mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-16 03:49:42 +00:00
Merge branch 'upstream' into concedo_experimental
# Conflicts: # .github/workflows/build.yml # CMakeLists.txt # README.md # ci/run.sh # llama.cpp # models/ggml-vocab-llama-bpe.gguf.inp # models/ggml-vocab-llama-bpe.gguf.out # requirements.txt # scripts/compare-llama-bench.py # scripts/sync-ggml.last # tests/CMakeLists.txt # tests/test-backend-ops.cpp # tests/test-grammar-integration.cpp # tests/test-tokenizer-1-bpe.cpp
This commit is contained in:
commit
2ee808a747
66 changed files with 3034 additions and 1821 deletions
|
@ -50,6 +50,12 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
|||
}
|
||||
|
||||
float * out = output + batch.seq_id[i][0] * n_embd;
|
||||
//TODO: I would also add a parameter here to enable normalization or not.
|
||||
/*fprintf(stdout, "unnormalized_embedding:");
|
||||
for (int hh = 0; hh < n_embd; hh++) {
|
||||
fprintf(stdout, "%9.6f ", embd[hh]);
|
||||
}
|
||||
fprintf(stdout, "\n");*/
|
||||
llama_embd_normalize(embd, out, n_embd);
|
||||
}
|
||||
}
|
||||
|
@ -124,10 +130,12 @@ int main(int argc, char ** argv) {
|
|||
inputs.push_back(inp);
|
||||
}
|
||||
|
||||
// add SEP if not present
|
||||
// check if the last token is SEP
|
||||
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
|
||||
for (auto & inp : inputs) {
|
||||
if (inp.empty() || inp.back() != llama_token_sep(model)) {
|
||||
inp.push_back(llama_token_sep(model));
|
||||
fprintf(stderr, "%s: warning: last token in the prompt is not SEP\n", __func__);
|
||||
fprintf(stderr, "%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -26,16 +26,21 @@ options:
|
|||
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
|
||||
-p, --n-prompt <n> (default: 512)
|
||||
-n, --n-gen <n> (default: 128)
|
||||
-b, --batch-size <n> (default: 512)
|
||||
-ctk <t>, --cache-type-k <t> (default: f16)
|
||||
-ctv <t>, --cache-type-v <t> (default: f16)
|
||||
-t, --threads <n> (default: 112)
|
||||
-pg <pp,tg> (default: 512,128)
|
||||
-b, --batch-size <n> (default: 2048)
|
||||
-ub, --ubatch-size <n> (default: 512)
|
||||
-ctk, --cache-type-k <t> (default: f16)
|
||||
-ctv, --cache-type-v <t> (default: f16)
|
||||
-t, --threads <n> (default: 16)
|
||||
-ngl, --n-gpu-layers <n> (default: 99)
|
||||
-sm, --split-mode <none|layer|row> (default: layer)
|
||||
-mg, --main-gpu <i> (default: 0)
|
||||
-nkvo, --no-kv-offload <0|1> (default: 0)
|
||||
-fa, --flash-attn <0|1> (default: 0)
|
||||
-mmp, --mmap <0|1> (default: 1)
|
||||
-ts, --tensor_split <ts0/ts1/..> (default: 0)
|
||||
--numa <distribute|isolate|numactl> (default: disabled)
|
||||
-embd, --embeddings <0|1> (default: 0)
|
||||
-ts, --tensor-split <ts0/ts1/..> (default: 0)
|
||||
-r, --repetitions <n> (default: 5)
|
||||
-o, --output <csv|json|md|sql> (default: md)
|
||||
-v, --verbose (default: 0)
|
||||
|
@ -43,10 +48,11 @@ options:
|
|||
Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.
|
||||
```
|
||||
|
||||
llama-bench can perform two types of tests:
|
||||
llama-bench can perform three types of tests:
|
||||
|
||||
- Prompt processing (pp): processing a prompt in batches (`-p`)
|
||||
- Text generation (tg): generating a sequence of tokens (`-n`)
|
||||
- Prompt processing + text generation (pg): processing a prompt followed by generating a sequence of tokens (`-pg`)
|
||||
|
||||
With the exception of `-r`, `-o` and `-v`, all options can be specified multiple times to run multiple tests. Each pp and tg test is run with all combinations of the specified options. To specify multiple values for an option, the values can be separated by commas (e.g. `-n 16,32`), or the option can be specified multiple times (e.g. `-n 16 -n 32`).
|
||||
|
||||
|
|
|
@ -162,10 +162,17 @@ static const char * split_mode_str(llama_split_mode mode) {
|
|||
}
|
||||
}
|
||||
|
||||
static std::string pair_str(const std::pair<int, int> & p) {
|
||||
static char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
|
||||
return buf;
|
||||
}
|
||||
|
||||
struct cmd_params {
|
||||
std::vector<std::string> model;
|
||||
std::vector<int> n_prompt;
|
||||
std::vector<int> n_gen;
|
||||
std::vector<std::pair<int, int>> n_pg;
|
||||
std::vector<int> n_batch;
|
||||
std::vector<int> n_ubatch;
|
||||
std::vector<ggml_type> type_k;
|
||||
|
@ -189,6 +196,7 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
|
||||
/* n_prompt */ {512},
|
||||
/* n_gen */ {128},
|
||||
/* n_pg */ {{512, 128}},
|
||||
/* n_batch */ {2048},
|
||||
/* n_ubatch */ {512},
|
||||
/* type_k */ {GGML_TYPE_F16},
|
||||
|
@ -216,10 +224,11 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
|
@ -305,6 +314,17 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
|
||||
} else if (arg == "-pg") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<std::string>(argv[i], ',');
|
||||
if (p.size() != 2) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
|
||||
} else if (arg == "-b" || arg == "--batch-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -494,6 +514,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
if (params.model.empty()) { params.model = cmd_params_defaults.model; }
|
||||
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
|
||||
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
|
||||
if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
|
||||
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
|
||||
if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
|
||||
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
||||
|
@ -633,6 +654,31 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
|
||||
for (const auto & n_pg : params.n_pg) {
|
||||
if (n_pg.first == 0 && n_pg.second == 0) {
|
||||
continue;
|
||||
}
|
||||
cmd_params_instance instance = {
|
||||
/* .model = */ m,
|
||||
/* .n_prompt = */ n_pg.first,
|
||||
/* .n_gen = */ n_pg.second,
|
||||
/* .n_batch = */ nb,
|
||||
/* .n_ubatch = */ nub,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
/* .flash_attn = */ fa,
|
||||
/* .tensor_split = */ ts,
|
||||
/* .use_mmap = */ mmp,
|
||||
/* .embeddings = */ embd,
|
||||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
}
|
||||
|
||||
return instances;
|
||||
|
@ -966,6 +1012,9 @@ struct markdown_printer : public printer {
|
|||
if (field == "n_gpu_layers") {
|
||||
return 3;
|
||||
}
|
||||
if (field == "test") {
|
||||
return 13;
|
||||
}
|
||||
|
||||
int width = std::max((int)field.length(), 10);
|
||||
|
||||
|
@ -1092,12 +1141,11 @@ struct markdown_printer : public printer {
|
|||
value = test::get_backend();
|
||||
} else if (field == "test") {
|
||||
if (t.n_prompt > 0 && t.n_gen == 0) {
|
||||
snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
|
||||
snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
|
||||
} else if (t.n_gen > 0 && t.n_prompt == 0) {
|
||||
snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
|
||||
snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
|
||||
} else {
|
||||
assert(false);
|
||||
exit(1);
|
||||
snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
|
||||
}
|
||||
value = buf;
|
||||
} else if (field == "t/s") {
|
||||
|
@ -1298,6 +1346,7 @@ int main(int argc, char ** argv) {
|
|||
llama_kv_cache_clear(ctx);
|
||||
|
||||
uint64_t t_start = get_time_ns();
|
||||
|
||||
if (t.n_prompt > 0) {
|
||||
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
|
||||
}
|
||||
|
|
|
@ -7,8 +7,6 @@ android {
|
|||
namespace = "com.example.llama"
|
||||
compileSdk = 34
|
||||
|
||||
ndkVersion = "26.1.10909125"
|
||||
|
||||
defaultConfig {
|
||||
applicationId = "com.example.llama"
|
||||
minSdk = 33
|
||||
|
@ -20,17 +18,6 @@ android {
|
|||
vectorDrawables {
|
||||
useSupportLibrary = true
|
||||
}
|
||||
ndk {
|
||||
// Add NDK properties if wanted, e.g.
|
||||
// abiFilters += listOf("arm64-v8a")
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
arguments += "-DCMAKE_BUILD_TYPE=Release"
|
||||
cppFlags += listOf()
|
||||
arguments += listOf()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
buildTypes {
|
||||
|
@ -55,17 +42,6 @@ android {
|
|||
composeOptions {
|
||||
kotlinCompilerExtensionVersion = "1.5.1"
|
||||
}
|
||||
packaging {
|
||||
resources {
|
||||
excludes += "/META-INF/{AL2.0,LGPL2.1}"
|
||||
}
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
path = file("src/main/cpp/CMakeLists.txt")
|
||||
version = "3.22.1"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dependencies {
|
||||
|
@ -78,6 +54,7 @@ dependencies {
|
|||
implementation("androidx.compose.ui:ui-graphics")
|
||||
implementation("androidx.compose.ui:ui-tooling-preview")
|
||||
implementation("androidx.compose.material3:material3")
|
||||
implementation(project(":llama"))
|
||||
testImplementation("junit:junit:4.13.2")
|
||||
androidTestImplementation("androidx.test.ext:junit:1.1.5")
|
||||
androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1")
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
package com.example.llama
|
||||
|
||||
import android.llama.cpp.LLamaAndroid
|
||||
import android.util.Log
|
||||
import androidx.compose.runtime.getValue
|
||||
import androidx.compose.runtime.mutableStateOf
|
||||
|
@ -9,7 +10,7 @@ import androidx.lifecycle.viewModelScope
|
|||
import kotlinx.coroutines.flow.catch
|
||||
import kotlinx.coroutines.launch
|
||||
|
||||
class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
||||
class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instance()): ViewModel() {
|
||||
companion object {
|
||||
@JvmStatic
|
||||
private val NanosPerSecond = 1_000_000_000.0
|
||||
|
@ -28,7 +29,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
|||
|
||||
viewModelScope.launch {
|
||||
try {
|
||||
llm.unload()
|
||||
llamaAndroid.unload()
|
||||
} catch (exc: IllegalStateException) {
|
||||
messages += exc.message!!
