diff --git a/.gitignore b/.gitignore index 054759157..4da89db48 100644 --- a/.gitignore +++ b/.gitignore @@ -16,6 +16,8 @@ build/ build-em/ build-debug/ build-release/ +build-ci-debug/ +build-ci-release/ build-static/ build-cublas/ build-opencl/ @@ -25,6 +27,10 @@ build-no-accel/ build-sanitize-addr/ build-sanitize-thread/ out/ +tmp/ + +models/* +models-mnt /main /quantize @@ -70,4 +76,4 @@ koboldcpp_openblas_noavx2.dll koboldcpp_clblast.dll koboldcpp_cublas.dll cublas64_11.dll -cublasLt64_11.dll \ No newline at end of file +cublasLt64_11.dll diff --git a/ci/README.md b/ci/README.md new file mode 100644 index 000000000..6c74c8138 --- /dev/null +++ b/ci/README.md @@ -0,0 +1,20 @@ +# CI + +In addition to [Github Actions](https://github.com/ggerganov/llama.cpp/actions) `llama.cpp` uses a custom CI framework: + +https://github.com/ggml-org/ci + +It monitors the `master` branch for new commits and runs the +[ci/run.sh](https://github.com/ggerganov/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us +to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled +to cover various hardware architectures, including GPU and Apple Silicon instances. + +Collaborators can optionally trigger the CI run by adding the `ggml-ci` keyword to their commit message. +Only the branches of this repo are monitored for this keyword. + +It is a good practice, before publishing changes to execute the full CI locally on your machine: + +```bash +mkdir tmp +bash ./ci/run.sh ./tmp/results ./tmp/mnt +``` diff --git a/ci/run.sh b/ci/run.sh new file mode 100644 index 000000000..c823bc467 --- /dev/null +++ b/ci/run.sh @@ -0,0 +1,262 @@ +#/bin/bash + +if [ -z "$2" ]; then + echo "usage: $0 " + exit 1 +fi + +mkdir -p "$1" +mkdir -p "$2" + +OUT=$(realpath "$1") +MNT=$(realpath "$2") + +rm -v $OUT/*.log +rm -v $OUT/*.exit +rm -v $OUT/*.md + +sd=`dirname $0` +cd $sd/../ +SRC=`pwd` + +## helpers + +# download a file if it does not exist or if it is outdated +function gg_wget { + local out=$1 + local url=$2 + + local cwd=`pwd` + + mkdir -p $out + cd $out + + # should not re-download if file is the same + wget -nv -N $url + + cd $cwd +} + +function gg_printf { + printf -- "$@" >> $OUT/README.md +} + +function gg_run { + ci=$1 + + set -o pipefail + set -x + + gg_run_$ci | tee $OUT/$ci.log + cur=$? + echo "$cur" > $OUT/$ci.exit + + set +x + set +o pipefail + + gg_sum_$ci + + ret=$((ret | cur)) +} + +## ci + +# ctest_debug + +function gg_run_ctest_debug { + cd ${SRC} + + rm -rf build-ci-debug && mkdir build-ci-debug && cd build-ci-debug + + set -e + + (time cmake -DCMAKE_BUILD_TYPE=Debug .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log + (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log + + (time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log + + set +e +} + +function gg_sum_ctest_debug { + gg_printf '### %s\n\n' "${ci}" + + gg_printf 'Runs ctest in debug mode\n' + gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" + gg_printf '```\n' + gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)" + gg_printf '```\n' + gg_printf '\n' +} + +# ctest_release + +function gg_run_ctest_release { + cd ${SRC} + + rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release + + set -e + + (time cmake -DCMAKE_BUILD_TYPE=Release .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log + (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log + + if [ -z $GG_BUILD_LOW_PERF ]; then + (time ctest --output-on-failure ) 2>&1 | tee -a $OUT/${ci}-ctest.log + else + (time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log + fi + + set +e +} + +function gg_sum_ctest_release { + gg_printf '### %s\n\n' "${ci}" + + gg_printf 'Runs ctest in release mode\n' + gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" + gg_printf '```\n' + gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)" + gg_printf '```\n' +} + +# open_llama_3b_v2 + +function gg_run_open_llama_3b_v2 { + cd ${SRC} + + gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json + gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model + gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json + gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json + gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin + gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json + + gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip + unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/ + head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw + + path_models="../models-mnt/open-llama/3B-v2" + path_wiki="../models-mnt/wikitext/wikitext-2-raw" + + rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release + + set -e + + (time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log + (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log + + python3 ../convert.py ${path_models} + + model_f16="${path_models}/ggml-model-f16.bin" + model_q8_0="${path_models}/ggml-model-q8_0.bin" + model_q4_0="${path_models}/ggml-model-q4_0.bin" + model_q4_1="${path_models}/ggml-model-q4_1.bin" + model_q5_0="${path_models}/ggml-model-q5_0.bin" + model_q5_1="${path_models}/ggml-model-q5_1.bin" + model_q3_k="${path_models}/ggml-model-q3_k.bin" + model_q4_k="${path_models}/ggml-model-q4_k.bin" + model_q5_k="${path_models}/ggml-model-q5_k.bin" + model_q6_k="${path_models}/ggml-model-q6_k.bin" + + wiki_test_60="${path_wiki}/wiki.test-60.raw" + + ./bin/quantize ${model_f16} ${model_q8_0} q8_0 + ./bin/quantize ${model_f16} ${model_q4_0} q4_0 + ./bin/quantize ${model_f16} ${model_q4_1} q4_1 + ./bin/quantize ${model_f16} ${model_q5_0} q5_0 + ./bin/quantize ${model_f16} ${model_q5_1} q5_1 + ./bin/quantize ${model_f16} ${model_q3_k} q3_k + ./bin/quantize ${model_f16} ${model_q4_k} q4_k + ./bin/quantize ${model_f16} ${model_q5_k} q5_k + ./bin/quantize ${model_f16} ${model_q6_k} q6_k + + (time ./bin/main --model ${model_f16} -s 1234 -n 64 -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/main --model ${model_q8_0} -s 1234 -n 64 -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/main --model ${model_q4_0} -s 1234 -n 64 -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/main --model ${model_q4_1} -s 1234 -n 64 -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/main --model ${model_q5_0} -s 1234 -n 64 -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/main --model ${model_q5_1} -s 1234 -n 64 -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/main --model ${model_q3_k} -s 1234 -n 64 -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/main --model ${model_q4_k} -s 1234 -n 64 -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/main --model ${model_q5_k} -s 1234 -n 64 -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/main --model ${model_q6_k} -s 1234 -n 64 -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + + (time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + + function check_ppl { + qnt="$1" + ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1) + + if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then + printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl" + return 20 + fi + + printf ' - %s @ %s OK\n' "$qnt" "$ppl" + return 0 + } + + check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log + + set +e +} + +function gg_sum_open_llama_3b_v2 { + gg_printf '### %s\n\n' "${ci}" + + gg_printf 'OpenLLaMA 3B-v2:\n' + gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" + gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)" + gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)" + gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)" + gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)" + gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)" + gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)" + gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)" + gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)" + gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)" + gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)" + gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)" +} + +## main + +if [ -z $GG_BUILD_LOW_PERF ]; then + rm -rf ${SRC}/models-mnt + + mnt_models=$(realpath ${MNT}/models) + mkdir -p ${mnt_models} + ln -sfn ${mnt_models} ${SRC}/models-mnt + + python3 -m pip install -r ${SRC}/requirements.txt +fi + +ret=0 + +#test $ret -eq 0 && gg_run ctest_debug +#test $ret -eq 0 && gg_run ctest_release + +if [ -z $GG_BUILD_LOW_PERF ]; then + test $ret -eq 0 && gg_run open_llama_3b_v2 +fi + +exit $ret diff --git a/examples/common.cpp b/examples/common.cpp index 94875b054..fd6dbc0e3 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -168,6 +168,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { break; } params.n_ctx = std::stoi(argv[i]); + } else if (arg == "--rope-freq-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.rope_freq_base = std::stof(argv[i]); + } else if (arg == "--rope-freq-scale") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.rope_freq_scale = std::stof(argv[i]); } else if (arg == "--memory-f32") { params.memory_f16 = false; } else if (arg == "--top-p") { @@ -267,6 +279,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { break; } params.n_keep = std::stoi(argv[i]); + } else if (arg == "--chunks") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_chunks = std::stoi(argv[i]); } else if (arg == "-m" || arg == "--model") { if (++i >= argc) { invalid_param = true; @@ -493,6 +511,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { fprintf(stderr, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale); fprintf(stderr, " --cfg-smooth-factor N smooth factor between old and new logits (default: %f, 1.0 = no smoothing)\n", params.cfg_smooth_factor); fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); + fprintf(stderr, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base); + fprintf(stderr, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale); fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); fprintf(stderr, " --no-penalize-nl do not penalize newline token\n"); fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); @@ -501,6 +521,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stderr, " --perplexity compute perplexity over the prompt\n"); fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); + fprintf(stderr, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); if (llama_mlock_supported()) { fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n"); } @@ -573,6 +594,8 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param lparams.use_mlock = params.use_mlock; lparams.logits_all = params.perplexity; lparams.embedding = params.embedding; + lparams.rope_freq_base = params.rope_freq_base; + lparams.rope_freq_scale = params.rope_freq_scale; return lparams; } diff --git a/examples/common.h b/examples/common.h index 6315df961..037a4eecb 100644 --- a/examples/common.h +++ b/examples/common.h @@ -28,10 +28,13 @@ struct gpt_params { int32_t n_ctx = 512; // context size int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) int32_t n_gpu_layers = 0; // number of layers to store in VRAM int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. + float rope_freq_base = 10000.0f; // RoPE base frequency + float rope_freq_scale = 1.0f; // RoPE frequency scaling factor // sampling parameters std::unordered_map logit_bias; // logit bias for specific tokens diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 2248c2458..bcbcf12b0 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -84,9 +84,17 @@ int main(int argc, char ** argv) { return 0; } + if (params.rope_freq_base != 10000.0) { + fprintf(stderr, "%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base); + } + + if (params.rope_freq_scale != 1.0) { + fprintf(stderr, "%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale); + } + if (params.n_ctx > 2048) { - fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);" - "expect poor results\n", __func__, params.n_ctx); + fprintf(stderr, "%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified);" + " you are on your own\n", __func__, params.n_ctx); } else if (params.n_ctx < 8) { fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__); params.n_ctx = 8; diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 7e120ff12..bfad99939 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -32,13 +32,15 @@ void perplexity(llama_context * ctx, const gpt_params & params) { // BOS tokens will be added for each chunk before eval auto tokens = ::llama_tokenize(ctx, params.prompt, true); - int count = 0; + const int n_chunk_max = tokens.size() / params.n_ctx; - const int n_chunk = tokens.size() / params.n_ctx; + const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_n_vocab(ctx); const int n_batch = params.n_batch; + int count = 0; double nll = 0.0; + fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); for (int i = 0; i < n_chunk; ++i) { diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index fcf960a50..0d5b906fb 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -12,103 +12,27 @@ struct quant_option { }; static const std::vector QUANT_OPTIONS = { - { - "Q4_0", - LLAMA_FTYPE_MOSTLY_Q4_0, - " 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M", - }, - { - "Q4_1", - LLAMA_FTYPE_MOSTLY_Q4_1, - " 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L", - }, - { - "Q5_0", - LLAMA_FTYPE_MOSTLY_Q5_0, - " 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M", - }, - { - "Q5_1", - LLAMA_FTYPE_MOSTLY_Q5_1, - " 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M", - }, + { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.50G, +0.2499 ppl @ 7B", }, + { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1846 ppl @ 7B", }, + { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.30G, +0.0796 ppl @ 7B", }, + { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0415 ppl @ 7B", }, #ifdef GGML_USE_K_QUANTS - { - "Q2_K", - LLAMA_FTYPE_MOSTLY_Q2_K, - " 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended", - }, - { - "Q3_K", - LLAMA_FTYPE_MOSTLY_Q3_K_M, - "alias for Q3_K_M" - }, - { - "Q3_K_S", - LLAMA_FTYPE_MOSTLY_Q3_K_S, - " 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss", - }, - { - "Q3_K_M", - LLAMA_FTYPE_MOSTLY_Q3_K_M, - " 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss", - }, - { - "Q3_K_L", - LLAMA_FTYPE_MOSTLY_Q3_K_L, - " 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss", - }, - { - "Q4_K", - LLAMA_FTYPE_MOSTLY_Q4_K_M, - "alias for Q4_K_M", - }, - { - "Q4_K_S", - LLAMA_FTYPE_MOSTLY_Q4_K_S, - " 3.56G, +0.1149 ppl @ 7B - small, significant quality loss", - }, - { - "Q4_K_M", - LLAMA_FTYPE_MOSTLY_Q4_K_M, - " 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*", - }, - { - "Q5_K", - LLAMA_FTYPE_MOSTLY_Q5_K_M, - "alias for Q5_K_M", - }, - { - "Q5_K_S", - LLAMA_FTYPE_MOSTLY_Q5_K_S, - " 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*", - }, - { - "Q5_K_M", - LLAMA_FTYPE_MOSTLY_Q5_K_M, - " 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*", - }, - { - "Q6_K", - LLAMA_FTYPE_MOSTLY_Q6_K, - " 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss", - }, + { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.67G, +0.8698 ppl @ 7B", }, + { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, + { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5505 ppl @ 7B", }, + { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.06G, +0.2437 ppl @ 7B", }, + { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1803 ppl @ 7B", }, + { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", }, + { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.56G, +0.1149 ppl @ 7B", }, + { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0535 ppl @ 7B", }, + { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", }, + { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0353 ppl @ 7B", }, + { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0142 ppl @ 7B", }, + { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0044 ppl @ 7B", }, #endif - { - "Q8_0", - LLAMA_FTYPE_MOSTLY_Q8_0, - " 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended", - }, - { - "F16", - LLAMA_FTYPE_MOSTLY_F16, - "13.00G @ 7B - extremely large, virtually no quality loss - not recommended", - }, - { - "F32", - LLAMA_FTYPE_ALL_F32, - "26.00G @ 7B - absolutely huge, lossless - not recommended", - }, + { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ 7B", }, + { "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", }, + { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", }, }; diff --git a/examples/server/README.md b/examples/server/README.md index ad9b6bb08..e5ca8269b 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -66,6 +66,7 @@ Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the ```sh curl --request POST \ --url http://localhost:8080/completion \ + --header "Content-Type: application/json" \ --data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}' ``` diff --git a/examples/server/chat.sh b/examples/server/chat.sh index a89f8e908..014360121 100644 --- a/examples/server/chat.sh +++ b/examples/server/chat.sh @@ -32,6 +32,7 @@ tokenize() { --silent \ --request POST \ --url "${API_URL}/tokenize" \ + --header "Content-Type: application/json" \ --data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \ | jq '.tokens[]' } @@ -64,6 +65,7 @@ chat_completion() { --no-buffer \ --request POST \ --url "${API_URL}/completion" \ + --header "Content-Type: application/json" \ --data-raw "${DATA}") printf "\n" diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 296c5d646..f442f2b56 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -608,6 +608,8 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms, fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); + fprintf(stderr, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base); + fprintf(stderr, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale); fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n"); @@ -722,6 +724,22 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, } params.n_ctx = std::stoi(argv[i]); } + else if (arg == "--rope-freq-base") + { + if (++i >= argc) { + invalid_param = true; + break; + } + params.rope_freq_base = std::stof(argv[i]); + } + else if (arg == "--rope-freq-scale") + { + if (++i >= argc) { + invalid_param = true; + break; + } + params.rope_freq_scale = std::stof(argv[i]); + } else if (arg == "--memory-f32" || arg == "--memory_f32") { params.memory_f16 = false; diff --git a/expose.h b/expose.h index 2e88946d7..b7814a6ce 100644 --- a/expose.h +++ b/expose.h @@ -36,7 +36,8 @@ struct load_model_inputs const int debugmode = 0; const int forceversion = 0; const int gpulayers = 0; - const