mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-17 04:19:40 +00:00
Merge branch 'upstream' into concedo_experimental
# Conflicts: # .github/workflows/build.yml # CMakeLists.txt # common/CMakeLists.txt
This commit is contained in:
commit
2f5f4ee65a
6 changed files with 119 additions and 68 deletions
23
.github/workflows/release.yml
vendored
23
.github/workflows/release.yml
vendored
|
@ -16,11 +16,6 @@ concurrency:
|
|||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
# Fine-grant permission
|
||||
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
|
||||
permissions:
|
||||
contents: write # for creating release
|
||||
|
||||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
CMAKE_ARGS: "-DLLAMA_BUILD_EXAMPLES=OFF -DLLAMA_BUILD_TESTS=OFF -DLLAMA_BUILD_TOOLS=ON -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON"
|
||||
|
@ -416,28 +411,27 @@ jobs:
|
|||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
name: llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
name: llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
|
||||
run: |
|
||||
echo "Cuda install location: ${{ env.CUDA_PATH }}"
|
||||
$dst='.\build\bin\cudart\'
|
||||
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip $dst\*
|
||||
7z a cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip $dst\*
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
name: cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
path: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
name: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
|
||||
|
||||
windows-sycl:
|
||||
runs-on: windows-latest
|
||||
|
@ -646,6 +640,11 @@ jobs:
|
|||
release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
|
||||
# Fine-grant permission
|
||||
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
|
||||
permissions:
|
||||
contents: write # for creating release
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
needs:
|
||||
|
|
10
klite.embd
10
klite.embd
|
@ -7425,6 +7425,10 @@ Current version indicated by LITEVER below.
|
|||
{
|
||||
current_wi = load_tavern_wi(obj.character_book,chatopponent,myname);
|
||||
}
|
||||
else if (obj.data && obj.data.character_book && obj.data.character_book.entries && obj.data.character_book.entries.length > 0)
|
||||
{
|
||||
current_wi = load_tavern_wi(obj.data.character_book, chatopponent, myname);
|
||||
}
|
||||
else if(obj.entries && obj.entries.length>0)
|
||||
{
|
||||
current_wi = load_agnai_wi(obj,chatopponent,myname);
|
||||
|
@ -7614,11 +7618,15 @@ Current version indicated by LITEVER below.
|
|||
temp_scenario.memory = combinedmem;
|
||||
|
||||
//since cai format has no wi, try to grab it from tavern format
|
||||
let myname = ((localsettings.chatname && localsettings.chatname!="")?localsettings.chatname:"User");
|
||||
if(obj.character_book && obj.character_book.entries && obj.character_book.entries.length>0)
|
||||
{
|
||||
let myname = ((localsettings.chatname && localsettings.chatname!="")?localsettings.chatname:"User");
|
||||
temp_scenario.worldinfo = load_tavern_wi(obj.character_book,chatopponent,myname);
|
||||
}
|
||||
else if (obj.data && obj.data.character_book && obj.data.character_book.entries && obj.data.character_book.entries.length > 0)
|
||||
{
|
||||
temp_scenario.worldinfo = load_tavern_wi(obj.data.character_book, chatopponent, myname);
|
||||
}
|
||||
preview_temp_scenario();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -580,6 +580,79 @@ struct decode_embd_batch {
|
|||
}
|
||||
};
|
||||
|
||||
// Helper function for decoding an image whose embeddings have already been calculated
|
||||
int32_t mtmd_helper_decode_image_chunk(
|
||||
mtmd_context * ctx,
|
||||
struct llama_context * lctx,
|
||||
const mtmd_input_chunk * chunk,
|
||||
float * encoded_embd,
|
||||
llama_pos n_past,
|
||||
llama_seq_id seq_id,
|
||||
int32_t n_batch,
|
||||
llama_pos * new_n_past) {
|
||||
if (mtmd_input_chunk_get_type(chunk) != MTMD_INPUT_CHUNK_TYPE_IMAGE) {
|
||||
LOG_ERR("failed to decode image chunk: input chunk not of image type\n");
|
||||
return -1;
|
||||
}
|
||||
const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
|
||||
if (!image_tokens) {
|
||||
LOG_ERR("failed to decode image chunk: image tokens are null\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
|
||||
int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
|
||||
|
||||
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(image_tokens);
|
||||
int32_t i_batch = 0;
|
||||
int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
|
||||
decode_embd_batch batch_embd(encoded_embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
|
||||
|
||||
const int nx = mtmd_image_tokens_get_nx(image_tokens);
|
||||
const int ny = mtmd_image_tokens_get_ny(image_tokens);
|
||||
|
||||
if (mtmd_decode_use_mrope(ctx)) {
|
||||
batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
|
||||
} else {
|
||||
batch_embd.set_position_normal(n_past, seq_id);
|
||||
}
|
||||
|
||||
if (mtmd_decode_use_non_causal(ctx)) {
|
||||
llama_set_causal_attn(lctx, false);
|
||||
// TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
|
||||
}
|
||||
|
||||
while (i_batch < n_img_batches) { // split into batches
|
||||
int pos_offset = i_batch*n_batch;
|
||||
int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
|
||||
llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch);
|
||||
|
||||
LOG_INF("decoding image batch %d/%d, n_tokens_batch = %d\n", i_batch+1, n_img_batches, n_tokens_batch);
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
