mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 09:34:37 +00:00
Merge branch 'master' into concedo_experimental
# Conflicts: # .devops/nix/scope.nix # .github/workflows/nix-ci-aarch64.yml # .github/workflows/nix-ci.yml # README.md # scripts/sync-ggml.last
This commit is contained in:
commit
359a14d3c2
10 changed files with 251 additions and 72 deletions
|
@ -218,6 +218,8 @@ class Model:
|
||||||
return BertModel
|
return BertModel
|
||||||
if model_architecture == "NomicBertModel":
|
if model_architecture == "NomicBertModel":
|
||||||
return NomicBertModel
|
return NomicBertModel
|
||||||
|
if model_architecture == "GemmaForCausalLM":
|
||||||
|
return GemmaModel
|
||||||
return Model
|
return Model
|
||||||
|
|
||||||
def _is_model_safetensors(self) -> bool:
|
def _is_model_safetensors(self) -> bool:
|
||||||
|
@ -277,6 +279,8 @@ class Model:
|
||||||
return gguf.MODEL_ARCH.BERT
|
return gguf.MODEL_ARCH.BERT
|
||||||
if arch == "NomicBertModel":
|
if arch == "NomicBertModel":
|
||||||
return gguf.MODEL_ARCH.NOMIC_BERT
|
return gguf.MODEL_ARCH.NOMIC_BERT
|
||||||
|
if arch == "GemmaForCausalLM":
|
||||||
|
return gguf.MODEL_ARCH.GEMMA
|
||||||
|
|
||||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||||
|
|
||||||
|
@ -618,11 +622,6 @@ class MPTModel(Model):
|
||||||
|
|
||||||
self.gguf_writer.add_tensor(new_name, data)
|
self.gguf_writer.add_tensor(new_name, data)
|
||||||
|
|
||||||
# note: MPT output is tied to (same as) wte in original model;
|
|
||||||
# for easier implementation in llama.cpp it's duplicated in GGUF, though :/
|
|
||||||
if new_name == "token_embd.weight":
|
|
||||||
self.gguf_writer.add_tensor("output.weight", data)
|
|
||||||
|
|
||||||
|
|
||||||
class OrionModel(Model):
|
class OrionModel(Model):
|
||||||
def set_vocab(self):
|
def set_vocab(self):
|
||||||
|
@ -655,6 +654,8 @@ class OrionModel(Model):
|
||||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||||
self.gguf_writer.add_head_count(head_count)
|
self.gguf_writer.add_head_count(head_count)
|
||||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||||
|
# note: config provides rms norm but it is actually layer norm
|
||||||
|
# ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
|
||||||
self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
|
self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
|
||||||
|
|
||||||
def write_tensors(self):
|
def write_tensors(self):
|
||||||
|
@ -1031,7 +1032,6 @@ class PersimmonModel(Model):
|
||||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
|
||||||
|
|
||||||
def set_vocab(self):
|
def set_vocab(self):
|
||||||
self._set_vocab_sentencepiece()
|
self._set_vocab_sentencepiece()
|
||||||
|
@ -1785,6 +1785,63 @@ class NomicBertModel(BertModel):
|
||||||
yield name, data
|
yield name, data
|
||||||
|
|
||||||
|
|
||||||
|
class GemmaModel(Model):
|
||||||
|
def set_vocab(self):
|
||||||
|
self._set_vocab_sentencepiece()
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
hparams = self.hparams
|
||||||
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
|
self.gguf_writer.add_name(self.dir_model.name)
|
||||||
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||||
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
|
self.gguf_writer.add_block_count(block_count)
|
||||||
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||||
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||||
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
|
||||||
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||||
|
self.gguf_writer.add_key_length(hparams["head_dim"])
|
||||||
|
self.gguf_writer.add_value_length(hparams["head_dim"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
|
def write_tensors(self):
|
||||||
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||||
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||||
|
|
||||||
|
for name, data_torch in self.get_tensors():
|
||||||
|
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
|
||||||
|
if name.endswith("norm.weight"):
|
||||||
|
data_torch = data_torch + 1
|
||||||
|
|
||||||
|
old_dtype = data_torch.dtype
|
||||||
|
|
||||||
|
# convert any unsupported data types to float32
|
||||||
|
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||||
|
data_torch = data_torch.to(torch.float32)
|
||||||
|
|
||||||
|
data = data_torch.squeeze().numpy()
|
||||||
|
|
||||||
|
# map tensor names
|
||||||
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||||
|
if new_name is None:
|
||||||
|
print(f"Can not map tensor {name!r}")
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
data_dtype = data.dtype
|
||||||
|
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
|
||||||
|
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||||
|
|
||||||
|
self.gguf_writer.add_tensor(new_name, data)
|
||||||
|
|
||||||
|
|
||||||
###### CONVERSION LOGIC ######
|
###### CONVERSION LOGIC ######
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -151,7 +151,7 @@ node index.js
|
||||||
|
|
||||||
`temperature`: Adjust the randomness of the generated text (default: 0.8).
|
`temperature`: Adjust the randomness of the generated text (default: 0.8).
|
||||||
|
|
||||||
`dynatemp_range`: Dynamic temperature range (default: 0.0, 0.0 = disabled).
|
`dynatemp_range`: Dynamic temperature range. The final temperature will be in the range of `[temperature - dynatemp_range; temperature + dynatemp_range]` (default: 0.0, 0.0 = disabled).
|
||||||
|
|
||||||
`dynatemp_exponent`: Dynamic temperature exponent (default: 1.0).
|
`dynatemp_exponent`: Dynamic temperature exponent (default: 1.0).
|
||||||
|
|
||||||
|
@ -209,7 +209,7 @@ node index.js
|
||||||
|
|
||||||
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
|
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
|
||||||
|
|
||||||
`cache_prompt`: Save the prompt and generation for avoid reprocess entire prompt if a part of this isn't change (default: false)
|
`cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. (default: false)
|
||||||
|
|
||||||
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||||
|
|
||||||
|
@ -242,7 +242,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||||
|
|
||||||
- `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
|
- `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
|
||||||
- `stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options)
|
- `stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options)
|
||||||
- `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`
|
- `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`. These options may differ from the original ones in some way (e.g. bad values filtered out, strings converted to tokens, etc.).
|
||||||
- `model`: The path to the model loaded with `-m`
|
- `model`: The path to the model loaded with `-m`
|
||||||
- `prompt`: The provided `prompt`
|
- `prompt`: The provided `prompt`
|
||||||
- `stopped_eos`: Indicating whether the completion has stopped because it encountered the EOS token
|
- `stopped_eos`: Indicating whether the completion has stopped because it encountered the EOS token
|
||||||
|
|
|
@ -401,6 +401,16 @@ struct llama_server_context
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void validate_model_chat_template(server_params & sparams) {
|
||||||
|
llama_chat_message chat[] = {{"user", "test"}};
|
||||||
|
std::vector<char> buf(1);
|
||||||
|
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
|
||||||
|
if (res < 0) {
|
||||||
|
LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
|
||||||
|
sparams.chat_template = "<|im_start|>"; // llama_chat_apply_template only checks if <|im_start|> exist in the template
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void initialize() {
|
void initialize() {
|
||||||
// create slots
|
// create slots
|
||||||
all_slots_are_idle = true;
|
all_slots_are_idle = true;
|
||||||
|
@ -1939,6 +1949,10 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||||
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
||||||
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
||||||
|
printf(" -ctk TYPE, --cache-type-k TYPE\n");
|
||||||
|
printf(" KV cache data type for K (default: f16)\n");
|
||||||
|
printf(" -ctv TYPE, --cache-type-v TYPE\n");
|
||||||
|
printf(" KV cache data type for V (default: f16)\n");
|
||||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
||||||
printf(" --log-disable disables logging to a file.\n");
|
printf(" --log-disable disables logging to a file.\n");
|
||||||
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
|
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
|
||||||
|
@ -2377,6 +2391,12 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||||
);
|
);
|
||||||
llama.process_system_prompt_data(json::parse(systm_content));
|
llama.process_system_prompt_data(json::parse(systm_content));
|
||||||
}
|
}
|
||||||
|
else if (arg == "-ctk" || arg == "--cache-type-k") {
|
||||||
|
params.cache_type_k = argv[++i];
|
||||||
|
}
|
||||||
|
else if (arg == "-ctv" || arg == "--cache-type-v") {
|
||||||
|
params.cache_type_v = argv[++i];
|
||||||
|
}
|
||||||
else if(arg == "--mmproj")
|
else if(arg == "--mmproj")
|
||||||
{
|
{
|
||||||
if (++i >= argc)
|
if (++i >= argc)
|
||||||
|
@ -2753,6 +2773,11 @@ int main(int argc, char **argv)
|
||||||
LOG_INFO("model loaded", {});
|
LOG_INFO("model loaded", {});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (sparams.chat_template.empty()) { // custom chat template is not supplied
|
||||||
|
// check if the template comes with the model is supported by us
|
||||||
|
llama.validate_model_chat_template(sparams);
|
||||||
|
}
|
||||||
|
|
||||||
// Middleware for API key validation
|
// Middleware for API key validation
|
||||||
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
|
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
|
||||||
// If API key is not set, skip validation
|
// If API key is not set, skip validation
|
||||||
|
|
|
@ -1,3 +1,7 @@
|
||||||
|
#include "ggml-cuda.h"
|
||||||
|
#include "ggml.h"
|
||||||
|
#include "ggml-backend-impl.h"
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <assert.h>
|
#include <assert.h>
|
||||||
#include <atomic>
|
#include <atomic>
|
||||||
|
@ -121,11 +125,6 @@
|
||||||
|
|
||||||
#endif // defined(GGML_USE_HIPBLAS)
|
#endif // defined(GGML_USE_HIPBLAS)
|
||||||
|
|
||||||
// ggml-cuda need half type so keep ggml headers include at last
|
|
||||||
#include "ggml-cuda.h"
|
|
||||||
#include "ggml.h"
|
|
||||||
#include "ggml-backend-impl.h"
|
|
||||||
|
|
||||||
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
|
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
|
||||||
|
|
||||||
#define CC_PASCAL 600
|
#define CC_PASCAL 600
|
||||||
|
|
27
ggml-impl.h
27
ggml-impl.h
|
@ -53,11 +53,23 @@ extern "C" {
|
||||||
//
|
//
|
||||||
#include <arm_neon.h>
|
#include <arm_neon.h>
|
||||||
|
|
||||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
|
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||||
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
|
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||||
|
|
||||||
#define GGML_FP16_TO_FP32(x) ((float) (x))
|
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||||
#define GGML_FP32_TO_FP16(x) (x)
|
|
||||||
|
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||||
|
__fp16 tmp;
|
||||||
|
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
|
||||||
|
return (float)tmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
||||||
|
ggml_fp16_t res;
|
||||||
|
__fp16 tmp = f;
|
||||||
|
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
|
@ -214,8 +226,7 @@ extern float ggml_table_f32_f16[1 << 16];
|
||||||
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
||||||
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
|
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
|
||||||
// This is also true for POWER9.
|
// This is also true for POWER9.
|
||||||
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
|
#if !defined(GGML_FP16_TO_FP32)
|
||||||
|
|
||||||
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||||
uint16_t s;
|
uint16_t s;
|
||||||
memcpy(&s, &f, sizeof(uint16_t));
|
memcpy(&s, &f, sizeof(uint16_t));
|
||||||
|
@ -223,8 +234,10 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||||
}
|
}
|
||||||
|
|
||||||
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
|
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
|
||||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
#endif
|
||||||
|
|
||||||
|
#if !defined(GGML_FP32_TO_FP16)
|
||||||
|
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define GGML_HASHTABLE_FULL ((size_t)-1)
|
#define GGML_HASHTABLE_FULL ((size_t)-1)
|
||||||
|
|
|
@ -440,6 +440,30 @@ inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// NOTE: not tested
|
||||||
|
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
|
||||||
|
int8x16_t res;
|
||||||
|
|
||||||
|
res[ 0] = a[b[ 0]];
|
||||||
|
res[ 1] = a[b[ 1]];
|
||||||
|
res[ 2] = a[b[ 2]];
|
||||||
|
res[ 3] = a[b[ 3]];
|
||||||
|
res[ 4] = a[b[ 4]];
|
||||||
|
res[ 5] = a[b[ 5]];
|
||||||
|
res[ 6] = a[b[ 6]];
|
||||||
|
res[ 7] = a[b[ 7]];
|
||||||
|
res[ 8] = a[b[ 8]];
|
||||||
|
res[ 9] = a[b[ 9]];
|
||||||
|
res[10] = a[b[10]];
|
||||||
|
res[11] = a[b[11]];
|
||||||
|
res[12] = a[b[12]];
|
||||||
|
res[13] = a[b[13]];
|
||||||
|
res[14] = a[b[14]];
|
||||||
|
res[15] = a[b[15]];
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
#define ggml_int16x8x2_t int16x8x2_t
|
#define ggml_int16x8x2_t int16x8x2_t
|
||||||
|
@ -453,6 +477,7 @@ inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||||
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
||||||
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
||||||
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
||||||
|
#define ggml_vqtbl1q_s8 vqtbl1q_s8
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -5631,8 +5656,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
||||||
|
|
||||||
for (int i = 0; i < nb; ++i) {
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
const float d = y[i].d * (float)x[i].d;
|
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||||
const float dmin = -y[i].d * (float)x[i].dmin;
|
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||||
|
|
||||||
const uint8_t * restrict q2 = x[i].qs;
|
const uint8_t * restrict q2 = x[i].qs;
|
||||||
const int8_t * restrict q8 = y[i].qs;
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
@ -5781,8 +5806,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
||||||
|
|
||||||
for (int i = 0; i < nb; ++i) {
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
const float d = y[i].d * (float)x[i].d;
|
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||||
const float dmin = -y[i].d * (float)x[i].dmin;
|
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||||
|
|
||||||
const uint8_t * restrict q2 = x[i].qs;
|
const uint8_t * restrict q2 = x[i].qs;
|
||||||
const int8_t * restrict q8 = y[i].qs;
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
@ -6435,7 +6460,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
||||||
|
|
||||||
int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
|
int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
|
||||||
|
|
||||||
const float d = y[i].d * (float)x[i].d;
|
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||||
|
|
||||||
const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
|
const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
|
||||||
q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
|
q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
|
||||||
|
@ -6637,7 +6662,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
||||||
|
|
||||||
int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
|
int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
|
||||||
|
|
||||||
const float d = y[i].d * (float)x[i].d;
|
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||||
|
|
||||||
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
|
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
|
||||||
|
|
||||||
|
@ -7140,9 +7165,9 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
||||||
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||||||
|
|
||||||
const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
|
const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
|
||||||
sum_mins += y[i].d * (float)x[i].d[1] * summi;
|
sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi;
|
||||||
|
|
||||||
const float d = y[i].d * (float)x[i].d[0];
|
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
|
||||||
|
|
||||||
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
|
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
|
||||||
|
|
||||||
|
@ -7800,7 +7825,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
||||||
|
|
||||||
for (int i = 0; i < nb; ++i) {
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
const float d = y[i].d * (float)x[i].d;
|
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||||
const int8_t * sc = x[i].scales;
|
const int8_t * sc = x[i].scales;
|
||||||
|
|
||||||
const uint8_t * restrict q5 = x[i].qs;
|
const uint8_t * restrict q5 = x[i].qs;
|
||||||
|
@ -7942,7 +7967,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
||||||
|
|
||||||
for (int i = 0; i < nb; ++i) {
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
const float d = y[i].d * (float)x[i].d;
|
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||||
const int8_t * sc = x[i].scales;
|
const int8_t * sc = x[i].scales;
|
||||||
|
|
||||||
const uint8_t * restrict q5 = x[i].qs;
|
const uint8_t * restrict q5 = x[i].qs;
|
||||||
|
@ -8510,7 +8535,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
||||||
|
|
||||||
for (int i = 0; i < nb; ++i) {
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
const float d_all = (float)x[i].d;
|
const float d_all = GGML_FP16_TO_FP32(x[i].d);
|
||||||
|
|
||||||
const uint8_t * restrict q6 = x[i].ql;
|
const uint8_t * restrict q6 = x[i].ql;
|
||||||
const uint8_t * restrict qh = x[i].qh;
|
const uint8_t * restrict qh = x[i].qh;
|
||||||
|
@ -8681,7 +8706,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
||||||
|
|
||||||
for (int i = 0; i < nb; ++i) {
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
const float d_all = (float)x[i].d;
|
const float d_all = GGML_FP16_TO_FP32(x[i].d);
|
||||||
|
|
||||||
const uint8_t * restrict q6 = x[i].ql;
|
const uint8_t * restrict q6 = x[i].ql;
|
||||||
const uint8_t * restrict qh = x[i].qh;
|
const uint8_t * restrict qh = x[i].qh;
|
||||||
|
@ -9335,7 +9360,7 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
|
||||||
uint16_t gindex[8];
|
uint16_t gindex[8];
|
||||||
uint16x8x2_t vindex;
|
uint16x8x2_t vindex;
|
||||||
int8x16x4_t q1b;
|
int8x16x4_t q1b;
|
||||||
int8x16x4_t q8b;
|
ggml_int8x16x4_t q8b;
|
||||||
uint16x8x4_t scales;
|
uint16x8x4_t scales;
|
||||||
int32x4x2_t sumi;
|
int32x4x2_t sumi;
|
||||||
int32x4x2_t dotq;
|
int32x4x2_t dotq;
|
||||||
|
@ -9500,7 +9525,6 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||||
float sumf = 0;
|
float sumf = 0;
|
||||||
|
|
||||||
for (int ib = 0; ib < nb; ib += 2) {
|
for (int ib = 0; ib < nb; ib += 2) {
|
||||||
|
|
||||||
q4bits.val[0] = vld1q_u8(x[ib+0].qs);
|
q4bits.val[0] = vld1q_u8(x[ib+0].qs);
|
||||||
q4bits.val[1] = vld1q_u8(x[ib+1].qs);
|
q4bits.val[1] = vld1q_u8(x[ib+1].qs);
|
||||||
q8b.val[0] = vld1q_s8(y[ib+0].qs);
|
q8b.val[0] = vld1q_s8(y[ib+0].qs);
|
||||||
|
@ -9508,16 +9532,17 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||||
q8b.val[2] = vld1q_s8(y[ib+1].qs);
|
q8b.val[2] = vld1q_s8(y[ib+1].qs);
|
||||||
q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
|
q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
|
||||||
|
|
||||||
q4b.val[0] = vqtbl1q_s8(values, vandq_u8(q4bits.val[0], m4b));
|
q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
|
||||||
q4b.val[1] = vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
|
q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
|
||||||
q4b.val[2] = vqtbl1q_s8(values, vandq_u8(q4bits.val[1], m4b));
|
q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
|
||||||
q4b.val[3] = vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
|
q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
|
||||||
|
|
||||||
prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
|
prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
|
||||||
prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
|
prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
|
||||||
|
|
||||||
sumf += (float)x[ib+0].d * (float)y[ib+0].d * vaddvq_s32(prod_1) + (float)x[ib+1].d * (float)y[ib+1].d * vaddvq_s32(prod_2);
|
sumf +=
|
||||||
|
GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
|
||||||
|
GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = sumf;
|
*s = sumf;
|
||||||
|
|
6
ggml.c
6
ggml.c
|
@ -323,7 +323,7 @@ float ggml_table_f32_f16[1 << 16];
|
||||||
// note: do not use these inside ggml.c
|
// note: do not use these inside ggml.c
|
||||||
// these are meant to be used via the ggml.h API
|
// these are meant to be used via the ggml.h API
|
||||||
float ggml_fp16_to_fp32(ggml_fp16_t x) {
|
float ggml_fp16_to_fp32(ggml_fp16_t x) {
|
||||||
return (float) GGML_FP16_TO_FP32(x);
|
return GGML_FP16_TO_FP32(x);
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_fp16_t ggml_fp32_to_fp16(float x) {
|
ggml_fp16_t ggml_fp32_to_fp16(float x) {
|
||||||
|
@ -798,7 +798,7 @@ inline static float vaddvq_f32(float32x4_t v) {
|
||||||
#define GGML_F16x8 float16x8_t
|
#define GGML_F16x8 float16x8_t
|
||||||
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
|
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
|
||||||
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
|
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
|
||||||
#define GGML_F16x8_LOAD vld1q_f16
|
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
|
||||||
#define GGML_F16x8_STORE vst1q_f16
|
#define GGML_F16x8_STORE vst1q_f16
|
||||||
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
|
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
|
||||||
#define GGML_F16x8_ADD vaddq_f16
|
#define GGML_F16x8_ADD vaddq_f16
|
||||||
|
@ -841,7 +841,7 @@ inline static float vaddvq_f32(float32x4_t v) {
|
||||||
#define GGML_F32Cx4 float32x4_t
|
#define GGML_F32Cx4 float32x4_t
|
||||||
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
|
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
|
||||||
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
|
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
|
||||||
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
|
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
|
||||||
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
|
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
|
||||||
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
||||||
#define GGML_F32Cx4_ADD vaddq_f32
|
#define GGML_F32Cx4_ADD vaddq_f32
|
||||||
|
|
6
ggml.h
6
ggml.h
|
@ -322,13 +322,7 @@
|
||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(__ARM_NEON) && defined(__CUDACC__)
|
|
||||||
typedef half ggml_fp16_t;
|
|
||||||
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
|
|
||||||
typedef __fp16 ggml_fp16_t;
|
|
||||||
#else
|
|
||||||
typedef uint16_t ggml_fp16_t;
|
typedef uint16_t ggml_fp16_t;
|
||||||
#endif
|
|