bool linear_rope; + const float rope_freq_scale = 1.0f; + const float rope_freq_base = 10000.0f; const char * banned_tokens[ban_token_max]; }; struct generation_inputs diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 3cf9e29e0..923d10f76 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -2977,10 +2977,8 @@ inline void ggml_cuda_op_rope( const int mode = ((int32_t *) src1->data)[2]; const int n_ctx = ((int32_t *) src1->data)[3]; - const float theta_scale = get_theta_scale(n_dims,n_past,n_ctx); - const float p0 = ((mode & 1) == 0 ? n_past + i02 : i02); - - const float p = get_ntk_rope_scale_mode()?p0:(n_ctx <= GGML_TRAINING_CTX ? p0 : p0 * GGML_TRAINING_CTX / n_ctx); + const float theta_scale = powf(10000.0, -2.0f/n_dims); + const float p = ((mode & 1) == 0 ? n_past + i02 : i02); bool is_glm = mode & 4; @@ -3564,6 +3562,11 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens (void) dst; } +void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_cpy(src0, dst, nullptr); + (void) src1; +} + void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true); @@ -3697,7 +3700,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo // recursively assign CUDA buffers until a compute tensor is found if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) { const ggml_op src0_op = tensor->src[0]->op; - if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW) { + if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) { ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace); } } @@ -3803,6 +3806,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU); switch (tensor->op) { + case GGML_OP_DUP: + if (!any_on_device) { + return false; + } + func = ggml_cuda_dup; + break; case GGML_OP_ADD: if (!any_on_device) { return false; @@ -3857,6 +3866,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ } func = ggml_cuda_cpy; break; + case GGML_OP_CONT: + if (!any_on_device) { + return false; + } + func = ggml_cuda_dup; + break; case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: diff --git a/ggml-metal.m b/ggml-metal.m index c795ee227..ee205bcdf 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -881,28 +881,35 @@ void ggml_metal_graph_compute( const int n_past = ((int32_t *)(src1->data))[0]; + float freq_base; + float freq_scale; + memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float)); + memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float)); + [encoder setComputePipelineState:ctx->pipeline_rope]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; - [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; - [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&n_past length:sizeof( int) atIndex:18]; - [encoder setBytes:&n_dims length:sizeof( int) atIndex:19]; - [encoder setBytes:&mode length:sizeof( int) atIndex:20]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&n_past length:sizeof( int) atIndex:18]; + [encoder setBytes:&n_dims length:sizeof( int) atIndex:19]; + [encoder setBytes:&mode length:sizeof( int) atIndex:20]; + [encoder setBytes:&freq_base length:sizeof(float) atIndex:21]; + [encoder setBytes:&freq_scale length:sizeof(float) atIndex:22]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; diff --git a/ggml-metal.metal b/ggml-metal.metal index f094a1d40..9f9a4fbd7 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -656,17 +656,19 @@ kernel void kernel_rope( constant int & n_past, constant int & n_dims, constant int & mode, + constant float & freq_base, + constant float & freq_scale, uint3 tpig[[thread_position_in_grid]]) { const int64_t i3 = tpig[2]; const int64_t i2 = tpig[1]; const int64_t i1 = tpig[0]; const bool is_neox = mode & 2; - const float theta_scale = pow(10000.0, -2.0f/n_dims); + const float theta_scale = pow(freq_base, -2.0f/n_dims); const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); - float theta = (float)p; + float theta = freq_scale * (float)p; if (!is_neox) { for (int64_t i0 = 0; i0 < ne0; i0 += 2) { diff --git a/ggml.c b/ggml.c index a288b778d..436f8806c 100644 --- a/ggml.c +++ b/ggml.c @@ -4292,35 +4292,6 @@ static inline int ggml_up(int n, int m) { #define ggml_assert_aligned(ptr) \ GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0) -static bool useNtkRope = true; //uses linear rope if not NTK -void set_ntk_rope_scale_mode(bool useNtk) -{ - useNtkRope = useNtk; -} -bool get_ntk_rope_scale_mode() -{ - return useNtkRope; -} -float get_theta_scale(int n_dims,int n_past,int n_ctx) -{ - if (!get_ntk_rope_scale_mode()) - { - return powf(10000.0, -2.0f / n_dims); - } - if (n_ctx <= 2048) //normie mode - { - return powf(10000.0, -2.0f / n_dims); - } - else - { - //using scaled NTK aware ctx - float a = (n_ctx <= 4096 ? 4.0 : 8.0); - float m = powf(a, n_dims / (n_dims - 2.0)); - float s = powf(10000.0 * m, -2.0f / n_dims); - return s; - } -} - //////////////////////////////////////////////////////////////////////////////// struct ggml_context * ggml_init(struct ggml_init_params params) { @@ -4442,8 +4413,8 @@ void ggml_free(struct ggml_context * ctx) { if (&g_state.contexts[i].context == ctx) { g_state.contexts[i].used = false; - GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n", - __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size); + GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n", + __func__, i, ggml_used_mem(ctx)); if (ctx->mem_buffer_owned) { GGML_ALIGNED_FREE(ctx->mem_buffer); @@ -6986,6 +6957,8 @@ struct ggml_tensor * ggml_rope_impl( int n_past, int n_dims, int mode, + float freq_base, + float freq_scale, int n_ctx, bool inplace) { GGML_ASSERT(n_past >= 0); @@ -6999,12 +6972,14 @@ struct ggml_tensor * ggml_rope_impl( ggml_scratch_save(ctx); - struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4); + struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6); ((int32_t *) b->data)[0] = n_past; ((int32_t *) b->data)[1] = n_dims; ((int32_t *) b->data)[2] = mode; ((int32_t *) b->data)[3] = n_ctx; + memcpy((int32_t *) b->data + 4, &freq_base, sizeof(float)); + memcpy((int32_t *) b->data + 5, &freq_scale, sizeof(float)); ggml_scratch_load(ctx); @@ -7023,7 +6998,7 @@ struct ggml_tensor * ggml_rope( int n_dims, int mode, int n_ctx) { - return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false); + return ggml_rope_impl(ctx, a, n_past, n_dims, mode, 10000.0f, 1.0f, n_ctx, false); } struct ggml_tensor * ggml_rope_inplace( @@ -7033,7 +7008,19 @@ struct ggml_tensor * ggml_rope_inplace( int n_dims, int mode, int n_ctx) { - return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true); + return ggml_rope_impl(ctx, a, n_past, n_dims, mode, 10000.0f, 1.0f, n_ctx, true); +} + +struct ggml_tensor * ggml_rope_custom_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode, + float freq_base, + float freq_scale, + int n_ctx) { + return ggml_rope_impl(ctx, a, n_past, n_dims, mode, freq_base, freq_scale, n_ctx, true); } // ggml_rope_back @@ -12104,16 +12091,21 @@ static void ggml_compute_forward_rope_f32( const struct ggml_tensor * src1, struct ggml_tensor * dst) { GGML_ASSERT(src1->type == GGML_TYPE_I32); - GGML_ASSERT(ggml_nelements(src1) == 4); + GGML_ASSERT(ggml_nelements(src1) == 6); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } + float freq_base; + float freq_scale; + const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; const int n_ctx = ((int32_t *) src1->data)[3]; + memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float)); + memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float)); assert(n_past >= 0); @@ -12142,7 +12134,7 @@ static void ggml_compute_forward_rope_f32( // row index used to determine which thread to use int ir = 0; - const float theta_scale = get_theta_scale(n_dims,n_past,n_ctx); + const float theta_scale = powf(freq_base, -2.0f/n_dims); const bool is_neox = mode & 2; const bool is_glm = mode & 4; @@ -12154,7 +12146,7 @@ static void ggml_compute_forward_rope_f32( if (ir++ < ir0) continue; if (ir > ir1) break; - float theta = (float)p; + float theta = freq_scale * (float)p; if (is_glm) { theta = MIN(p, n_ctx - 2); @@ -12182,9 +12174,6 @@ static void ggml_compute_forward_rope_f32( dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta; } } else if (!is_neox) { - if (!get_ntk_rope_scale_mode() && n_ctx > GGML_TRAINING_CTX) { - theta = theta * GGML_TRAINING_CTX / n_ctx; - } for (int64_t i0 = 0; i0 < ne0; i0 += 2) { const float cos_theta = cosf(theta); const float sin_theta = sinf(theta); @@ -12234,16 +12223,21 @@ static void ggml_compute_forward_rope_f16( const struct ggml_tensor * src1, struct ggml_tensor * dst) { GGML_ASSERT(src1->type == GGML_TYPE_I32); - GGML_ASSERT(ggml_nelements(src1) == 4); + GGML_ASSERT(ggml_nelements(src1) == 6); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } + float freq_base; + float freq_scale; + const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; const int n_ctx = ((int32_t *) src1->data)[3]; + memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float)); + memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float)); assert(n_past >= 0); @@ -12272,7 +12266,7 @@ static void ggml_compute_forward_rope_f16( // row index used to determine which thread to use int ir = 0; - const float theta_scale = get_theta_scale(n_dims,n_past,n_ctx); + const float theta_scale = powf(freq_base, -2.0f/n_dims); const bool is_neox = mode & 2; const bool is_glm = mode & 4; @@ -12284,7 +12278,7 @@ static void ggml_compute_forward_rope_f16( if (ir++ < ir0) continue; if (ir > ir1) break; - float theta = (float)p; + float theta = freq_scale * (float)p; if (is_glm) { theta = MIN(p, n_ctx - 2); @@ -12312,9 +12306,6 @@ static void ggml_compute_forward_rope_f16( dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta); } } if (!is_neox) { - if (!get_ntk_rope_scale_mode() && n_ctx > GGML_TRAINING_CTX) { - theta = theta * GGML_TRAINING_CTX / n_ctx; - } for (int64_t i0 = 0; i0 < ne0; i0 += 2) { const float cos_theta = cosf(theta); const float sin_theta = sinf(theta); @@ -12348,7 +12339,7 @@ static void ggml_compute_forward_rope_f16( const float x0 = GGML_FP16_TO_FP32(src[0]); const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]); - dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); + dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); } } @@ -12400,7 +12391,6 @@ static void ggml_compute_forward_rope_back_f32( const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; - const int n_ctx = ((int32_t *) src1->data)[3]; assert(n_past >= 0); @@ -12426,7 +12416,7 @@ static void ggml_compute_forward_rope_back_f32( // row index used to determine which thread to use int ir = 0; - const float theta_scale = get_theta_scale(n_dims,n_past,n_ctx); + const float theta_scale = powf(10000.0, -2.0f/n_dims); const bool is_neox = mode & 2; @@ -12440,9 +12430,6 @@ static void ggml_compute_forward_rope_back_f32( float theta = (float)p; if (!is_neox) { - if (!get_ntk_rope_scale_mode() && n_ctx > GGML_TRAINING_CTX) { - theta = theta * GGML_TRAINING_CTX / n_ctx; - } for (int64_t i0 = 0; i0 < ne0; i0 += 2) { const float cos_theta = cosf(theta); const float sin_theta = sinf(theta); @@ -12503,7 +12490,6 @@ static void ggml_compute_forward_rope_back_f16( const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; - const int n_ctx = ((int32_t *) src1->data)[3]; assert(n_past >= 0); @@ -12529,7 +12515,7 @@ static void ggml_compute_forward_rope_back_f16( // row index used to determine which thread to use int ir = 0; - const float theta_scale = get_theta_scale(n_dims,n_past,n_ctx); + const float theta_scale = powf(10000.0, -2.0f/n_dims); const bool is_neox = mode & 2; @@ -12543,9 +12529,6 @@ static void ggml_compute_forward_rope_back_f16( float theta = (float)p; if (!is_neox) { - if (!get_ntk_rope_scale_mode() && n_ctx > GGML_TRAINING_CTX) { - theta = theta * GGML_TRAINING_CTX / n_ctx; - } for (int64_t i0 = 0; i0 < ne0; i0 += 2) { const float cos_theta = cosf(theta); const float sin_theta = sinf(theta); @@ -15754,7 +15737,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { assert(src1->type == GGML_TYPE_I32); - assert(ggml_nelements(src1) == 4); + assert(ggml_nelements(src1) == 6); const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; @@ -15775,7 +15758,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { if (src0->grad) { assert(src1->type == GGML_TYPE_I32); - assert(ggml_nelements(src1) == 4); + assert(ggml_nelements(src1) == 3); const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; @@ -16335,8 +16318,8 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { if (GGML_OP_HAS_FINALIZE[node->op]) { params.nth = n_tasks_arr[node_n]; ggml_compute_forward(¶ms, node); - ggml_graph_compute_perf_stats_node(node, state->shared); } + ggml_graph_compute_perf_stats_node(node, state->shared); } // distribute new work or execute it direct if 1T @@ -16366,8 +16349,9 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { if (GGML_OP_HAS_FINALIZE[node->op]) { params.type = GGML_TASK_FINALIZE; ggml_compute_forward(¶ms, node); - ggml_graph_compute_perf_stats_node(node, state->shared); } + + ggml_graph_compute_perf_stats_node(node, state->shared); } else { break; } @@ -16909,9 +16893,6 @@ static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char } void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) { - //assert(cgraph->work == NULL); - //assert(cgraph->work_size == 0); - uint64_t size_eval = 0; // compute size of intermediate results @@ -17350,9 +17331,6 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) { GGML_PRINT("=== GRAPH ===\n"); - GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads); - GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size); - GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes); for (int i = 0; i < cgraph->n_nodes; i++) { struct ggml_tensor * node = cgraph->nodes[i]; @@ -18708,4 +18686,4 @@ int ggml_cpu_has_vsx(void) { #endif } -//////////////////////////////////////////////////////////////////////////////// \ No newline at end of file +//////////////////////////////////////////////////////////////////////////////// diff --git a/ggml.h b/ggml.h index 999ab2778..524c8c22c 100644 --- a/ggml.h +++ b/ggml.h @@ -207,12 +207,6 @@ #define GGML_UNUSED(x) (void)(x) -// Maximum training context of the model in use -// For the LLaMA models this is normally 2048, but somehow "stepping out" by 128 gives better results (tested at 7B and 13B) -#ifndef GGML_TRAINING_CTX -#define GGML_TRAINING_CTX 2048 -#endif - #define GGML_ASSERT(x) \ do { \ if (!(x)) { \ @@ -551,10 +545,6 @@ extern "C" { // use this to compute the memory overhead of a tensor GGML_API size_t ggml_tensor_overhead(void); - GGML_API void set_ntk_rope_scale_mode(bool useNtk); - GGML_API bool get_ntk_rope_scale_mode(); - GGML_API float get_theta_scale(int n_dims,int n_past,int n_ctx); - // main GGML_API struct ggml_context * ggml_init(struct ggml_init_params params); @@ -1130,6 +1120,17 @@ extern "C" { int mode, int n_ctx); + // custom RoPE, in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_rope_custom_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode, + float freq_base, + float freq_scale, + int n_ctx); + // rotary position embedding backward, i.e compute dx from dy // a - dy GGML_API struct ggml_tensor * ggml_rope_back( diff --git a/gpttype_adapter.cpp b/gpttype_adapter.cpp index 121b70b97..e304f81ca 100644 --- a/gpttype_adapter.cpp +++ b/gpttype_adapter.cpp @@ -348,12 +348,32 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in = gpt2_ctx_v1.hparams.n_ctx = gpt2_ctx_v2.hparams.n_ctx = gpt2_ctx_v3.hparams.n_ctx = mpt_ctx_v3.hparams.n_ctx = params.n_ctx; - //handle linear rope - if(inputs.linear_rope) + //determine rope scaling params + float rope_freq_scale = 1.0f; + float rope_freq_base = 10000.0f; + if(inputs.rope_freq_scale>0.0f) { - printf("Using Linear RoPE scaling instead of NTK-Aware scaling.\n"); + rope_freq_scale = inputs.rope_freq_scale; + rope_freq_base = inputs.rope_freq_base; + printf("Using Custom RoPE scaling (scale:%.3f, base:%.1f).\n",rope_freq_scale,rope_freq_base); } - set_ntk_rope_scale_mode(!inputs.linear_rope); + else + { + rope_freq_scale = 1.0f; + if (params.n_ctx <= 2048) //normie mode + { + rope_freq_base = 10000.0f; + } + else + { + //approximate NTK aware ctx + rope_freq_base = (params.n_ctx <= 4096 ? 40880.0f : 82684.0f); + } + + printf("Using automatic RoPE scaling (scale:%.3f, base:%.1f)\n",rope_freq_scale,rope_freq_base); + } + gptj_ctx_v3.hparams.rope_freq_scale = neox_ctx_v3.hparams.rope_freq_scale = rope_freq_scale; + gptj_ctx_v3.hparams.rope_freq_base = neox_ctx_v3.hparams.rope_freq_base = rope_freq_base; //handle custom token bans banned_tokens.clear(); @@ -444,6 +464,8 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in llama_ctx_params.use_mlock = inputs.use_mlock; llama_ctx_params.n_gpu_layers = inputs.gpulayers; llama_ctx_params.main_gpu = cu_parseinfo_maindevice; + llama_ctx_params.rope_freq_base = rope_freq_base; + llama_ctx_params.rope_freq_scale = rope_freq_scale; llama_ctx_v3 = llama_init_from_file(modelname.c_str(), llama_ctx_params); diff --git a/koboldcpp.py b/koboldcpp.py index 1c55fd302..926be06b6 100755 --- a/koboldcpp.py +++ b/koboldcpp.py @@ -36,7 +36,8 @@ class load_model_inputs(ctypes.Structure): ("debugmode", ctypes.c_int), ("forceversion", ctypes.c_int), ("gpulayers", ctypes.c_int), - ("linear_rope", ctypes.c_bool), + ("rope_freq_scale", ctypes.c_float), + ("rope_freq_base", ctypes.c_float), ("banned_tokens", ctypes.c_char_p * ban_token_max)] class generation_inputs(ctypes.Structure): @@ -189,7 +190,11 @@ def load_model(model_filename): inputs.blasbatchsize = args.blasbatchsize inputs.forceversion = args.forceversion inputs.gpulayers = args.gpulayers - inputs.linear_rope = args.linearrope + inputs.rope_freq_scale = args.ropeconfig[0] + if len(args.ropeconfig)>1: + inputs.rope_freq_base = args.ropeconfig[1] + else: + inputs.rope_freq_base = 10000 clblastids = 0 if args.useclblast: clblastids = 100 + int(args.useclblast[0])*10 + int(args.useclblast[1]) @@ -1434,7 +1439,7 @@ if __name__ == '__main__': parser.add_argument("--highpriority", help="Experimental flag. If set, increases the process CPU priority, potentially speeding up generation. Use caution.", action='store_true') parser.add_argument("--contextsize", help="Controls the memory allocated for maximum context size, only change if you need more RAM for big contexts. (default 2048)", type=int,choices=[512,1024,2048,3072,4096,6144,8192], default=2048) parser.add_argument("--blasbatchsize", help="Sets the batch size used in BLAS processing (default 512). Setting it to -1 disables BLAS mode, but keeps other benefits like GPU offload.", type=int,choices=[-1,32,64,128,256,512,1024], default=512) - parser.add_argument("--linearrope", help="If set, uses linear RoPE scaling. Otherwise, uses NTK-Aware scaling.", action='store_true') + parser.add_argument("--ropeconfig", help="If set, uses customized RoPE scaling from configured frequency scale and frequency base (e.g. --ropeconfig 0.25 10000). Otherwise, uses NTK-Aware scaling set automatically based on context size. For linear rope, simply set the freq-scale and ignore the freq-base",metavar=('[rope-freq-scale]', '[rope-freq-base]'), default=[0.0, 10000.0], type=float, nargs='+') parser.add_argument("--stream", help="Uses streaming when generating tokens. Only for the Kobold Lite UI.", action='store_true') parser.add_argument("--smartcontext", help="Reserving a portion of context to try processing less frequently.", action='store_true') parser.add_argument("--unbantokens", help="Normally, KoboldAI prevents the EOS token from being generated. This flag unbans it.", action='store_true') diff --git a/llama.cpp b/llama.cpp index d60f5a339..9984c0e09 100644 --- a/llama.cpp +++ b/llama.cpp @@ -102,14 +102,15 @@ static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * // memory sizes // -static const std::map & MEM_REQ_SCRATCH0() +static const std::map & MEM_REQ_SCRATCH0(int n_ctx) { static std::map k_sizes = { - { MODEL_3B, 256ull * MB }, - { MODEL_7B, 512ull * MB }, - { MODEL_13B, 512ull * MB }, - { MODEL_30B, 640ull * MB }, - { MODEL_65B, 1024ull * MB }, + /* empirical scaling, still a guess */ + { MODEL_3B, ((size_t) n_ctx / 16ull + 180ull) * MB }, + { MODEL_7B, ((size_t) n_ctx / 16ull + 320ull) * MB }, + { MODEL_13B, ((size_t) n_ctx / 12ull + 460ull) * MB }, + { MODEL_30B, ((size_t) n_ctx / 10ull + 620ull) * MB }, + { MODEL_65B, ((size_t) n_ctx / 8ull + 860ull) * MB }, }; return k_sizes; } @@ -141,14 +142,14 @@ static const std::map & MEM_REQ_KV_SELF() // this is mostly needed for temporary mul_mat buffers to dequantize the data // not actually needed if BLAS is disabled -static const std::map & MEM_REQ_EVAL() +static const std::map & MEM_REQ_EVAL(int n_ctx) { static std::map k_sizes = { - { MODEL_3B, 512ull * MB }, - { MODEL_7B, 800ull * MB }, - { MODEL_13B, 1024ull * MB }, - { MODEL_30B, 1380ull * MB }, - { MODEL_65B, 1536ull * MB }, + { MODEL_3B, ((size_t) n_ctx / 256ull + 512ull) * MB }, + { MODEL_7B, ((size_t) n_ctx / 256ull + 800ull) * MB }, + { MODEL_13B, ((size_t) n_ctx / 256ull + 1024ull) * MB }, + { MODEL_30B, ((size_t) n_ctx / 256ull + 1380ull) * MB }, + { MODEL_65B, ((size_t) n_ctx / 256ull + 1536ull) * MB }, }; return k_sizes; } @@ -190,6 +191,10 @@ struct llama_hparams { uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; + + float rope_freq_base = 10000.0f; + float rope_freq_scale = 1.0f; + enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; bool operator!=(const llama_hparams & other) const { @@ -648,7 +653,7 @@ struct llama_model_loader { *ctx_size_p = *mmapped_size_p = 0; for (const llama_load_tensor & lt : tensors_map.tensors) { *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE; - *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size; + *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size + 16; } } @@ -844,6 +849,8 @@ struct llama_context_params llama_context_default_params() { /*.gpu_layers =*/ 0, /*.main_gpu =*/ 0, /*.tensor_split =*/ {0}, + /*.rope_freq_base =*/ 10000.0f, + /*.rope_freq_scale =*/ 1.0f, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, /*.low_vram =*/ false, @@ -967,6 +974,8 @@ static void llama_model_load_internal( int n_gpu_layers, int main_gpu, const float * tensor_split, + float rope_freq_base, + float rope_freq_scale, bool low_vram, ggml_type memory_type, bool use_mmap, @@ -1001,22 +1010,27 @@ static void llama_model_load_internal( } hparams.n_ctx = n_ctx; + + hparams.rope_freq_base = rope_freq_base; + hparams.rope_freq_scale = rope_freq_scale; } const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; { - fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version)); - fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab); - fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx); - fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd); - fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult); - fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); - fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); - fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); + fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version)); + fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab); + fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx); + fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd); + fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult); + fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); + fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); + fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); + fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base); + fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale); fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); - fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); - fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); + fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); + fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); } if (file_version < LLAMA_FILE_VERSION_GGJT_V2) { @@ -1162,13 +1176,12 @@ static void llama_model_load_internal( const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1; // this is the total memory required to run the inference - const size_t bigctxmul = (hparams.n_ctx>4096?3:(hparams.n_ctx>2048?2:1)); const size_t mem_required = ctx_size + mmapped_size - vram_weights + // weights in VRAM not in memory - MEM_REQ_SCRATCH0().at(model.type)*bigctxmul + - MEM_REQ_SCRATCH1().at(model.type)*bigctxmul + - MEM_REQ_EVAL().at (model.type); + MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) + + MEM_REQ_SCRATCH1().at(model.type) + + MEM_REQ_EVAL(hparams.n_ctx).at(model.type); // this is the memory required by one llama_state const size_t mem_required_state = @@ -1272,6 +1285,8 @@ static bool llama_model_load( int n_gpu_layers, int main_gpu, float * tensor_split, + float rope_freq_base, + float rope_freq_scale, bool low_vram, ggml_type memory_type, bool use_mmap, @@ -1280,7 +1295,7 @@ static bool llama_model_load( llama_progress_callback progress_callback, void *progress_callback_user_data) { try { - llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type, + llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type, use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); return true; } catch (const std::exception & err) { @@ -1332,6 +1347,9 @@ static bool llama_eval_internal( const int n_rot = hparams.n_embd/hparams.n_head; const int n_gpu_layers = model.n_gpu_layers; + const float freq_base = hparams.rope_freq_base; + const float freq_scale = hparams.rope_freq_scale; + auto & mem_per_token = lctx.mem_per_token; auto & buf_compute = lctx.buf_compute; @@ -1429,11 +1447,11 @@ static bool llama_eval_internal( offload_func_kq(tmpq); ggml_set_name(tmpq, "tmpq"); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, n_ctx); + struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0); offload_func_kq(Kcur); ggml_set_name(Kcur, "Kcur"); - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, n_ctx); + struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0); offload_func_kq(Qcur); ggml_set_name(Qcur, "Qcur"); @@ -2007,9 +2025,18 @@ void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * } // Normalize the second derivatives - float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); - for (float & value : second_derivatives) { - value /= second_derivatives_sum; + { + const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); + + if (second_derivatives_sum > 1e-6f) { + for (float & value : second_derivatives) { + value /= second_derivatives_sum; + } + } else { + for (float & value : second_derivatives) { + value = 1.0f / second_derivatives.size(); + } + } } float cum_sum = 0.0f; @@ -2188,7 +2215,7 @@ void llama_sample_classifier_free_guidance( struct llama_context * guidance_ctx, float scale, float smooth_factor) { - int64_t t_start_sample_us = t_start_sample_us = ggml_time_us(); + int64_t t_start_sample_us = ggml_time_us(); assert(ctx); auto n_vocab = llama_n_vocab(ctx); @@ -2676,8 +2703,9 @@ struct llama_model * llama_load_model_from_file( ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers, - params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock, - params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { + params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram, + memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, + params.progress_callback_user_data)) { delete model; fprintf(stderr, "%s: failed to load model\n", __func__); return nullptr; @@ -2752,11 +2780,10 @@ struct llama_context * llama_new_context_with_model( ctx->embedding.resize(hparams.n_embd); } - ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type)); + ctx->buf_compute.resize(MEM_REQ_EVAL(hparams.n_ctx).at(ctx->model.type)); - const size_t bigctxmul = (hparams.n_ctx>4096?3:(hparams.n_ctx>2048?2:1)); - ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type)*bigctxmul); - ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type)*bigctxmul); + ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type)); + ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type)); } #ifdef GGML_USE_METAL diff --git a/llama.h b/llama.h index e7c60f40c..e744584f2 100644 --- a/llama.h +++ b/llama.h @@ -89,6 +89,11 @@ extern "C" { int32_t n_gpu_layers; // number of layers to store in VRAM int32_t main_gpu; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs + + // ref: https://github.com/ggerganov/llama.cpp/pull/2054 + float rope_freq_base; // RoPE base frequency + float rope_freq_scale; // RoPE frequency scaling factor + // called with a progress value between 0 and 1, pass NULL to disable llama_progress_callback progress_callback; // context pointer passed to the progress callback diff --git a/otherarch/gptj_v3.cpp b/otherarch/gptj_v3.cpp index 46f1ad064..21cf40500 100644 --- a/otherarch/gptj_v3.cpp +++ b/otherarch/gptj_v3.cpp @@ -409,6 +409,9 @@ bool gptj_eval( const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_rot; + const float freq_base = hparams.rope_freq_base; + const float freq_scale = hparams.rope_freq_scale; + static size_t buf_size = 256u*1024*1024; static void * buf = malloc(buf_size); @@ -475,8 +478,8 @@ bool gptj_eval( // self-attention { - struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, n_ctx); - struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, n_ctx); + struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, n_ctx); + struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, n_ctx); // store key and value to memory { diff --git a/otherarch/neox_v3.cpp b/otherarch/neox_v3.cpp index d8ccaa9b6..d9d7225cb 100644 --- a/otherarch/neox_v3.cpp +++ b/otherarch/neox_v3.cpp @@ -425,6 +425,9 @@ bool gpt_neox_eval( const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_rot; + const float freq_base = hparams.rope_freq_base; + const float freq_scale = hparams.rope_freq_scale; + static size_t buf_size = 256u*1024*1024; static void * buf = malloc(buf_size); @@ -503,8 +506,8 @@ bool gpt_neox_eval( struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head)); // using mode = 2 for GPT-NeoX mode - Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2, n_ctx); - Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2, n_ctx); + Qcur = ggml_rope_custom_inplace(ctx0, Qcur, n_past, n_rot, 2, freq_base, freq_scale, n_ctx); + Kcur = ggml_rope_custom_inplace(ctx0, Kcur, n_past, n_rot, 2, freq_base, freq_scale, n_ctx); // store key and value to memory { diff --git a/otherarch/otherarch.h b/otherarch/otherarch.h index 7d396453d..a1ec3bf63 100644 --- a/otherarch/otherarch.h +++ b/otherarch/otherarch.h @@ -24,6 +24,9 @@ struct gptj_hparams { int32_t n_layer = 28; int32_t n_rot = 64; int32_t ftype = 1; + + float rope_freq_base = 10000.0f; + float rope_freq_scale = 1.0f; }; struct gptj_layer { @@ -309,6 +312,9 @@ struct gpt_neox_hparams { int32_t n_rot = 32; // rotary_pct * (n_embd / n_head) int32_t par_res = 1; // 1 = true, 0 = false int32_t ftype = 1; + + float rope_freq_base = 10000.0f; + float rope_freq_scale = 1.0f; }; struct gpt_neox_layer_v2 {