokens.map_pos_to_media[it->first].get();
mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
map_pos_to_media[start_pos+it->first] = std::move(new_chunk);
}
}
}
// for compatibility with context shift and prompt truncation
void insert(const llama_tokens & inp_tokens) {
GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
@ -1356,3 +1316,137 @@ static std::string fnv_hash(const uint8_t * data, size_t len) {
}
return std::to_string(hash);
}
// format rerank task: [BOS]query[EOS][SEP]doc[EOS].
static server_tokens format_rerank(const struct llama_vocab * vocab, server_tokens & query, server_tokens & doc) {
server_tokens result = {};
// Get EOS token - use SEP token as fallback if EOS is not available
llama_token eos_token = llama_vocab_eos(vocab);
if (eos_token == LLAMA_TOKEN_NULL) {
eos_token = llama_vocab_sep(vocab);
}
if (llama_vocab_get_add_bos(vocab)) {
result.push_back(llama_vocab_bos(vocab));
}
result.push_back(query);
if (llama_vocab_get_add_eos(vocab)) {
result.push_back(eos_token);
}
if (llama_vocab_get_add_sep(vocab)) {
result.push_back(llama_vocab_sep(vocab));
}
result.push_back(doc);
if (llama_vocab_get_add_eos(vocab)) {
result.push_back(eos_token);
}
return result;
}
static server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector<raw_buffer> files) {
mtmd::bitmaps bitmaps;
for (auto & file : files) {
mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(mctx, file.data(), file.size()));
if (!bmp.ptr) {
throw std::runtime_error("Failed to load image or audio file");
}
// calculate bitmap hash (for KV caching)
std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
bmp.set_id(hash.c_str());
bitmaps.entries.push_back(std::move(bmp));
}
// process prompt
std::vector<server_tokens> inputs;
// multimodal
mtmd_input_text inp_txt = {
prompt.c_str(),
/* add_special */ true,
/* parse_special */ true,
};
mtmd::input_chunks chunks(mtmd_input_chunks_init());
auto bitmaps_c_ptr = bitmaps.c_ptr();
int32_t tokenized = mtmd_tokenize(mctx,
chunks.ptr.get(),
&inp_txt,
bitmaps_c_ptr.data(),
bitmaps_c_ptr.size());
if (tokenized != 0) {
throw std::runtime_error("Failed to tokenize prompt");
}
auto result = server_tokens(chunks, true);
return result;
}
/**
* break the input "prompt" object into multiple prompt if needed, then tokenize them
* use tokenize_input_prompts() if the input could be an array.
* this supports these cases:
* - "prompt": "string"
* - "prompt": [12, 34, 56]
* - "prompt": [12, 34, "string", 56, 78]
* - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] }
*/
static server_tokens tokenize_input_subprompt(const llama_vocab * vocab, mtmd_context * mctx, const json & json_prompt, bool add_special, bool parse_special) {
constexpr char JSON_STRING_PROMPT_KEY[] = "prompt_string";
constexpr char JSON_MTMD_DATA_KEY[] = "multimodal_data";
const bool has_mtmd = mctx != nullptr;
if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
// string or mixed
llama_tokens tmp = tokenize_mixed(vocab, json_prompt, add_special, parse_special);
return server_tokens(tmp, false);
} else if (json_is_array_of_numbers(json_prompt)) {
// array of tokens
llama_tokens tmp = json_prompt.get<llama_tokens>();
return server_tokens(tmp, false);
} else if (json_prompt.contains(JSON_STRING_PROMPT_KEY)) {
// JSON object with prompt key.
if (json_prompt.contains(JSON_MTMD_DATA_KEY)) {
if (!has_mtmd)
throw std::runtime_error("Multimodal data provided, but model does not support multimodal requests.");
// JSON object with prompt and multimodal key.
std::vector<raw_buffer> files;
for (const auto & entry : json_prompt.at(JSON_MTMD_DATA_KEY)) {
files.push_back(base64_decode(entry));
}
return process_mtmd_prompt(mctx, json_prompt.at(JSON_STRING_PROMPT_KEY), files);
} else {
// Not multimodal, but contains a subobject.
llama_tokens tmp = tokenize_mixed(vocab, json_prompt.at(JSON_STRING_PROMPT_KEY), add_special, parse_special);
return server_tokens(tmp, false);
}
} else {
throw std::runtime_error("\"prompt\" elements must be a string, a list of tokens, a JSON object containing a prompt string, or a list of mixed strings & tokens.");
}
}
/**
* break the input "prompt" object into multiple prompt if needed, then tokenize them
* this supports these cases:
* - "prompt": "string"
* - "prompt": [12, 34, 56]
* - "prompt": [12, 34, "string", 56, 78]
* - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] }
* and multiple prompts (multi-tasks):
* - "prompt": ["string1", "string2"]
* - "prompt": ["string1", [12, 34, 56]]
* - "prompt": [[12, 34, 56], [78, 90, 12]]
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56], { "prompt_string": "string", "multimodal_data": [ "base64" ]}]
*/
static std::vector<server_tokens> tokenize_input_prompts(const llama_vocab * vocab, mtmd_context * mctx, const json & json_prompt, bool add_special, bool parse_special) {
std::vector<server_tokens> result;
if (json_prompt.is_array() && !json_is_array_and_contains_numbers(json_prompt)) {
result.reserve(json_prompt.size());
for (const auto & p : json_prompt) {
result.push_back(tokenize_input_subprompt(vocab, mctx, p,add_special, parse_special));
}
} else {
result.push_back(tokenize_input_subprompt(vocab, mctx, json_prompt, add_special, parse_special));
}
if (result.empty()) {
throw std::runtime_error("\"prompt\" must not be empty");
}
return result;
}