||||||
|
|
||||||
// convert FP16 <-> FP32
|
// convert FP16 <-> FP32
|
||||||
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
|
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||||
|
|
75
llama.cpp
75
llama.cpp
|
@ -533,7 +533,6 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
||||||
{
|
{
|
||||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
{ LLM_TENSOR_OUTPUT, "output" },
|
|
||||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||||
|
@ -4126,7 +4125,12 @@ static bool llm_load_tensors(
|
||||||
// output
|
// output
|
||||||
{
|
{
|
||||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
|
||||||
|
|
||||||
|
// same as tok_embd, duplicated to allow offloading
|
||||||
|
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
|
ml.n_created--; // artificial tensor
|
||||||
|
ml.size_data += ggml_nbytes(model.output);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < n_layer; ++i) {
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
@ -4136,13 +4140,22 @@ static bool llm_load_tensors(
|
||||||
auto & layer = model.layers[i];
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||||
|
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
|
||||||
|
|
||||||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||||||
|
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
|
||||||
|
|
||||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||||
|
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
|
||||||
|
|
||||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
|
||||||
|
|
||||||
|
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||||||
|
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
|
||||||
|
|
||||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||||
|
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
|
||||||
|
|
||||||
// AWQ ScaleActivation layer
|
// AWQ ScaleActivation layer
|
||||||
layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
|
layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
|
||||||
|
@ -6243,7 +6256,7 @@ struct llm_build_context {
|
||||||
|
|
||||||
attn_norm = llm_build_norm(ctx0, inpL, hparams,
|
attn_norm = llm_build_norm(ctx0, inpL, hparams,
|
||||||
model.layers[il].attn_norm,
|
model.layers[il].attn_norm,
|
||||||
NULL,
|
model.layers[il].attn_norm_b,
|
||||||
LLM_NORM, cb, il);
|
LLM_NORM, cb, il);
|
||||||
cb(attn_norm, "attn_norm", il);
|
cb(attn_norm, "attn_norm", il);
|
||||||
|
|
||||||
|
@ -6254,6 +6267,11 @@ struct llm_build_context {
|
||||||
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
|
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
|
||||||
cb(cur, "wqkv", il);
|
cb(cur, "wqkv", il);
|
||||||
|
|
||||||
|
if (model.layers[il].bqkv){
|
||||||
|
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||||||
|
cb(cur, "bqkv", il);
|
||||||
|
}
|
||||||
|
|
||||||
if (hparams.f_clamp_kqv > 0.0f) {
|
if (hparams.f_clamp_kqv > 0.0f) {
|
||||||
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
|
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
|
||||||
cb(cur, "wqkv_clamped", il);
|
cb(cur, "wqkv_clamped", il);
|
||||||
|
@ -6270,7 +6288,7 @@ struct llm_build_context {
|
||||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||||
|
|
||||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||||
model.layers[il].wo, NULL,
|
model.layers[il].wo, model.layers[il].bo,
|
||||||
Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||||
cb(cur, "kqv_out", il);
|
cb(cur, "kqv_out", il);
|
||||||
}
|
}
|
||||||
|
@ -6283,13 +6301,13 @@ struct llm_build_context {
|
||||||
{
|
{
|
||||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||||
model.layers[il].ffn_norm,
|
model.layers[il].ffn_norm,
|
||||||
NULL,
|
model.layers[il].ffn_norm_b,
|
||||||
LLM_NORM, cb, il);
|
LLM_NORM, cb, il);
|
||||||
cb(cur, "ffn_norm", il);
|
cb(cur, "ffn_norm", il);
|
||||||
cur = llm_build_ffn(ctx0, cur,
|
cur = llm_build_ffn(ctx0, cur,
|
||||||
model.layers[il].ffn_up, NULL,
|
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
||||||
NULL, NULL,
|
NULL, NULL,
|
||||||
model.layers[il].ffn_down, NULL,
|
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
||||||
model.layers[il].ffn_act,
|
model.layers[il].ffn_act,
|
||||||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
|
@ -6306,7 +6324,7 @@ struct llm_build_context {
|
||||||
|
|
||||||
cur = llm_build_norm(ctx0, cur, hparams,
|
cur = llm_build_norm(ctx0, cur, hparams,
|
||||||
model.output_norm,
|
model.output_norm,
|
||||||
NULL,
|
model.output_norm_b,
|
||||||
LLM_NORM, cb, -1);
|
LLM_NORM, cb, -1);
|
||||||
cb(cur, "result_norm", -1);
|
cb(cur, "result_norm", -1);
|
||||||
|
|
||||||
|
@ -7506,6 +7524,7 @@ struct llm_build_context {
|
||||||
|
|
||||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
||||||
cb(inpL, "inp_embd", -1);
|
cb(inpL, "inp_embd", -1);
|
||||||
|
|
||||||
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||||||
cb(inpL, "inp_scaled", -1);
|
cb(inpL, "inp_scaled", -1);
|
||||||
|
|
||||||
|
@ -7547,6 +7566,7 @@ struct llm_build_context {
|
||||||
n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
||||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||||
cb(Qcur, "Qcur", il);
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
|
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
|
||||||
cb(Qcur, "Qcur_scaled", il);
|
cb(Qcur, "Qcur_scaled", il);
|
||||||
|
|
||||||
|
@ -7561,6 +7581,7 @@ struct llm_build_context {
|
||||||
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||||||
cb(cur, "kqv_out", il);
|
cb(cur, "kqv_out", il);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
|
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
|
||||||
cb(sa_out, "sa_out", il);
|
cb(sa_out, "sa_out", il);
|
||||||
|
|
||||||
|
@ -10802,7 +10823,10 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||||
return std::make_pair(i_layer, n_layer);
|
return std::make_pair(i_layer, n_layer);
|
||||||
};
|
};
|
||||||
|
|
||||||
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
|
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
|
||||||
|
// with the quantization of the output tensor
|
||||||
|
if (name == tn(LLM_TENSOR_OUTPUT, "weight") ||
|
||||||
|
(LLM_TENSOR_NAMES.at(arch).find(LLM_TENSOR_OUTPUT) == LLM_TENSOR_NAMES.at(arch).end() && name == "token_embd.weight")) {
|
||||||
int nx = tensor->ne[0];
|
int nx = tensor->ne[0];
|
||||||
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
|
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
|
||||||
new_type = GGML_TYPE_Q8_0;
|
new_type = GGML_TYPE_Q8_0;
|
||||||
|
@ -13085,6 +13109,37 @@ static int32_t llama_chat_apply_template_internal(
|
||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|assistant|>\n";
|
ss << "<|assistant|>\n";
|
||||||
}
|
}
|
||||||
|
} else if (tmpl.find("bos_token + message['role']") != std::string::npos) {
|
||||||
|
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
|
||||||
|
for (auto message : chat) {
|
||||||
|
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
|
||||||
|
ss << bos << message->role << "\n" << message->content << "</s>\n";
|
||||||
|
}
|
||||||
|
if (add_ass) {
|
||||||
|
ss << "<s>assistant\n";
|
||||||
|
}
|
||||||
|
} else if (tmpl.find("<start_of_turn>") != std::string::npos) {
|
||||||
|
// google/gemma-7b-it
|
||||||
|
std::string system_prompt = "";
|
||||||
|
for (auto message : chat) {
|
||||||
|
std::string role(message->role);
|
||||||
|
if (role == "system") {
|
||||||
|
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
|
||||||
|
system_prompt = trim(message->content);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
// in gemma, "assistant" is "model"
|
||||||
|
role = role == "assistant" ? "model" : message->role;
|
||||||
|
ss << "<start_of_turn>" << role << "\n";
|
||||||
|
if (!system_prompt.empty() && role != "model") {
|
||||||
|
ss << system_prompt << "\n\n";
|
||||||
|
system_prompt = "";
|
||||||
|
}
|
||||||
|
ss << trim(message->content) << "<end_of_turn>\n";
|
||||||
|
}
|
||||||
|
if (add_ass) {
|
||||||
|
ss << "<start_of_turn>model\n";
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
// template not supported
|
// template not supported
|
||||||
return -1;
|
return -1;
|
||||||
|
|
|
@ -27,12 +27,24 @@ int main(void) {
|
||||||
"{%- for idx in range(0, messages|length) -%}\\n{%- if messages[idx]['role'] == 'user' -%}\\n{%- if idx > 1 -%}\\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\\n{%- else -%}\\n{{- messages[idx]['content'] + ' [/INST]' -}}\\n{%- endif -%}\\n{% elif messages[idx]['role'] == 'system' %}\\n{{- '[INST] <<SYS>>\\\\n' + messages[idx]['content'] + '\\\\n<</SYS>>\\\\n\\\\n' -}}\\n{%- elif messages[idx]['role'] == 'assistant' -%}\\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\\n{% endif %}\\n{% endfor %}",
|
"{%- for idx in range(0, messages|length) -%}\\n{%- if messages[idx]['role'] == 'user' -%}\\n{%- if idx > 1 -%}\\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\\n{%- else -%}\\n{{- messages[idx]['content'] + ' [/INST]' -}}\\n{%- endif -%}\\n{% elif messages[idx]['role'] == 'system' %}\\n{{- '[INST] <<SYS>>\\\\n' + messages[idx]['content'] + '\\\\n<</SYS>>\\\\n\\\\n' -}}\\n{%- elif messages[idx]['role'] == 'assistant' -%}\\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\\n{% endif %}\\n{% endfor %}",
|
||||||
// bofenghuang/vigogne-2-70b-chat
|
// bofenghuang/vigogne-2-70b-chat
|
||||||
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif true == true and not '<<SYS>>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\\\n' + system_message + '\\\\n<</SYS>>\\\\n\\\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<<SYS>>\\\\n' + content.strip() + '\\\\n<</SYS>>\\\\n\\\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif true == true and not '<<SYS>>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\\\n' + system_message + '\\\\n<</SYS>>\\\\n\\\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<<SYS>>\\\\n' + content.strip() + '\\\\n<</SYS>>\\\\n\\\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
||||||
|
// mlabonne/AlphaMonarch-7B
|
||||||
|
"{% for message in messages %}{{bos_token + message['role'] + '\\n' + message['content'] + eos_token + '\\n'}}{% endfor %}{% if add_generation_prompt %}{{ bos_token + 'assistant\\n' }}{% endif %}",
|
||||||
|
// google/gemma-7b-it
|
||||||
|
"{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\\n' + message['content'] | trim + '<end_of_turn>\\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\\n'}}{% endif %}",
|
||||||
};
|
};
|
||||||
std::vector<std::string> expected_substr = {
|
std::vector<std::string> expected_output = {
|
||||||
"<|im_start|>assistant\n I am an assistant <|im_end|>\n<|im_start|>user\nAnother question<|im_end|>\n<|im_start|>assistant",
|
// teknium/OpenHermes-2.5-Mistral-7B
|
||||||
"[/INST]Hi there</s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
"<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi there<|im_end|>\n<|im_start|>user\nWho are you<|im_end|>\n<|im_start|>assistant\n I am an assistant <|im_end|>\n<|im_start|>user\nAnother question<|im_end|>\n<|im_start|>assistant\n",
|
||||||
"</s><s>[INST] Who are you [/INST] I am an assistant </s><s>[INST] Another question [/INST]",
|
// mistralai/Mistral-7B-Instruct-v0.2
|
||||||
"[/INST] Hi there </s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
"[INST] You are a helpful assistant\nHello [/INST]Hi there</s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
||||||
|
// TheBloke/FusionNet_34Bx2_MoE-AWQ
|
||||||
|
"[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST] Hi there </s><s>[INST] Who are you [/INST] I am an assistant </s><s>[INST] Another question [/INST]",
|
||||||
|
// bofenghuang/vigogne-2-70b-chat
|
||||||
|
"[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST] Hi there </s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
|
||||||
|
// mlabonne/AlphaMonarch-7B
|
||||||
|
"system\nYou are a helpful assistant</s>\n<s>user\nHello</s>\n<s>assistant\nHi there</s>\n<s>user\nWho are you</s>\n<s>assistant\n I am an assistant </s>\n<s>user\nAnother question</s>\n<s>assistant\n",
|
||||||
|
// google/gemma-7b-it
|
||||||
|
"<start_of_turn>user\nYou are a helpful assistant\n\nHello<end_of_turn>\n<start_of_turn>model\nHi there<end_of_turn>\n<start_of_turn>user\nWho are you<end_of_turn>\n<start_of_turn>model\nI am an assistant<end_of_turn>\n<start_of_turn>user\nAnother question<end_of_turn>\n<start_of_turn>model\n",
|
||||||
};
|
};
|
||||||
std::vector<char> formatted_chat(1024);
|
std::vector<char> formatted_chat(1024);
|
||||||
int32_t res;
|
int32_t res;
|
||||||
|
@ -43,7 +55,7 @@ int main(void) {
|
||||||
|
|
||||||
for (size_t i = 0; i < templates.size(); i++) {
|
for (size_t i = 0; i < templates.size(); i++) {
|
||||||
std::string custom_template = templates[i];
|
std::string custom_template = templates[i];
|
||||||
std::string substr = expected_substr[i];
|
std::string expected = expected_output[i];
|
||||||
formatted_chat.resize(1024);
|
formatted_chat.resize(1024);
|
||||||
res = llama_chat_apply_template(
|
res = llama_chat_apply_template(
|
||||||
nullptr,
|
nullptr,
|
||||||
|
@ -57,8 +69,7 @@ int main(void) {
|
||||||
formatted_chat.resize(res);
|
formatted_chat.resize(res);
|
||||||
std::string output(formatted_chat.data(), formatted_chat.size());
|
std::string output(formatted_chat.data(), formatted_chat.size());
|
||||||
std::cout << output << "\n-------------------------\n";
|
std::cout << output << "\n-------------------------\n";
|
||||||
// expect the "formatted_chat" to contain pre-defined strings
|
assert(output == expected);
|
||||||
assert(output.find(substr) != std::string::npos);
|
|
||||||
}
|
}
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue