mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 09:34:37 +00:00
rep pen slope works (+1 squashed commits)
Squashed commits: [535ad566] experiment with rep pen range
This commit is contained in:
parent
e1e6833a7a
commit
44443edfda
4 changed files with 39 additions and 12 deletions
|
@ -423,33 +423,50 @@ void sample_top_a(llama_token_data_array * candidates, float a, size_t min_keep)
|
|||
candidates->size = last_idx;
|
||||
}
|
||||
|
||||
void sample_rep_pen(int n_ctx, int rep_pen_range, float rep_pen, float presence_penalty, llama_token_data_array * candidates_p)
|
||||
void sample_rep_pen(int n_ctx, int rep_pen_range, float rep_pen, float rep_pen_slope, float presence_penalty, llama_token_data_array * candidates_p)
|
||||
{
|
||||
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), rep_pen_range), n_ctx);
|
||||
|
||||
const llama_token * last_tokens = last_n_tokens.data() + last_n_tokens.size() - last_n_repeat;
|
||||
size_t last_tokens_size = last_n_repeat;
|
||||
llama_token_data_array * candidates = candidates_p;
|
||||
float penalty = rep_pen;
|
||||
|
||||
if (last_tokens_size == 0 || (penalty == 1.0f && presence_penalty==0)) {
|
||||
if (last_tokens_size == 0 || (rep_pen == 1.0f && presence_penalty==0)) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
// Create a frequency map to count occurrences of each token in last_tokens
|
||||
std::unordered_map<llama_token, int> token_count;
|
||||
std::unordered_map<llama_token, int> token_count_near;
|
||||
std::unordered_map<llama_token, int> token_count_far;
|
||||
for (size_t i = 0; i < last_n_repeat; ++i) {
|
||||
token_count[last_tokens[i]]++;
|
||||
if((i*2) >= last_n_repeat)
|
||||
{
|
||||
token_count_near[last_tokens[i]]++;
|
||||
}
|
||||
else
|
||||
{
|
||||
token_count_far[last_tokens[i]]++;
|
||||
}
|
||||
}
|
||||
|
||||
float rep_pen_reduced = rep_pen;
|
||||
if(rep_pen_reduced>1.0f)
|
||||
{
|
||||
rep_pen_reduced = 1.0f + ((rep_pen-1.0f)*rep_pen_slope);
|
||||
}
|
||||
for (size_t i = 0; i < candidates->size; ++i) {
|
||||
const auto token_iter = token_count.find(candidates->data[i].id);
|
||||
if (token_iter == token_count.end()) {
|
||||
const auto token_in_near = token_count_near.find(candidates->data[i].id);
|
||||
const auto token_in_far = token_count_far.find(candidates->data[i].id);
|
||||
bool in_near = (token_in_near != token_count_near.end());
|
||||
bool in_far = (token_in_far != token_count_far.end());
|
||||
if (!in_near && !in_far) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float penalty = (in_near?rep_pen:rep_pen_reduced);
|
||||
|
||||
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
|
||||
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
|
||||
if (candidates->data[i].logit <= 0) {
|
||||
|
@ -520,7 +537,7 @@ void sample_grammar(FileFormat file_format, int32_t n_vocab, llama_token_data_ar
|
|||
|
||||
}
|
||||
|
||||
int SampleLogits(const float * logits, int n_ctx, int n_vocab, int rep_pen_range, float rep_pen, float presence_penalty, float top_k, float top_a, float top_p, float min_p, float typical_p, float tfs, float temp, std::mt19937 & rng,
|
||||
int SampleLogits(const float * logits, int n_ctx, int n_vocab, int rep_pen_range, float rep_pen, float rep_pen_slope, float presence_penalty, float top_k, float top_a, float top_p, float min_p, float typical_p, float tfs, float temp, std::mt19937 & rng,
|
||||
int mirostat, float mirostat_tau, float mirostat_eta, const std::vector<samplers> & sampler_order, llama_grammar * grammar, float dynatemp_range, float dynatemp_exponent, float smoothing_factor)
|
||||
{
|
||||
int id = 0;
|
||||
|
@ -546,7 +563,7 @@ int mirostat, float mirostat_tau, float mirostat_eta, const std::vector<samplers
|
|||
{
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
sample_rep_pen(n_ctx, rep_pen_range, rep_pen, presence_penalty, &candidates_p);
|
||||
sample_rep_pen(n_ctx, rep_pen_range, rep_pen, rep_pen_slope, presence_penalty, &candidates_p);
|
||||
sample_temperature(&candidates_p, temp, smoothing_factor);
|
||||
if (mirostat == 1)
|
||||
{
|
||||
|
@ -596,7 +613,7 @@ int mirostat, float mirostat_tau, float mirostat_eta, const std::vector<samplers
|
|||
}
|
||||
break;
|
||||
case KCPP_SAMPLER_REP_PEN:
|
||||
sample_rep_pen(n_ctx, rep_pen_range, rep_pen, presence_penalty, &candidates_p);
|
||||
sample_rep_pen(n_ctx, rep_pen_range, rep_pen, rep_pen_slope, presence_penalty, &candidates_p);
|
||||
break;
|
||||
default:
|
||||
printf("\nSampleLogits: Unknown Sampler : %d",sampler_order[i]);
|
||||
|
@ -1716,6 +1733,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
kcpp_params->tfs_z = inputs.tfs;
|
||||
kcpp_params->temp = inputs.temperature;
|
||||
kcpp_params->repeat_last_n = inputs.rep_pen_range;
|
||||
kcpp_params->rep_pen_slope = inputs.rep_pen_slope;
|
||||
kcpp_params->repeat_penalty = inputs.rep_pen;
|
||||
kcpp_params->presence_penalty = inputs.presence_penalty;
|
||||
kcpp_params->mirostat = inputs.mirostat;
|
||||
|
@ -1753,6 +1771,10 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
{
|
||||
kcpp_params->repeat_last_n = 1;
|
||||
}
|
||||
if (kcpp_params->rep_pen_slope > 1 || kcpp_params->rep_pen_slope<=0)
|
||||
{
|
||||
kcpp_params->rep_pen_slope = 1;
|
||||
}
|
||||
if (kcpp_params->top_k < 1)
|
||||
{
|
||||
kcpp_params->top_k = n_vocab; // all tokens in the vocabulary should be considered if top k is disabled
|
||||
|
@ -2222,7 +2244,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
}
|
||||
}
|
||||
|
||||
id = SampleLogits(logitsPtr, nctx, n_vocab, last_n_size, repeat_penalty, presence_penalty,
|
||||
id = SampleLogits(logitsPtr, nctx, n_vocab, last_n_size, repeat_penalty, kcpp_params->rep_pen_slope, presence_penalty,
|
||||
top_k, top_a, top_p, min_p, typical_p, tfs_z, temp, rng,
|
||||
kcpp_params->mirostat, kcpp_params->mirostat_tau, kcpp_params->mirostat_eta, sampler_order, grammar, dynatemp_range, dynatemp_exponent, smoothing_factor);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue