server : Support multimodal completion and embeddings prompts in JSON format (#15108)

- Use server_tokens in more places in server and util.cpp
- Convert most functions that used llama_tokens to server_tokens
- Modify input tokenizer to handle JSON objects as subprompts
- Break out MTMD prompt parsing into utility function
- Support JSON objects with multimodal_data arrays for MTMD prompts along with other existing types
- Add capability to model endpoint to indicate if client can send multimodal data
- Add tests.
This commit is contained in:
65a 2025-08-22 08:10:14 +00:00 committed by GitHub
parent e288693669
commit 4afb0a746f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 323 additions and 138 deletions

View file

@ -10,21 +10,48 @@ IMG_URL_1 = "https://huggingface.co/ggml-org/tinygemma3-GGUF/resolve/main/test/9
response = requests.get(IMG_URL_0)
response.raise_for_status() # Raise an exception for bad status codes
IMG_BASE64_0 = "data:image/png;base64," + base64.b64encode(response.content).decode("utf-8")
IMG_BASE64_URI_0 = "data:image/png;base64," + base64.b64encode(response.content).decode("utf-8")
IMG_BASE64_0 = base64.b64encode(response.content).decode("utf-8")
response = requests.get(IMG_URL_1)
response.raise_for_status() # Raise an exception for bad status codes
IMG_BASE64_URI_1 = "data:image/png;base64," + base64.b64encode(response.content).decode("utf-8")
IMG_BASE64_1 = base64.b64encode(response.content).decode("utf-8")
JSON_MULTIMODAL_KEY = "multimodal_data"
JSON_PROMPT_STRING_KEY = "prompt_string"
@pytest.fixture(autouse=True)
def create_server():
global server
server = ServerPreset.tinygemma3()
def test_models_supports_multimodal_capability():
global server
server.start() # vision model may take longer to load due to download size
res = server.make_request("GET", "/models", data={})
assert res.status_code == 200
model_info = res.body["models"][0]
print(model_info)
assert "completion" in model_info["capabilities"]
assert "multimodal" in model_info["capabilities"]
def test_v1_models_supports_multimodal_capability():
global server
server.start() # vision model may take longer to load due to download size
res = server.make_request("GET", "/v1/models", data={})
assert res.status_code == 200
model_info = res.body["models"][0]
print(model_info)
assert "completion" in model_info["capabilities"]
assert "multimodal" in model_info["capabilities"]
@pytest.mark.parametrize(
"prompt, image_url, success, re_content",
[
# test model is trained on CIFAR-10, but it's quite dumb due to small size
("What is this:\n", IMG_URL_0, True, "(cat)+"),
("What is this:\n", "IMG_BASE64_0", True, "(cat)+"), # exceptional, so that we don't cog up the log
("What is this:\n", "IMG_BASE64_URI_0", True, "(cat)+"), # exceptional, so that we don't cog up the log
("What is this:\n", IMG_URL_1, True, "(frog)+"),
("Test test\n", IMG_URL_1, True, "(frog)+"), # test invalidate cache
("What is this:\n", "malformed", False, None),
@ -36,8 +63,8 @@ def create_server():
def test_vision_chat_completion(prompt, image_url, success, re_content):
global server
server.start(timeout_seconds=60) # vision model may take longer to load due to download size
if image_url == "IMG_BASE64_0":
image_url = IMG_BASE64_0
if image_url == "IMG_BASE64_URI_0":
image_url = IMG_BASE64_URI_0
res = server.make_request("POST", "/chat/completions", data={
"temperature": 0.0,
"top_k": 1,
@ -58,3 +85,61 @@ def test_vision_chat_completion(prompt, image_url, success, re_content):
else:
assert res.status_code != 200
@pytest.mark.parametrize(
"prompt, image_data, success, re_content",
[
# test model is trained on CIFAR-10, but it's quite dumb due to small size
("What is this: <__media__>\n", IMG_BASE64_0, True, "(cat)+"),
("What is this: <__media__>\n", IMG_BASE64_1, True, "(frog)+"),
("What is this: <__media__>\n", "malformed", False, None), # non-image data
("What is this:\n", "", False, None), # empty string
]
)
def test_vision_completion(prompt, image_data, success, re_content):
global server
server.start() # vision model may take longer to load due to download size
res = server.make_request("POST", "/completions", data={
"temperature": 0.0,
"top_k": 1,
"prompt": { JSON_PROMPT_STRING_KEY: prompt, JSON_MULTIMODAL_KEY: [ image_data ] },
})
if success:
assert res.status_code == 200
content = res.body["content"]
assert match_regex(re_content, content)
else:
assert res.status_code != 200
@pytest.mark.parametrize(
"prompt, image_data, success",
[
# test model is trained on CIFAR-10, but it's quite dumb due to small size
("What is this: <__media__>\n", IMG_BASE64_0, True), # exceptional, so that we don't cog up the log
("What is this: <__media__>\n", IMG_BASE64_1, True),
("What is this: <__media__>\n", "malformed", False), # non-image data
("What is this:\n", "base64", False), # non-image data
]
)
def test_vision_embeddings(prompt, image_data, success):
global server
server.server_embeddings=True
server.n_batch=512
server.start() # vision model may take longer to load due to download size
res = server.make_request("POST", "/embeddings", data={
"content": [
{ JSON_PROMPT_STRING_KEY: prompt, JSON_MULTIMODAL_KEY: [ image_data ] },
{ JSON_PROMPT_STRING_KEY: prompt, JSON_MULTIMODAL_KEY: [ image_data ] },
{ JSON_PROMPT_STRING_KEY: prompt, },
],
})
if success:
assert res.status_code == 200
content = res.body
# Ensure embeddings are stable when multimodal.
assert content[0]['embedding'] == content[1]['embedding']
# Ensure embeddings without multimodal but same prompt do not match multimodal embeddings.
assert content[0]['embedding'] != content[2]['embedding']
else:
assert res.status_code != 200