|
||||
}
|
||||
|
@ -44,7 +45,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
|||
messages += ""
|
||||
|
||||
viewModelScope.launch {
|
||||
llm.send(text)
|
||||
llamaAndroid.send(text)
|
||||
.catch {
|
||||
Log.e(tag, "send() failed", it)
|
||||
messages += it.message!!
|
||||
|
@ -57,7 +58,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
|||
viewModelScope.launch {
|
||||
try {
|
||||
val start = System.nanoTime()
|
||||
val warmupResult = llm.bench(pp, tg, pl, nr)
|
||||
val warmupResult = llamaAndroid.bench(pp, tg, pl, nr)
|
||||
val end = System.nanoTime()
|
||||
|
||||
messages += warmupResult
|
||||
|
@ -70,7 +71,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
|||
return@launch
|
||||
}
|
||||
|
||||
messages += llm.bench(512, 128, 1, 3)
|
||||
messages += llamaAndroid.bench(512, 128, 1, 3)
|
||||
} catch (exc: IllegalStateException) {
|
||||
Log.e(tag, "bench() failed", exc)
|
||||
messages += exc.message!!
|
||||
|
@ -81,7 +82,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
|||
fun load(pathToModel: String) {
|
||||
viewModelScope.launch {
|
||||
try {
|
||||
llm.load(pathToModel)
|
||||
llamaAndroid.load(pathToModel)
|
||||
messages += "Loaded $pathToModel"
|
||||
} catch (exc: IllegalStateException) {
|
||||
Log.e(tag, "load() failed", exc)
|
||||
|
|
|
@ -2,4 +2,5 @@
|
|||
plugins {
|
||||
id("com.android.application") version "8.2.0" apply false
|
||||
id("org.jetbrains.kotlin.android") version "1.9.0" apply false
|
||||
id("com.android.library") version "8.2.0" apply false
|
||||
}
|
||||
|
|
1
examples/llama.android/llama/.gitignore
vendored
Normal file
1
examples/llama.android/llama/.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
/build
|
|
@ -37,7 +37,7 @@ FetchContent_MakeAvailable(llama)
|
|||
# used in the AndroidManifest.xml file.
|
||||
add_library(${CMAKE_PROJECT_NAME} SHARED
|
||||
# List C/C++ source files with relative paths to this CMakeLists.txt.
|
||||
llama-android.cpp)
|
||||
llama-android.cpp)
|
||||
|
||||
# Specifies libraries CMake should link to your target library. You
|
||||
# can link libraries from various origins, such as libraries defined in this
|
0
examples/llama.android/llama/consumer-rules.pro
Normal file
0
examples/llama.android/llama/consumer-rules.pro
Normal file
21
examples/llama.android/llama/proguard-rules.pro
vendored
Normal file
21
examples/llama.android/llama/proguard-rules.pro
vendored
Normal file
|
@ -0,0 +1,21 @@
|
|||
# Add project specific ProGuard rules here.
|
||||
# You can control the set of applied configuration files using the
|
||||
# proguardFiles setting in build.gradle.
|
||||
#
|
||||
# For more details, see
|
||||
# http://developer.android.com/guide/developing/tools/proguard.html
|
||||
|
||||
# If your project uses WebView with JS, uncomment the following
|
||||
# and specify the fully qualified class name to the JavaScript interface
|
||||
# class:
|
||||
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
|
||||
# public *;
|
||||
#}
|
||||
|
||||
# Uncomment this to preserve the line number information for
|
||||
# debugging stack traces.
|
||||
#-keepattributes SourceFile,LineNumberTable
|
||||
|
||||
# If you keep the line number information, uncomment this to
|
||||
# hide the original source file name.
|
||||
#-renamesourcefileattribute SourceFile
|
|
@ -0,0 +1,24 @@
|
|||
package android.llama.cpp
|
||||
|
||||
import androidx.test.platform.app.InstrumentationRegistry
|
||||
import androidx.test.ext.junit.runners.AndroidJUnit4
|
||||
|
||||
import org.junit.Test
|
||||
import org.junit.runner.RunWith
|
||||
|
||||
import org.junit.Assert.*
|
||||
|
||||
/**
|
||||
* Instrumented test, which will execute on an Android device.
|
||||
*
|
||||
* See [testing documentation](http://d.android.com/tools/testing).
|
||||
*/
|
||||
@RunWith(AndroidJUnit4::class)
|
||||
class ExampleInstrumentedTest {
|
||||
@Test
|
||||
fun useAppContext() {
|
||||
// Context of the app under test.
|
||||
val appContext = InstrumentationRegistry.getInstrumentation().targetContext
|
||||
assertEquals("android.llama.cpp.test", appContext.packageName)