int32_t ret = llama_decode(lctx, batch_embd_view);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("failed to decode image\n");
|
||||
llama_set_causal_attn(lctx, true); // restore causal attn
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (ctx->print_timings) {
|
||||
LOG_INF("image decoded (batch %d/%d) in %" PRId64 " ms\n", i_batch+1, n_img_batches, ggml_time_ms() - t1);
|
||||
}
|
||||
|
||||
i_batch++;
|
||||
}
|
||||
|
||||
n_past += mtmd_image_tokens_get_n_pos(image_tokens);
|
||||
*new_n_past = n_past;
|
||||
|
||||
if (mtmd_decode_use_non_causal(ctx)) {
|
||||
llama_set_causal_attn(lctx, true);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
|
||||
struct llama_context * lctx,
|
||||
const mtmd_input_chunk * chunk,
|
||||
|
@ -591,8 +664,6 @@ int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
|
|||
int32_t ret;
|
||||
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
|
||||
auto chunk_type = mtmd_input_chunk_get_type(chunk);
|
||||
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
|
||||
int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
|
||||
|
||||
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
||||
size_t n_tokens;
|
||||
|
@ -637,57 +708,13 @@ int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
|
|||
if (ctx->print_timings) {
|
||||
LOG_INF("image/slice encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
|
||||
}
|
||||
|
||||
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(image_tokens);
|
||||
int32_t i_batch = 0;
|
||||
int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
|
||||
float * embd = mtmd_get_output_embd(ctx);
|
||||
decode_embd_batch batch_embd(embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
|
||||
|
||||
const int nx = mtmd_image_tokens_get_nx(image_tokens);
|
||||
const int ny = mtmd_image_tokens_get_ny(image_tokens);
|
||||
|
||||
if (mtmd_decode_use_mrope(ctx)) {
|
||||
batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
|
||||
} else {
|
||||
batch_embd.set_position_normal(n_past, seq_id);
|
||||
ret = mtmd_helper_decode_image_chunk(ctx, lctx, chunk, embd, n_past, seq_id, n_batch, new_n_past);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("failed to decode image\n");
|
||||
llama_batch_free(text_batch);
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (mtmd_decode_use_non_causal(ctx)) {
|
||||
llama_set_causal_attn(lctx, false);
|
||||
// TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
|
||||
}
|
||||
|
||||
while (i_batch < n_img_batches) { // split into batches
|
||||
int pos_offset = i_batch*n_batch;
|
||||
int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
|
||||
llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch);
|
||||
|
||||
LOG_INF("decoding image batch %d/%d, n_tokens_batch = %d\n", i_batch+1, n_img_batches, n_tokens_batch);
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
ret = llama_decode(lctx, batch_embd_view);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("failed to decode image\n");
|
||||
llama_set_causal_attn(lctx, true); // restore causal attn
|
||||
llama_batch_free(text_batch);
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (ctx->print_timings) {
|
||||
LOG_INF("image decoded (batch %d/%d) in %" PRId64 " ms\n", i_batch+1, n_img_batches, ggml_time_ms() - t1);
|
||||
}
|
||||
|
||||
i_batch++;
|
||||
}
|
||||
|
||||
n_past += mtmd_image_tokens_get_n_pos(image_tokens);
|
||||
*new_n_past = n_past;
|
||||
|
||||
if (mtmd_decode_use_non_causal(ctx)) {
|
||||
llama_set_causal_attn(lctx, true);
|
||||
}
|
||||
|
||||
} else {
|
||||
GGML_ABORT("chunk type not supported");
|
||||
}
|
||||
|
|
|
@ -231,6 +231,18 @@ MTMD_API int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
|
|||
bool logits_last,
|
||||
llama_pos * new_n_past);
|
||||
|
||||
// helper function to decode an image whose embeddings have already been calculated
|
||||
// this helper will handle batching and pre/post decoding setup (for ex. gemma 3 requires non-causal attention)
|
||||
// ret 0 on success, -1 on chunk not being a valid image chunk, 1 on decode failure
|
||||
MTMD_API int32_t mtmd_helper_decode_image_chunk(mtmd_context * ctx,
|
||||
struct llama_context * lctx,
|
||||
const mtmd_input_chunk * chunk,
|
||||
float * encoded_embd,
|
||||
llama_pos n_past,
|
||||
llama_seq_id seq_id,
|
||||
int32_t n_batch,
|
||||
llama_pos * new_n_past);
|
||||
|
||||
/////////////////////////////////////////
|
||||
|
||||
// test function, to be used in test-mtmd-c-api.c
|
||||
|
|
Binary file not shown.
|
@ -7,6 +7,7 @@ import {
|
|||
ArrowDownTrayIcon,
|
||||
EllipsisVerticalIcon,
|
||||
PencilIcon,
|
||||
PencilSquareIcon,
|
||||
TrashIcon,
|
||||
XMarkIcon,
|
||||
} from '@heroicons/react/24/outline';
|
||||
|
@ -76,15 +77,19 @@ export default function Sidebar() {
|
|||
})}
|
||||
onClick={() => navigate('/')}
|
||||
>
|
||||
+ New conversation
|
||||
<PencilSquareIcon className="w-5 h-5" />
|
||||
New conversation
|
||||
</div>
|
||||
|
||||
{/* list of conversations */}
|
||||
{groupedConv.map((group) => (
|
||||
<div>
|
||||
{groupedConv.map((group, i) => (
|
||||
<div key={i}>
|
||||
{/* group name (by date) */}
|
||||
{group.title ? (
|
||||
<b className="block text-xs px-2 mb-2 mt-6">{group.title}</b>
|
||||
// we use btn class here to make sure that the padding/margin are aligned with the other items
|
||||
<b className="btn btn-ghost btn-xs bg-none btn-disabled block text-xs text-base-content text-start px-2 mb-0 mt-6 font-bold">
|
||||
{group.title}
|
||||
</b>
|
||||
) : (
|
||||
<div className="h-2" />
|
||||
)}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue