Merge commit '8f47e25f56' into concedo_experimental

# Conflicts:
#	.github/labeler.yml
#	.github/workflows/build-linux-cross.yml
#	docs/backend/CANN.md
#	examples/batched.swift/Sources/main.swift
#	examples/embedding/embedding.cpp
#	examples/gritlm/gritlm.cpp
#	examples/llama.android/llama/src/main/cpp/llama-android.cpp
#	examples/llama.swiftui/llama.cpp.swift/LibLlama.swift
#	examples/lookahead/lookahead.cpp
#	examples/lookup/lookup.cpp
#	examples/parallel/parallel.cpp
#	examples/passkey/passkey.cpp
#	examples/retrieval/retrieval.cpp
#	examples/save-load-state/save-load-state.cpp
#	examples/simple-chat/simple-chat.cpp
#	examples/speculative-simple/speculative-simple.cpp
#	examples/speculative/speculative.cpp
#	ggml/src/ggml-cann/common.h
#	ggml/src/ggml-cann/ggml-cann.cpp
#	ggml/src/ggml-sycl/convert.cpp
#	ggml/src/ggml-sycl/cpy.cpp
#	ggml/src/ggml-sycl/dequantize.hpp
#	ggml/src/ggml-sycl/ggml-sycl.cpp
#	ggml/src/ggml-sycl/mmvq.cpp
#	ggml/src/ggml-sycl/vecdotq.hpp
#	tools/batched-bench/batched-bench.cpp
#	tools/cvector-generator/cvector-generator.cpp
#	tools/imatrix/imatrix.cpp
#	tools/llama-bench/llama-bench.cpp
#	tools/perplexity/perplexity.cpp
#	tools/run/run.cpp
This commit is contained in:
Concedo 2025-06-13 22:05:03 +08:00
commit 4204f111f7
24 changed files with 204 additions and 91 deletions

View file

@ -942,7 +942,7 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
}
@ -1049,7 +1049,7 @@ struct common_init_result common_init_from_params(common_params & params) {
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
}
llama_kv_self_clear(lctx);
llama_memory_clear(llama_get_memory(lctx), true);
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
llama_set_warmup(lctx, false);

View file

@ -144,6 +144,8 @@ llama_tokens common_speculative_gen_draft(
auto & smpl = spec->smpl;
auto & prompt = spec->prompt;
auto * mem = llama_get_memory(ctx);
int reuse_i = 0;
int reuse_n = 0;
@ -173,7 +175,7 @@ llama_tokens common_speculative_gen_draft(
result.reserve(params.n_draft);
if (reuse_n == 0) {
llama_kv_self_clear(ctx);
llama_memory_clear(mem, false);
prompt.clear();
} else {
@ -192,14 +194,14 @@ llama_tokens common_speculative_gen_draft(
}
if (reuse_i > 0) {
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
llama_memory_seq_rm (mem, 0, 0, reuse_i);
llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i);
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
}
if (reuse_n < (int) prompt.size()) {
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
llama_memory_seq_rm (mem, 0, reuse_n, -1);
prompt.erase(prompt.begin() + reuse_n, prompt.end());
}

View file

@ -37,7 +37,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
llama_memory_clear(llama_get_memory(ctx));
llama_memory_clear(llama_get_memory(ctx), true);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);

View file

@ -616,9 +616,8 @@ static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemsetAsync(ctx->dev_ptr, value, buffer->size, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
@ -1145,7 +1144,6 @@ typedef void (*ggml_cuda_op_mul_mat_t)(
static cudaError_t ggml_cuda_cpy_tensor_2d(
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
const char * src_ptr = (const char *) src->data;
char * dst_ptr = (char *) dst;
@ -1428,8 +1426,6 @@ static void ggml_cuda_op_mul_mat(
const int64_t nb2 = dst->nb[2];
const int64_t nb3 = dst->nb[3];
GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
@ -1751,7 +1747,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
// Byte offsets and tensor dimensions are currently used in an inconsistent way for dst.

View file

@ -14,12 +14,13 @@
#ifndef GGML_SYCL_QUANTS_HPP
#define GGML_SYCL_QUANTS_HPP
#include <utility>
#include "ggml-common.h"
#include "ggml.h"
namespace ggml_sycl_reordered {
// The reordered block moves quants (qs) and scales(d) to two
// uniform regions of memory that is contiguous in the same tensor.
// What this means is that instead of having:
@ -32,7 +33,6 @@ namespace ggml_sycl_reordered {
template <ggml_type type> struct block_q_t;
// qk number of weights / quants in a block
// qr number of weights in a byte (described as 'before dequantization')
// for quantization types that has low and high bits split, qr is calculated with
@ -47,10 +47,12 @@ template <> struct block_q_t<GGML_TYPE_Q4_0> {
static constexpr uint32_t vdr_mmvq = 2;
};
static constexpr int get_block_offset(const int block_index) { return block_index * (traits::qk / traits::qr); }
static constexpr std::pair<int, int> get_block_offset(const int block_index, const int /* nblocks */) {
return { block_index * (traits::qk / traits::qr), 0 };
}
static constexpr int get_d_offset(int nrows, int ncols, const int block_index) {
return (ncols / traits::qr * nrows) + block_index * sizeof(ggml_half);
static constexpr std::pair<int, int> get_d_offset(int nrows, int ncols, const int block_index) {
return { (ncols / traits::qr * nrows) + block_index * sizeof(ggml_half), 0 };
}
static constexpr int block_to_q8_1_ratio() { return traits::qk / QK8_1; }
@ -64,20 +66,46 @@ template <> struct block_q_t<GGML_TYPE_Q4_K> {
static constexpr uint32_t vdr_mmvq = 2;
};
static constexpr int get_block_offset(const int block_index) { return block_index * (traits::qk / traits::qr); }
static constexpr std::pair<int, int> get_block_offset(const int block_index, const int /* nblocks */) {
return { block_index * (traits::qk / traits::qr), 0 };
}
static constexpr int get_d_offset(int nrows, int ncols, const int block_index) {
static constexpr std::pair<int, int> get_d_offset(int nrows, int ncols, const int block_index) {
auto nblocks = (nrows * (ncols / traits::qk));
return (nblocks * QK_K / 2) + (nblocks * K_SCALE_SIZE) + (block_index * sizeof(ggml_half2));
return { nblocks * (QK_K / 2),
(nblocks * QK_K / 2) + (nblocks * K_SCALE_SIZE) + (block_index * sizeof(ggml_half2)) };
}
static constexpr int block_to_q8_1_ratio() { return traits::qk / QK8_1; }
constexpr size_t get_total_qs_bytes(int nblocks) { return nblocks * QK_K / 2; }
constexpr size_t get_dm_offset(int nblocks) { return get_total_qs_bytes(nblocks) + nblocks * K_SCALE_SIZE; }
};
template <> struct block_q_t<GGML_TYPE_Q6_K> {
struct traits {
static constexpr uint32_t qk = QK_K;
static constexpr uint32_t qi = QI6_K;
static constexpr uint32_t qr = QR6_K;
static constexpr uint32_t vdr_mmvq = 1;
};
static constexpr std::pair<int, int> get_block_offset(const int block_index, const int n_blocks) {
auto low_bits_index = block_index * (traits::qk / traits::qr);
// the index of high bits it's after all low bits
auto high_bits_index = n_blocks * (QK_K / 2) + (block_index * (QK_K / 4));
return { low_bits_index, high_bits_index };
}
static constexpr std::pair<int, int> get_d_offset(int nrows, int ncols, const int block_index) {
auto nblocks = (nrows * (ncols / traits::qk));
auto total_qs_bytes = nblocks * (QK_K / 2) + nblocks * (QK_K / 4);
auto block_scales = total_qs_bytes + block_index * (QK_K / 16);
auto sb_scale = total_qs_bytes + nblocks * (QK_K / 16);
return { block_scales, sb_scale };
}
static constexpr int block_to_q8_1_ratio() { return traits::qk / QK8_1; }
};
} // namespace ggml_sycl_reordered
#endif // GGML_SYCL_QUANTS_HPP

View file

@ -628,7 +628,10 @@ extern "C" {
//
// Clear the memory contents
LLAMA_API void llama_memory_clear(llama_memory_t mem);
// If data == true, the data buffers will also be cleared together with the metadata
LLAMA_API void llama_memory_clear(
llama_memory_t mem,
bool data);
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
// Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
@ -708,74 +711,82 @@ extern "C" {
"Use llama_kv_self_seq_pos_max() and llama_kv_self_seq_pos_min() instead (https://github.com/ggml-org/llama.cpp/issues/13793)");
// Clear the KV cache - both cell info is erased and KV data is zeroed
LLAMA_API void llama_kv_self_clear(
struct llama_context * ctx);
DEPRECATED(LLAMA_API void llama_kv_self_clear(
struct llama_context * ctx),
"Use llama_memory_clear() instead");
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
// Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
// seq_id < 0 : match any sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API bool llama_kv_self_seq_rm(
DEPRECATED(LLAMA_API bool llama_kv_self_seq_rm(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1);
llama_pos p1),
"Use llama_memory_seq_rm() instead");
// Copy all tokens that belong to the specified sequence to another sequence
// Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_self_seq_cp(
DEPRECATED(LLAMA_API void llama_kv_self_seq_cp(
struct llama_context * ctx,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1);
llama_pos p1),
"Use llama_memory_seq_cp() instead");
// Removes all tokens that do not belong to the specified sequence
LLAMA_API void llama_kv_self_seq_keep(
DEPRECATED(LLAMA_API void llama_kv_self_seq_keep(
struct llama_context * ctx,
llama_seq_id seq_id);
llama_seq_id seq_id),
"Use llama_memory_seq_keep() instead");
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
// If the KV cache is RoPEd, the KV data is updated accordingly:
// - lazily on next llama_decode()
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_self_seq_add(
DEPRECATED(LLAMA_API void llama_kv_self_seq_add(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta);
llama_pos delta),
"Use llama_memory_seq_add() instead");
// Integer division of the positions by factor of `d > 1`
// If the KV cache is RoPEd, the KV data is updated accordingly:
// - lazily on next llama_decode()
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_self_seq_div(
DEPRECATED(void llama_kv_self_seq_div(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d);
int d),
"Use llama_memory_seq_div() instead");
// Returns the smallest position present in the KV cache for the specified sequence
// This is typically non-zero only for SWA caches
// Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the KV cache
// Return -1 if the sequence is empty
LLAMA_API llama_pos llama_kv_self_seq_pos_min(
DEPRECATED(LLAMA_API llama_pos llama_kv_self_seq_pos_min(
struct llama_context * ctx,
llama_seq_id seq_id);
llama_seq_id seq_id),
"Use llama_memory_seq_pos_min() instead");
// Returns the largest position present in the KV cache for the specified sequence
// Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the KV cache
// Return -1 if the sequence is empty
LLAMA_API llama_pos llama_kv_self_seq_pos_max(
DEPRECATED(LLAMA_API llama_pos llama_kv_self_seq_pos_max(
struct llama_context * ctx,
llama_seq_id seq_id);
llama_seq_id seq_id),
"Use llama_memory_seq_pos_max() instead");
// Defragment the KV cache
// This will be applied:
@ -784,7 +795,8 @@ extern "C" {
"simply remove this call, the context will automatically decide when to do a defragmentation based on 'defrag_thold'");
// Check if the context supports KV cache shifting
LLAMA_API bool llama_kv_self_can_shift(const struct llama_context * ctx);
DEPRECATED(LLAMA_API bool llama_kv_self_can_shift(const struct llama_context * ctx),
"use llama_memory_can_shift() instead");
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
DEPRECATED(LLAMA_API void llama_kv_self_update(struct llama_context * ctx),

View file

@ -200,7 +200,6 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE, "tokenizer.chat_template" },
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE_N, "tokenizer.chat_template.%s" },
{ LLM_KV_TOKENIZER_FIM_PRE_ID, "tokenizer.ggml.fim_pre_token_id" },
{ LLM_KV_TOKENIZER_FIM_SUF_ID, "tokenizer.ggml.fim_suf_token_id" },
{ LLM_KV_TOKENIZER_FIM_MID_ID, "tokenizer.ggml.fim_mid_token_id" },
@ -1707,8 +1706,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {}
std::string LLM_KV::operator()(llm_kv kv) const {
return suffix ? ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch), suffix)
: ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
std::string name = ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
if (suffix != nullptr) {
name += ".";
name += suffix;
}
return name;
}
std::string LLM_TN_IMPL::str() const {

View file

@ -196,7 +196,6 @@ enum llm_kv {
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
LLM_KV_TOKENIZER_CHAT_TEMPLATE,
LLM_KV_TOKENIZER_CHAT_TEMPLATE_N,
LLM_KV_TOKENIZER_FIM_PRE_ID,
LLM_KV_TOKENIZER_FIM_SUF_ID,
LLM_KV_TOKENIZER_FIM_MID_ID,

View file

@ -123,7 +123,7 @@ llama_context::llama_context(
__func__, n_ctx_per_seq, hparams.n_ctx_train);
}
if (!params.swa_full && cparams.n_seq_max > 1) {
if (!params.swa_full && cparams.n_seq_max > 1 && hparams.is_swa_any()) {
LLAMA_LOG_WARN("%s: requested n_seq_max (%u) > 1, but swa_full is not enabled -- performance may be degraded: %s\n",
__func__, cparams.n_seq_max, "https://github.com/ggml-org/llama.cpp/pull/13845#issuecomment-2924800573");
}
@ -422,6 +422,7 @@ llama_memory_t llama_context::get_memory() const {
return memory.get();
}
// deprecated
void llama_context::kv_self_defrag_sched() {
if (!memory) {
return;
@ -430,6 +431,7 @@ void llama_context::kv_self_defrag_sched() {
memory_force_optimize = true;
}
// deprecated
bool llama_context::kv_self_update(bool optimize) {
if (!memory) {
return false;
@ -2053,7 +2055,7 @@ void llama_context::opt_epoch_iter(
const uint32_t n_batch = std::min(this->n_batch(), n_ctx);
const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch);
memory->clear();
memory->clear(true);
for (uint32_t pos_ctx = 0; pos_ctx < n_ctx; pos_ctx += n_batch) {
batch.n_tokens = n_batch;
@ -2426,8 +2428,12 @@ llama_memory_t llama_get_memory(const struct llama_context * ctx) {
return ctx->get_memory();
}
void llama_memory_clear(llama_memory_t mem) {
mem->clear();
void llama_memory_clear(llama_memory_t mem, bool data) {
if (!mem) {
return;
}
mem->clear(data);
}
bool llama_memory_seq_rm(
@ -2435,6 +2441,10 @@ bool llama_memory_seq_rm(
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1) {
if (!mem) {
return true;
}
return mem->seq_rm(seq_id, p0, p1);
}
@ -2444,12 +2454,20 @@ void llama_memory_seq_cp(
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1) {
if (!mem) {
return;
}
mem->seq_cp(seq_id_src, seq_id_dst, p0, p1);
}
void llama_memory_seq_keep(
llama_memory_t mem,
llama_seq_id seq_id) {
if (!mem) {
return;
}
mem->seq_keep(seq_id);
}
@ -2459,6 +2477,10 @@ void llama_memory_seq_add(
llama_pos p0,
llama_pos p1,
llama_pos delta) {
if (!mem) {
return;
}
mem->seq_add(seq_id, p0, p1, delta);
}
@ -2468,22 +2490,38 @@ void llama_memory_seq_div(
llama_pos p0,
llama_pos p1,
int d) {
if (!mem) {
return;
}
mem->seq_div(seq_id, p0, p1, d);
}
llama_pos llama_memory_seq_pos_min(
llama_memory_t mem,
llama_seq_id seq_id) {
if (!mem) {
return -1;
}
return mem->seq_pos_min(seq_id);
}
llama_pos llama_memory_seq_pos_max(
llama_memory_t mem,
llama_seq_id seq_id) {
if (!mem) {
return -1;
}
return mem->seq_pos_max(seq_id);
}
bool llama_memory_can_shift(llama_memory_t mem) {
if (!mem) {
return false;
}
return mem->get_can_shift();
}
@ -2534,15 +2572,17 @@ int32_t llama_kv_self_used_cells(const llama_context * ctx) {
return res;
}
// deprecated
void llama_kv_self_clear(llama_context * ctx) {
auto * kv = llama_get_memory(ctx);
if (!kv) {
return;
}
llama_memory_clear(kv);
llama_memory_clear(kv, true);
}
// deprecated
bool llama_kv_self_seq_rm(
llama_context * ctx,
llama_seq_id seq_id,
@ -2556,6 +2596,7 @@ bool llama_kv_self_seq_rm(
return llama_memory_seq_rm(kv, seq_id, p0, p1);
}
// deprecated
void llama_kv_self_seq_cp(
llama_context * ctx,
llama_seq_id seq_id_src,
@ -2570,6 +2611,7 @@ void llama_kv_self_seq_cp(
llama_memory_seq_cp(kv, seq_id_src, seq_id_dst, p0, p1);
}
// deprecated
void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
auto * kv = llama_get_memory(ctx);
if (!kv) {
@ -2579,6 +2621,7 @@ void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
llama_memory_seq_keep(kv, seq_id);
}
// deprecated
void llama_kv_self_seq_add(
llama_context * ctx,
llama_seq_id seq_id,
@ -2593,6 +2636,7 @@ void llama_kv_self_seq_add(
llama_memory_seq_add(kv, seq_id, p0, p1, delta);
}
// deprecated
void llama_kv_self_seq_div(
llama_context * ctx,
llama_seq_id seq_id,
@ -2607,6 +2651,7 @@ void llama_kv_self_seq_div(
llama_memory_seq_div(kv, seq_id, p0, p1, d);
}
// deprecated
llama_pos llama_kv_self_seq_pos_min(llama_context * ctx, llama_seq_id seq_id) {
auto * kv = llama_get_memory(ctx);
if (!kv) {
@ -2616,6 +2661,7 @@ llama_pos llama_kv_self_seq_pos_min(llama_context * ctx, llama_seq_id seq_id) {
return llama_memory_seq_pos_min(kv, seq_id);
}
// deprecated
llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) {
auto * kv = llama_get_memory(ctx);
if (!kv) {
@ -2631,6 +2677,7 @@ void llama_kv_self_defrag(llama_context * ctx) {
ctx->kv_self_defrag_sched();
}
// deprecated
bool llama_kv_self_can_shift(const llama_context * ctx) {
auto * kv = llama_get_memory(ctx);
if (!kv) {

View file

@ -659,6 +659,20 @@ ggml_tensor * llm_graph_context::build_ffn(
cur = ggml_mul(ctx0, x0, x1);
cb(cur, "ffn_mul", il);
} break;
case LLM_FFN_GEGLU:
{
// Split into two equal parts
int64_t split_point = cur->ne[0] / 2;
// TODO: these conts should not be needed
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
x0 = ggml_gelu(ctx0, x0);
cb(x0, "ffn_gelu", il);
cur = ggml_mul(ctx0, x0, x1);
cb(cur, "ffn_geglu", il);
} break;
}
if (gate && type_gate == LLM_FFN_PAR) {

View file

@ -36,6 +36,7 @@ enum llm_ffn_op_type {
LLM_FFN_RELU,
LLM_FFN_RELU_SQR,
LLM_FFN_SWIGLU,
LLM_FFN_GEGLU,
};
enum llm_ffn_gate_type {

View file

@ -117,20 +117,23 @@ llama_kv_cache_recurrent::llama_kv_cache_recurrent(
}
}
void llama_kv_cache_recurrent::clear() {
void llama_kv_cache_recurrent::clear(bool data) {
for (int32_t i = 0; i < (int32_t) size; ++i) {
cells[i].pos = -1;
cells[i].seq_id.clear();
cells[i].src = -1;
cells[i].tail = -1;
}
head = 0;
used = 0;
if (data) {
for (auto & buf : bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
}
bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
uint32_t new_head = size;
@ -723,7 +726,7 @@ void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq
if (!res) {
if (seq_id == -1) {
clear();
clear(true);
} else {
seq_rm(seq_id, -1, -1);
}
@ -880,7 +883,7 @@ bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t ce
return false;
}
clear();
clear(true);
for (uint32_t i = 0; i < cell_count; ++i) {
kv_cell & cell = cells[i];

View file

@ -39,7 +39,7 @@ public:
llama_memory_state_ptr init_update(llama_context * lctx, bool optimize) override;
void clear() override;
void clear(bool data) override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;

View file

@ -52,9 +52,9 @@ llama_kv_cache_unified_iswa::llama_kv_cache_unified_iswa(
hparams.n_swa, hparams.swa_type);
}
void llama_kv_cache_unified_iswa::clear() {
kv_base->clear();
kv_swa ->clear();
void llama_kv_cache_unified_iswa::clear(bool data) {
kv_base->clear(data);
kv_swa ->clear(data);
}
bool llama_kv_cache_unified_iswa::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {

View file

@ -43,7 +43,7 @@ public:
bool get_can_shift() const override;
void clear() override;
void clear(bool data) override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;

View file

@ -129,15 +129,17 @@ llama_kv_cache_unified::llama_kv_cache_unified(
}
}
void llama_kv_cache_unified::clear() {
void llama_kv_cache_unified::clear(bool data) {
cells.reset();
head = 0;
if (data) {
for (auto & buf : bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
}
bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
uint32_t new_head = cells.size();
@ -1319,7 +1321,7 @@ void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_i
if (!res) {
if (seq_id == -1) {
clear();
clear(true);
} else {
seq_rm(seq_id, -1, -1);
}
@ -1500,7 +1502,7 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
return false;
}
clear();
clear(true);
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;

View file

@ -68,7 +68,7 @@ public:
bool get_can_shift() const override;
void clear() override;
void clear(bool data) override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;

View file

@ -90,7 +90,8 @@ struct llama_memory_i {
// ops
//
virtual void clear() = 0;
// if data == true, the data buffers will also be cleared together with the metadata
virtual void clear(bool data) = 0;
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;

View file

@ -13888,7 +13888,7 @@ uint64_t llama_model_size(const llama_model * model) {
}
const char * llama_model_chat_template(const llama_model * model, const char * name) {
const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE)
: LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
const auto & it = model->gguf_kv.find(key);
if (it == model->gguf_kv.end()) {

View file

@ -148,6 +148,8 @@ int main(int argc, char ** argv) {
return 1;
}
auto * mem = llama_get_memory(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
auto chat_templates = common_chat_templates_init(model, params.chat_template);
@ -352,7 +354,7 @@ int main(int argc, char ** argv) {
}
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_self_seq_rm(ctx, -1, n_matching_session_tokens, -1);
llama_memory_seq_rm(mem, -1, n_matching_session_tokens, -1);
}
LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
@ -600,8 +602,8 @@ int main(int argc, char ** argv) {
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
llama_memory_seq_rm (mem, 0, params.n_keep , params.n_keep + n_discard);
llama_memory_seq_add(mem, 0, params.n_keep + n_discard, n_past, -n_discard);
n_past -= n_discard;
@ -624,9 +626,9 @@ int main(int argc, char ** argv) {
LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
llama_kv_self_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_self_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_self_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
llama_memory_seq_add(mem, 0, ga_i, n_past, ib*bd);
llama_memory_seq_div(mem, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_memory_seq_add(mem, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
n_past -= bd;

View file

@ -342,7 +342,7 @@ int main(int argc, char ** argv) {
}
if (line == "/clear") {
ctx.n_past = 0;
llama_kv_self_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS
llama_memory_seq_rm(llama_get_memory(ctx.lctx), 0, 1, -1); // keep BOS
LOG("Chat history cleared\n\n");
continue;
}

Binary file not shown.

View file

@ -2006,7 +2006,7 @@ struct server_context {
}
}
if (!llama_kv_self_can_shift(ctx)) {
if (!llama_memory_can_shift(llama_get_memory(ctx))) {
if (params_base.ctx_shift) {
params_base.ctx_shift = false;
SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
@ -2142,7 +2142,8 @@ struct server_context {
// find the slot that has been least recently used
if (ret == nullptr) {
int64_t t_last = ggml_time_us();
int64_t t_last = -1;
for (server_slot & slot : slots) {
// skip the slot if it is not available
if (slot.is_processing()) {
@ -2150,7 +2151,7 @@ struct server_context {
}
// select the current slot if the criteria match
if (slot.t_last_used < t_last) {
if (!ret || slot.t_last_used <= t_last) {
t_last = slot.t_last_used;
ret = &slot;
}
@ -2224,7 +2225,7 @@ struct server_context {
SRV_DBG("%s", "clearing KV cache\n");
// clear the entire KV cache
llama_kv_self_clear(ctx);
llama_memory_clear(llama_get_memory(ctx), true);
clean_kv_cache = false;
}
@ -2910,7 +2911,7 @@ struct server_context {
// Erase token cache
const size_t n_erased = slot->cache_tokens.size();
llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
llama_memory_seq_rm(llama_get_memory(ctx), slot->id, -1, -1);
slot->cache_tokens.clear();
auto res = std::make_unique<server_task_result_slot_erase>();
@ -2985,8 +2986,8 @@ struct server_context {
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.n_past, -n_discard);
// add generated tokens to cache
{
@ -3189,8 +3190,8 @@ struct server_context {
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
for (size_t i = 0; i < n_match; i++) {
slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
@ -3212,7 +3213,7 @@ struct server_context {
}
if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
const auto pos_min = llama_kv_self_seq_pos_min(ctx, slot.id);
const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
if (pos_min == -1) {
SLT_ERR(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min);
GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
@ -3247,9 +3248,9 @@ struct server_context {
}
// keep only the common part
if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1)) {
// could not partially delete (likely using a non-Transformer model)
llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
// there is no common part left
slot.n_past = 0;
@ -3589,7 +3590,7 @@ struct server_context {
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1);
for (size_t i = 0; i < ids.size(); ++i) {
completion_token_output result;

View file

@ -32,7 +32,7 @@ function AppLayout() {
<>
<Sidebar />
<main
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto bg-base-100"
className="drawer-content grow flex flex-col h-screen mx-auto px-4 overflow-auto bg-base-100"
id="main-scroll"
>
<Header />