|
||||
}
|
||||
}
|
|
@ -0,0 +1,4 @@
|
|||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
|
||||
|
||||
</manifest>
|
49
examples/llama.android/llama/src/main/cpp/CMakeLists.txt
Normal file
49
examples/llama.android/llama/src/main/cpp/CMakeLists.txt
Normal file
|
@ -0,0 +1,49 @@
|
|||
# For more information about using CMake with Android Studio, read the
|
||||
# documentation: https://d.android.com/studio/projects/add-native-code.html.
|
||||
# For more examples on how to use CMake, see https://github.com/android/ndk-samples.
|
||||
|
||||
# Sets the minimum CMake version required for this project.
|
||||
cmake_minimum_required(VERSION 3.22.1)
|
||||
|
||||
# Declares the project name. The project name can be accessed via ${ PROJECT_NAME},
|
||||
# Since this is the top level CMakeLists.txt, the project name is also accessible
|
||||
# with ${CMAKE_PROJECT_NAME} (both CMake variables are in-sync within the top level
|
||||
# build script scope).
|
||||
project("llama-android")
|
||||
|
||||
include(FetchContent)
|
||||
FetchContent_Declare(
|
||||
llama
|
||||
GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
|
||||
GIT_TAG master
|
||||
)
|
||||
|
||||
# Also provides "common"
|
||||
FetchContent_MakeAvailable(llama)
|
||||
|
||||
# Creates and names a library, sets it as either STATIC
|
||||
# or SHARED, and provides the relative paths to its source code.
|
||||
# You can define multiple libraries, and CMake builds them for you.
|
||||
# Gradle automatically packages shared libraries with your APK.
|
||||
#
|
||||
# In this top level CMakeLists.txt, ${CMAKE_PROJECT_NAME} is used to define
|
||||
# the target library name; in the sub-module's CMakeLists.txt, ${PROJECT_NAME}
|
||||
# is preferred for the same purpose.
|
||||
#
|
||||
# In order to load a library into your app from Java/Kotlin, you must call
|
||||
# System.loadLibrary() and pass the name of the library defined here;
|
||||
# for GameActivity/NativeActivity derived applications, the same library name must be
|
||||
# used in the AndroidManifest.xml file.
|
||||
add_library(${CMAKE_PROJECT_NAME} SHARED
|
||||
# List C/C++ source files with relative paths to this CMakeLists.txt.
|
||||
llama-android.cpp)
|
||||
|
||||
# Specifies libraries CMake should link to your target library. You
|
||||
# can link libraries from various origins, such as libraries defined in this
|
||||
# build script, prebuilt third-party libraries, or Android system libraries.
|
||||
target_link_libraries(${CMAKE_PROJECT_NAME}
|
||||
# List libraries link to the target library
|
||||
llama
|
||||
common
|
||||
android
|
||||
log)
|
|
@ -81,7 +81,7 @@ static void log_callback(ggml_log_level level, const char * fmt, void * data) {
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) {
|
||||
Java_android_llama_cpp_LLamaAndroid_load_1model(JNIEnv *env, jobject, jstring filename) {
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
auto path_to_model = env->GetStringUTFChars(filename, 0);
|
||||
|
@ -101,13 +101,13 @@ Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) {
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_free_1model(JNIEnv *, jobject, jlong model) {
|
||||
Java_android_llama_cpp_LLamaAndroid_free_1model(JNIEnv *, jobject, jlong model) {
|
||||
llama_free_model(reinterpret_cast<llama_model *>(model));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) {
|
||||
Java_android_llama_cpp_LLamaAndroid_new_1context(JNIEnv *env, jobject, jlong jmodel) {
|
||||
auto model = reinterpret_cast<llama_model *>(jmodel);
|
||||
|
||||
if (!model) {
|
||||
|
@ -139,25 +139,25 @@ Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) {
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_free_1context(JNIEnv *, jobject, jlong context) {
|
||||
Java_android_llama_cpp_LLamaAndroid_free_1context(JNIEnv *, jobject, jlong context) {
|
||||
llama_free(reinterpret_cast<llama_context *>(context));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_backend_1free(JNIEnv *, jobject) {
|
||||
Java_android_llama_cpp_LLamaAndroid_backend_1free(JNIEnv *, jobject) {
|
||||
llama_backend_free();
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_log_1to_1android(JNIEnv *, jobject) {
|
||||
Java_android_llama_cpp_LLamaAndroid_log_1to_1android(JNIEnv *, jobject) {
|
||||
llama_log_set(log_callback, NULL);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_example_llama_Llm_bench_1model(
|
||||
Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
JNIEnv *env,
|
||||
jobject,
|
||||
jlong context_pointer,
|
||||
|
@ -271,13 +271,13 @@ Java_com_example_llama_Llm_bench_1model(
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
|
||||
Java_android_llama_cpp_LLamaAndroid_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
|
||||
llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) {
|
||||
Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) {
|
||||
|
||||
// Source: Copy of llama.cpp:llama_batch_init but heap-allocated.
|
||||
|
||||
|
@ -313,19 +313,19 @@ Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint emb
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_backend_1init(JNIEnv *, jobject) {
|
||||
Java_android_llama_cpp_LLamaAndroid_backend_1init(JNIEnv *, jobject) {
|
||||
llama_backend_init();
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_example_llama_Llm_system_1info(JNIEnv *env, jobject) {
|
||||
Java_android_llama_cpp_LLamaAndroid_system_1info(JNIEnv *env, jobject) {
|
||||
return env->NewStringUTF(llama_print_system_info());
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jint JNICALL
|
||||
Java_com_example_llama_Llm_completion_1init(
|
||||
Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
JNIEnv *env,
|
||||
jobject,
|
||||
jlong context_pointer,
|
||||
|
@ -376,7 +376,7 @@ Java_com_example_llama_Llm_completion_1init(
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_example_llama_Llm_completion_1loop(
|
||||
Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
JNIEnv * env,
|
||||
jobject,
|
||||
jlong context_pointer,
|
||||
|
@ -438,6 +438,6 @@ Java_com_example_llama_Llm_completion_1loop(
|
|||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
|
||||
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
|
||||
llama_kv_cache_clear(reinterpret_cast<llama_context *>(context));
|
||||
}
|
|
@ -1,4 +1,4 @@
|
|||
package com.example.llama
|
||||
package android.llama.cpp
|
||||
|
||||
import android.util.Log
|
||||
import kotlinx.coroutines.CoroutineDispatcher
|
||||
|
@ -10,7 +10,7 @@ import kotlinx.coroutines.withContext
|
|||
import java.util.concurrent.Executors
|
||||
import kotlin.concurrent.thread
|
||||
|
||||
class Llm {
|
||||
class LLamaAndroid {
|
||||
private val tag: String? = this::class.simpleName
|
||||
|
||||
private val threadLocalState: ThreadLocal<State> = ThreadLocal.withInitial { State.Idle }
|
||||
|
@ -165,8 +165,8 @@ class Llm {
|
|||
}
|
||||
|
||||
// Enforce only one instance of Llm.
|
||||
private val _instance: Llm = Llm()
|
||||
private val _instance: LLamaAndroid = LLamaAndroid()
|
||||
|
||||
fun instance(): Llm = _instance
|
||||
fun instance(): LLamaAndroid = _instance
|
||||
}
|
||||
}
|
|
@ -0,0 +1,17 @@
|
|||
package android.llama.cpp
|
||||
|
||||
import org.junit.Test
|
||||
|
||||
import org.junit.Assert.*
|
||||
|
||||
/**
|
||||
* Example local unit test, which will execute on the development machine (host).
|
||||
*
|
||||
* See [testing documentation](http://d.android.com/tools/testing).
|
||||
*/
|
||||
class ExampleUnitTest {
|
||||
@Test
|
||||
fun addition_isCorrect() {
|
||||
assertEquals(4, 2 + 2)
|
||||
}
|
||||
}
|
|
@ -15,3 +15,4 @@ dependencyResolutionManagement {
|
|||
|
||||
rootProject.name = "LlamaAndroid"
|
||||
include(":app")
|
||||
include(":llama")
|
||||
|
|
|
@ -104,6 +104,7 @@ static std::string format(const char * fmt, ...) {
|
|||
#define TN_POS_EMBD "%s.position_embd.weight"
|
||||
#define TN_CLASS_EMBD "v.class_embd"
|
||||
#define TN_PATCH_EMBD "v.patch_embd.weight"
|
||||
#define TN_PATCH_BIAS "v.patch_embd.bias"
|
||||
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
|
||||
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
|
||||
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
|
||||
|
@ -425,6 +426,7 @@ struct clip_vision_model {
|
|||
// embeddings
|
||||
struct ggml_tensor * class_embedding;
|
||||
struct ggml_tensor * patch_embeddings;
|
||||
struct ggml_tensor * patch_bias;
|
||||
struct ggml_tensor * position_embeddings;
|
||||
|
||||
struct ggml_tensor * pre_ln_w;
|
||||
|
@ -501,6 +503,11 @@ struct clip_ctx {
|
|||
bool use_gelu = false;
|
||||
int32_t ftype = 1;
|
||||
|
||||
bool has_class_embedding = true;
|
||||
bool has_pre_norm = true;
|
||||
bool has_post_norm = false;
|
||||
bool has_patch_bias = false;
|
||||
|
||||
struct gguf_context * ctx_gguf;
|
||||
struct ggml_context * ctx_data;
|
||||
|
||||
|
@ -526,7 +533,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
||||
const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side);
|
||||
const int num_positions = num_patches + 1;
|
||||
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
||||
const int hidden_size = hparams.hidden_size;
|
||||
const int n_head = hparams.n_head;
|
||||
const int d_head = hidden_size / n_head;
|
||||
|
@ -557,16 +564,23 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
|
||||
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
|
||||
|
||||
if (ctx->has_patch_bias) {
|
||||
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
|
||||
inp = ggml_add(ctx0, inp, model.patch_bias);
|
||||
}
|
||||
|
||||
// concat class_embeddings and patch_embeddings
|
||||
struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
struct ggml_tensor * embeddings = inp;
|
||||
if (ctx->has_class_embedding) {
|
||||
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
|
||||
embeddings = ggml_acc(ctx0, embeddings, inp,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
}
|
||||
|
||||
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
|
||||
|
||||
embeddings = ggml_acc(ctx0, embeddings, inp,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
|
||||
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
|
||||
ggml_set_name(positions, "positions");
|
||||
|
@ -576,7 +590,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
|
||||
|
||||
// pre-layernorm
|
||||
{
|
||||
if (ctx->has_pre_norm) {
|
||||
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||
ggml_set_name(embeddings, "pre_ln");
|
||||
|
||||
|
@ -664,6 +678,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
embeddings = cur;
|
||||
}
|
||||
|
||||
// post-layernorm
|
||||
if (ctx->has_post_norm) {
|
||||
embeddings = ggml_norm(ctx0, embeddings, eps);
|
||||
ggml_set_name(embeddings, "post_ln");
|
||||
|
||||
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
|
||||
}
|
||||
|
||||
// llava projector
|
||||
{
|
||||
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
|
||||
|
@ -1148,12 +1170,39 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
|
||||
}
|
||||
|
||||
try {
|
||||
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
|
||||
new_clip->has_class_embedding = true;
|
||||
} catch (const std::exception& e) {
|
||||
new_clip->has_class_embedding = false;
|
||||
}
|
||||
|
||||
try {
|
||||
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
|
||||
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
|
||||
new_clip->has_pre_norm = true;
|
||||
} catch (std::exception & e) {
|
||||
new_clip->has_pre_norm = false;
|
||||
}
|
||||
|
||||
try {
|
||||
vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
|
||||
vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
|
||||
new_clip->has_post_norm = true;
|
||||
} catch (std::exception & e) {
|
||||
new_clip->has_post_norm = false;
|
||||
}
|
||||
|
||||
try {
|
||||
vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
|
||||
new_clip->has_patch_bias = true;
|
||||
} catch (std::exception & e) {
|
||||
new_clip->has_patch_bias = false;
|
||||
}
|
||||
|
||||
try {
|
||||
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
|
||||
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
|
||||
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
|
||||
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
|
||||
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
|
||||
} catch(const std::exception& e) {
|
||||
LOG_TEE("%s: failed to load vision model tensors\n", __func__);
|
||||
}
|
||||
|
@ -1797,7 +1846,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
const int image_size = hparams.image_size;
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
||||
const int num_positions = num_patches + 1;
|
||||
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
||||
|
||||
{
|
||||
struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
|
||||
|
@ -1825,12 +1874,14 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
if (ctx->has_class_embedding) {
|
||||
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
|
||||
void* zero_mem = malloc(ggml_nbytes(embeddings));
|
||||
memset(zero_mem, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
|
||||
free(zero_mem);
|
||||
void* zero_mem = malloc(ggml_nbytes(embeddings));
|
||||
memset(zero_mem, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
|
||||
free(zero_mem);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
|
|
|
@ -189,6 +189,11 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|||
LOG_TEE("\n");
|
||||
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
||||
if (!ctx_sampling) {
|
||||
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
std::string response = "";
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
||||
|
@ -295,14 +300,10 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
for (auto & image : params.image) {
|
||||
if (prompt_contains_image(params.prompt)) {
|
||||
auto ctx_llava = llava_init_context(¶ms, model);
|
||||
|
||||
auto image_embed = load_image(ctx_llava, ¶ms, image);
|
||||
if (!image_embed) {
|
||||
std::cerr << "error: failed to load image " << image << ". Terminating\n\n";
|
||||
return 1;
|
||||
}
|
||||
auto image_embed = load_image(ctx_llava, ¶ms, "");
|
||||
|
||||
// process the prompt
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
|
@ -311,7 +312,26 @@ int main(int argc, char ** argv) {
|
|||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
} else {
|
||||
for (auto & image : params.image) {
|
||||
auto ctx_llava = llava_init_context(¶ms, model);
|
||||
|
||||
auto image_embed = load_image(ctx_llava, ¶ms, image);
|
||||
if (!image_embed) {
|
||||
std::cerr << "error: failed to load image " << image << ". Terminating\n\n";
|
||||
return 1;
|
||||
}
|
||||
|
||||
// process the prompt
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
|
||||
llama_print_timings(ctx_llava->ctx_llama);
|
||||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
}
|
||||
}
|
||||
|
||||
llama_free_model(model);
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -524,6 +524,10 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
|
||||
if (!ctx_sampling) {
|
||||
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||
// predict
|
||||
|
@ -880,7 +884,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false, params.interactive_specials);
|
||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||
|
|
|
@ -7,6 +7,8 @@ Also note that finetunes typically result in a higher perplexity value even thou
|
|||
|
||||
Within llama.cpp the perplexity of base models is used primarily to judge the quality loss from e.g. quantized models vs. FP16.
|
||||
The convention among contributors is to use the Wikitext-2 test set for testing unless noted otherwise (can be obtained with `scripts/get-wikitext-2.sh`).
|
||||
When numbers are listed all command line arguments and compilation options are left at their defaults unless noted otherwise.
|
||||
llama.cpp numbers are **not** directly comparable to those of other projects because the exact values depend strongly on the implementation details.
|
||||
|
||||
By default only the mean perplexity value and the corresponding uncertainty is calculated.
|
||||
The uncertainty is determined empirically by assuming a Gaussian distribution of the "correct" logits per and then applying error propagation.
|
||||
|
@ -32,7 +34,13 @@ In addition to the KL divergence the following statistics are calculated with `-
|
|||
|
||||
## LLaMA 3 8b Scoreboard
|
||||
|
||||
Results are sorted by Kullback-Leibler divergence relative to FP16.
|
||||
| Revision | f364eb6f |
|
||||
|:---------|:-------------------|
|
||||
| Backend | CUDA |
|
||||
| CPU | AMD Epyc 7742 |
|
||||
| GPU | 1x NVIDIA RTX 4090 |
|
||||
|
||||
Results were generated using the CUDA backend and are sorted by Kullback-Leibler divergence relative to FP16.
|
||||
The "WT" importance matrices were created using varying numbers of Wikitext tokens and can be found [here](https://huggingface.co/JohannesGaessler/llama.cpp_importance_matrices/blob/main/imatrix-llama_3-8b-f16-2.7m_tokens.dat).
|
||||
|
||||
| Quantization | imatrix | Model size [GiB] | PPL | ΔPPL | KLD | Mean Δp | RMS Δp |
|
||||
|
@ -89,6 +97,12 @@ K-quants score better on mean Δp than the legacy quants than e.g. KL divergence
|
|||
|
||||
## LLaMA 2 vs. LLaMA 3 Quantization comparison
|
||||
|
||||
| Revision | f364eb6f |
|
||||
|:---------|:-------------------|
|
||||
| Backend | CUDA |
|
||||
| CPU | AMD Epyc 7742 |
|
||||
| GPU | 1x NVIDIA RTX 4090 |
|
||||
|
||||
| Metric | L2 7b q2_K | L3 8b q2_K | L2 7b q4_K_M | L3 8b q4_K_M | L2 7b q6_K | L3 8b q6_K | L2 7b q8_0 | L3 8b q8_0 |
|
||||
|-----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|
||||
| Mean PPL | 5.794552 ± 0.032298 | 9.751568 ± 0.063312 | 5.877078 ± 0.032781 | 6.407115 ± 0.039119 | 5.808494 ± 0.032425 | 6.253382 ± 0.038078 | 5.798542 ± 0.032366 | 6.234284 ± 0.037878 |
|
||||
|
@ -107,6 +121,50 @@ K-quants score better on mean Δp than the legacy quants than e.g. KL divergence
|
|||
| RMS Δp | 9.762 ± 0.053 % | 21.421 ± 0.079 % | 3.252 ± 0.024 % | 5.519 ± 0.050 % | 1.339 ± 0.010 % | 2.295 ± 0.019 % | 0.618 ± 0.011 % | 1.198 ± 0.007 % |
|
||||
| Same top p | 85.584 ± 0.086 % | 71.138 ± 0.119 % | 94.665 ± 0.055 % | 91.901 ± 0.072 % | 97.520 ± 0.038 % | 96.031 ± 0.051 % | 98.846 ± 0.026 % | 97.674 ± 0.040 % |
|
||||
|
||||
## LLaMA 3 BF16 vs. FP16 comparison
|
||||
|
||||
| Revision | 83330d8c |
|
||||
|:---------|:--------------|
|
||||
| Backend | CPU |
|
||||
| CPU | AMD Epyc 7742 |
|
||||
| GPU | N/A |
|
||||
|
||||
Results were calculated with LLaMA 3 8b BF16 as `--kl-divergence-base` and LLaMA 3 8b FP16 as the `--model` for comparison.
|
||||
|
||||
| Metric | Value |
|
||||
|--------------------------------|--------------------------|
|
||||
| Mean PPL(Q) | 6.227711 ± 0.037833 |
|
||||
| Mean PPL(base) | 6.225194 ± 0.037771 |
|
||||
| Cor(ln(PPL(Q)), ln(PPL(base))) | 99.990% |
|
||||
| Mean ln(PPL(Q)/PPL(base)) | 0.000404 ± 0.000086 |
|
||||
| Mean PPL(Q)/PPL(base) | 1.000404 ± 0.000086 |
|
||||
| Mean PPL(Q)-PPL(base) | 0.002517 ± 0.000536 |
|
||||
| Mean KLD | 0.00002515 ± 0.00000020 |
|
||||
| Maximum KLD | 0.012206 |
|
||||
| 99.9% KLD | 0.000799 |
|
||||
| 99.0% KLD | 0.000222 |
|
||||
| 99.0% KLD | 0.000222 |
|
||||
| Median KLD | 0.000013 |
|
||||
| 10.0% KLD | -0.000002 |
|
||||
| 5.0% KLD | -0.000008 |
|
||||
| 1.0% KLD | -0.000023 |
|
||||
| Minimum KLD | -0.000059 |
|
||||
| Mean Δp | -0.0000745 ± 0.0003952 % |
|
||||
| Maximum Δp | 4.186% |
|
||||
| 99.9% Δp | 1.049% |
|
||||
| 99.0% Δp | 0.439% |
|
||||
| 95.0% Δp | 0.207% |
|
||||
| 90.0% Δp | 0.125% |
|
||||
| 75.0% Δp | 0.029% |
|
||||
| Median Δp | 0.000% |
|
||||
| 25.0% Δp | -0.030% |
|
||||
| 10.0% Δp | -0.126% |
|
||||
| 5.0% Δp | -0.207% |
|
||||
| 1.0% Δp | -0.434% |
|
||||
| 0.1% Δp | -1.016% |
|
||||
| Minimum Δp | -4.672% |
|
||||
| RMS Δp | 0.150 ± 0.001 % |
|
||||
| Same top p | 99.739 ± 0.013 % |
|
||||
|
||||
## Old Numbers
|
||||
|
||||
|
|
|
@ -48,7 +48,7 @@ page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/
|
|||
- `--path`: Path from which to serve static files. Default: disabled
|
||||
- `--api-key`: Set an api key for request authorization. By default, the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: Path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`s.
|
||||
- `--embedding`: Enable embedding extraction. Default: disabled
|
||||
- `--embeddings`: Enable embedding vector output and the OAI compatible endpoint /v1/embeddings. Physical batch size (`--ubatch-size`) must be carefully defined. Default: disabled
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests. Default: `1`
|
||||
- `-cb`, `--cont-batching`: Enable continuous batching (a.k.a dynamic batching). Default: disabled
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load a system prompt (initial prompt of all slots). This is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
|
|
|
@ -652,9 +652,6 @@ struct server_context {
|
|||
std::string system_prompt;
|
||||
std::vector<llama_token> system_tokens;
|
||||
|
||||
std::string name_user; // this should be the antiprompt
|
||||
std::string name_assistant;
|
||||
|
||||
// slots / clients
|
||||
std::vector<server_slot> slots;
|
||||
json default_generation_settings_for_props;
|
||||
|
@ -674,6 +671,8 @@ struct server_context {
|
|||
llama_free_model(model);
|
||||
model = nullptr;
|
||||
}
|
||||
|
||||
llama_batch_free(batch);
|
||||
}
|
||||
|
||||
bool load_model(const gpt_params & params_) {
|
||||
|
@ -1099,15 +1098,11 @@ struct server_context {
|
|||
system_need_update = false;
|
||||
}
|
||||
|
||||
void system_prompt_set(const json & sys_props) {
|
||||
system_prompt = sys_props.value("prompt", "");
|
||||
name_user = sys_props.value("anti_prompt", "");
|
||||
name_assistant = sys_props.value("assistant_name", "");
|
||||
bool system_prompt_set(const std::string & sys_prompt) {
|
||||
system_prompt = sys_prompt;
|
||||
|
||||
LOG_VERBOSE("system prompt process", {
|
||||
{"system_prompt", system_prompt},
|
||||
{"name_user", name_user},
|
||||
{"name_assistant", name_assistant},
|
||||
});
|
||||
|
||||
// release all slots
|
||||
|
@ -1116,6 +1111,7 @@ struct server_context {
|
|||
}
|
||||
|
||||
system_need_update = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool process_token(completion_token_output & result, server_slot & slot) {
|
||||
|
@ -1535,7 +1531,8 @@ struct server_context {
|
|||
}
|
||||
|
||||
if (task.data.contains("system_prompt")) {
|
||||
system_prompt_set(task.data.at("system_prompt"));
|
||||
std::string sys_prompt = json_value(task.data, "system_prompt", std::string());
|
||||
system_prompt_set(sys_prompt);
|
||||
|
||||
for (server_slot & slot : slots) {
|
||||
slot.n_past = 0;
|
||||
|
@ -2271,10 +2268,10 @@ struct server_context {
|
|||
|
||||
const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs);
|
||||
if (n_probs > 0) {
|
||||
const size_t n_considered = slot.ctx_sampling->n_considered;
|
||||
const size_t n_valid = slot.ctx_sampling->n_valid;
|
||||
|
||||
// Make sure at least n_probs top tokens are at the front of the vector:
|
||||
if (slot.sparams.temp == 0.0f && n_probs > n_considered) {
|
||||
if (slot.sparams.temp == 0.0f && n_probs > n_valid) {
|
||||
llama_sample_top_k(ctx, &cur_p, n_probs, 0);
|
||||
}
|
||||
|
||||
|
@ -2290,7 +2287,7 @@ struct server_context {
|
|||
for (size_t i = 0; i < n_probs; ++i) {
|
||||
result.probs.push_back({
|
||||
cur_p.data[i].id,
|
||||
i >= n_considered ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
|
||||
i >= n_valid ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
|
||||
});
|
||||
}
|
||||
}
|
||||
|
@ -2919,7 +2916,7 @@ int main(int argc, char ** argv) {
|
|||
server_params_parse(argc, argv, sparams, params);
|
||||
|
||||
if (!sparams.system_prompt.empty()) {
|
||||
ctx_server.system_prompt_set(json::parse(sparams.system_prompt));
|
||||
ctx_server.system_prompt_set(sparams.system_prompt);
|
||||
}
|
||||
|
||||
if (params.model_alias == "unknown") {
|
||||
|
@ -3408,8 +3405,7 @@ int main(int argc, char ** argv) {
|
|||
const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
json data = {
|
||||
{ "user_name", ctx_server.name_user.c_str() },
|
||||
{ "assistant_name", ctx_server.name_assistant.c_str() },
|
||||
{ "system_prompt", ctx_server.system_prompt.c_str() },
|
||||
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
||||
{ "total_slots", ctx_server.params.n_parallel }
|
||||
};
|
||||
|
|
|
@ -887,6 +887,7 @@ async def oai_chat_completions(user_prompt,
|
|||
base_path,
|
||||
async_client,
|
||||
debug=False,
|
||||
temperature=None,
|
||||
model=None,
|
||||
n_predict=None,
|
||||
enable_streaming=None,
|
||||
|
@ -913,7 +914,8 @@ async def oai_chat_completions(user_prompt,
|
|||
"model": model,
|
||||
"max_tokens": n_predict,
|
||||
"stream": enable_streaming,
|
||||
"seed": seed
|
||||
"temperature": temperature if temperature is not None else 0.0,
|
||||
"seed": seed,
|
||||
}
|
||||
if response_format is not None:
|
||||
payload['response_format'] = response_format
|
||||
|
@ -978,7 +980,8 @@ async def oai_chat_completions(user_prompt,
|
|||
max_tokens=n_predict,
|
||||
stream=enable_streaming,
|
||||
response_format=payload.get('response_format'),
|
||||
seed=seed
|
||||
seed=seed,
|
||||
temperature=payload['temperature']
|
||||
)
|
||||
except openai.error.AuthenticationError as e:
|
||||
if expect_api_error is not None and expect_api_error:
|
||||
|
|
|
@ -371,7 +371,7 @@ static json oaicompat_completion_params_parse(
|
|||
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
||||
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
|
||||
llama_params["stream"] = json_value(body, "stream", false);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 1.0);
|
||||
llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
||||
|
||||
// Apply chat template to the list of messages
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue