mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 01:24:36 +00:00
initial files from sdcpp (not working)
This commit is contained in:
parent
ad638285de
commit
26696970ce
33 changed files with 582497 additions and 4 deletions
227
otherarch/sdcpp/preprocessing.hpp
Normal file
227
otherarch/sdcpp/preprocessing.hpp
Normal file
|
@ -0,0 +1,227 @@
|
|||
#ifndef __PREPROCESSING_HPP__
|
||||
#define __PREPROCESSING_HPP__
|
||||
|
||||
#include "ggml_extend.hpp"
|
||||
#define M_PI_ 3.14159265358979323846
|
||||
|
||||
void convolve(struct ggml_tensor* input, struct ggml_tensor* output, struct ggml_tensor* kernel, int padding) {
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = 20 * 1024 * 1024; // 10
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
struct ggml_context* ctx0 = ggml_init(params);
|
||||
struct ggml_tensor* kernel_fp16 = ggml_new_tensor_4d(ctx0, GGML_TYPE_F16, kernel->ne[0], kernel->ne[1], 1, 1);
|
||||
ggml_fp32_to_fp16_row((float*)kernel->data, (ggml_fp16_t*)kernel_fp16->data, ggml_nelements(kernel));
|
||||
ggml_tensor* h = ggml_conv_2d(ctx0, kernel_fp16, input, 1, 1, padding, padding, 1, 1);
|
||||
ggml_cgraph* gf = ggml_new_graph(ctx0);
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, h, output));
|
||||
ggml_graph_compute_with_ctx(ctx0, gf, 1);
|
||||
ggml_free(ctx0);
|
||||
}
|
||||
|
||||
void gaussian_kernel(struct ggml_tensor* kernel) {
|
||||
int ks_mid = kernel->ne[0] / 2;
|
||||
float sigma = 1.4f;
|
||||
float normal = 1.f / (2.0f * M_PI_ * powf(sigma, 2.0f));
|
||||
for (int y = 0; y < kernel->ne[0]; y++) {
|
||||
float gx = -ks_mid + y;
|
||||
for (int x = 0; x < kernel->ne[1]; x++) {
|
||||
float gy = -ks_mid + x;
|
||||
float k_ = expf(-((gx * gx + gy * gy) / (2.0f * powf(sigma, 2.0f)))) * normal;
|
||||
ggml_tensor_set_f32(kernel, k_, x, y);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void grayscale(struct ggml_tensor* rgb_img, struct ggml_tensor* grayscale) {
|
||||
for (int iy = 0; iy < rgb_img->ne[1]; iy++) {
|
||||
for (int ix = 0; ix < rgb_img->ne[0]; ix++) {
|
||||
float r = ggml_tensor_get_f32(rgb_img, ix, iy);
|
||||
float g = ggml_tensor_get_f32(rgb_img, ix, iy, 1);
|
||||
float b = ggml_tensor_get_f32(rgb_img, ix, iy, 2);
|
||||
float gray = 0.2989f * r + 0.5870f * g + 0.1140f * b;
|
||||
ggml_tensor_set_f32(grayscale, gray, ix, iy);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void prop_hypot(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) {
|
||||
int n_elements = ggml_nelements(h);
|
||||
float* dx = (float*)x->data;
|
||||
float* dy = (float*)y->data;
|
||||
float* dh = (float*)h->data;
|
||||
for (int i = 0; i < n_elements; i++) {
|
||||
dh[i] = sqrtf(dx[i] * dx[i] + dy[i] * dy[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void prop_arctan2(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) {
|
||||
int n_elements = ggml_nelements(h);
|
||||
float* dx = (float*)x->data;
|
||||
float* dy = (float*)y->data;
|
||||
float* dh = (float*)h->data;
|
||||
for (int i = 0; i < n_elements; i++) {
|
||||
dh[i] = atan2f(dy[i], dx[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void normalize_tensor(struct ggml_tensor* g) {
|
||||
int n_elements = ggml_nelements(g);
|
||||
float* dg = (float*)g->data;
|
||||
float max = -INFINITY;
|
||||
for (int i = 0; i < n_elements; i++) {
|
||||
max = dg[i] > max ? dg[i] : max;
|
||||
}
|
||||
max = 1.0f / max;
|
||||
for (int i = 0; i < n_elements; i++) {
|
||||
dg[i] *= max;
|
||||
}
|
||||
}
|
||||
|
||||
void non_max_supression(struct ggml_tensor* result, struct ggml_tensor* G, struct ggml_tensor* D) {
|
||||
for (int iy = 1; iy < result->ne[1] - 1; iy++) {
|
||||
for (int ix = 1; ix < result->ne[0] - 1; ix++) {
|
||||
float angle = ggml_tensor_get_f32(D, ix, iy) * 180.0f / M_PI_;
|
||||
angle = angle < 0.0f ? angle += 180.0f : angle;
|
||||
float q = 1.0f;
|
||||
float r = 1.0f;
|
||||
|
||||
// angle 0
|
||||
if ((0 >= angle && angle < 22.5f) || (157.5f >= angle && angle <= 180)) {
|
||||
q = ggml_tensor_get_f32(G, ix, iy + 1);
|
||||
r = ggml_tensor_get_f32(G, ix, iy - 1);
|
||||
}
|
||||
// angle 45
|
||||
else if (22.5f >= angle && angle < 67.5f) {
|
||||
q = ggml_tensor_get_f32(G, ix + 1, iy - 1);
|
||||
r = ggml_tensor_get_f32(G, ix - 1, iy + 1);
|
||||
}
|
||||
// angle 90
|
||||
else if (67.5f >= angle && angle < 112.5) {
|
||||
q = ggml_tensor_get_f32(G, ix + 1, iy);
|
||||
r = ggml_tensor_get_f32(G, ix - 1, iy);
|
||||
}
|
||||
// angle 135
|
||||
else if (112.5 >= angle && angle < 157.5f) {
|
||||
q = ggml_tensor_get_f32(G, ix - 1, iy - 1);
|
||||
r = ggml_tensor_get_f32(G, ix + 1, iy + 1);
|
||||
}
|
||||
|
||||
float cur = ggml_tensor_get_f32(G, ix, iy);
|
||||
if ((cur >= q) && (cur >= r)) {
|
||||
ggml_tensor_set_f32(result, cur, ix, iy);
|
||||
} else {
|
||||
ggml_tensor_set_f32(result, 0.0f, ix, iy);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void threshold_hystersis(struct ggml_tensor* img, float high_threshold, float low_threshold, float weak, float strong) {
|
||||
int n_elements = ggml_nelements(img);
|
||||
float* imd = (float*)img->data;
|
||||
float max = -INFINITY;
|
||||
for (int i = 0; i < n_elements; i++) {
|
||||
max = imd[i] > max ? imd[i] : max;
|
||||
}
|
||||
float ht = max * high_threshold;
|
||||
float lt = ht * low_threshold;
|
||||
for (int i = 0; i < n_elements; i++) {
|
||||
float img_v = imd[i];
|
||||
if (img_v >= ht) { // strong pixel
|
||||
imd[i] = strong;
|
||||
} else if (img_v <= ht && img_v >= lt) { // strong pixel
|
||||
imd[i] = weak;
|
||||
}
|
||||
}
|
||||
|
||||
for (int iy = 0; iy < img->ne[1]; iy++) {
|
||||
for (int ix = 0; ix < img->ne[0]; ix++) {
|
||||
if (ix >= 3 && ix <= img->ne[0] - 3 && iy >= 3 && iy <= img->ne[1] - 3) {
|
||||
ggml_tensor_set_f32(img, ggml_tensor_get_f32(img, ix, iy), ix, iy);
|
||||
} else {
|
||||
ggml_tensor_set_f32(img, 0.0f, ix, iy);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// hysteresis
|
||||
for (int iy = 1; iy < img->ne[1] - 1; iy++) {
|
||||
for (int ix = 1; ix < img->ne[0] - 1; ix++) {
|
||||
float imd_v = ggml_tensor_get_f32(img, ix, iy);
|
||||
if (imd_v == weak) {
|
||||
if (ggml_tensor_get_f32(img, ix + 1, iy - 1) == strong || ggml_tensor_get_f32(img, ix + 1, iy) == strong ||
|
||||
ggml_tensor_get_f32(img, ix, iy - 1) == strong || ggml_tensor_get_f32(img, ix, iy + 1) == strong ||
|
||||
ggml_tensor_get_f32(img, ix - 1, iy - 1) == strong || ggml_tensor_get_f32(img, ix - 1, iy) == strong) {
|
||||
ggml_tensor_set_f32(img, strong, ix, iy);
|
||||
} else {
|
||||
ggml_tensor_set_f32(img, 0.0f, ix, iy);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_threshold, float low_threshold, float weak, float strong, bool inverse) {
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
struct ggml_context* work_ctx = ggml_init(params);
|
||||
|
||||
if (!work_ctx) {
|
||||
LOG_ERROR("ggml_init() failed");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
float kX[9] = {
|
||||
-1, 0, 1,
|
||||
-2, 0, 2,
|
||||
-1, 0, 1};
|
||||
|
||||
float kY[9] = {
|
||||
1, 2, 1,
|
||||
0, 0, 0,
|
||||
-1, -2, -1};
|
||||
|
||||
// generate kernel
|
||||
int kernel_size = 5;
|
||||
struct ggml_tensor* gkernel = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, kernel_size, kernel_size, 1, 1);
|
||||
struct ggml_tensor* sf_kx = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 3, 3, 1, 1);
|
||||
memcpy(sf_kx->data, kX, ggml_nbytes(sf_kx));
|
||||
struct ggml_tensor* sf_ky = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 3, 3, 1, 1);
|
||||
memcpy(sf_ky->data, kY, ggml_nbytes(sf_ky));
|
||||
gaussian_kernel(gkernel);
|
||||
struct ggml_tensor* image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
|
||||
struct ggml_tensor* image_gray = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 1, 1);
|
||||
struct ggml_tensor* iX = ggml_dup_tensor(work_ctx, image_gray);
|
||||
struct ggml_tensor* iY = ggml_dup_tensor(work_ctx, image_gray);
|
||||
struct ggml_tensor* G = ggml_dup_tensor(work_ctx, image_gray);
|
||||
struct ggml_tensor* tetha = ggml_dup_tensor(work_ctx, image_gray);
|
||||
sd_image_to_tensor(img, image);
|
||||
grayscale(image, image_gray);
|
||||
convolve(image_gray, image_gray, gkernel, 2);
|
||||
convolve(image_gray, iX, sf_kx, 1);
|
||||
convolve(image_gray, iY, sf_ky, 1);
|
||||
prop_hypot(iX, iY, G);
|
||||
normalize_tensor(G);
|
||||
prop_arctan2(iX, iY, tetha);
|
||||
non_max_supression(image_gray, G, tetha);
|
||||
threshold_hystersis(image_gray, high_threshold, low_threshold, weak, strong);
|
||||
// to RGB channels
|
||||
for (int iy = 0; iy < height; iy++) {
|
||||
for (int ix = 0; ix < width; ix++) {
|
||||
float gray = ggml_tensor_get_f32(image_gray, ix, iy);
|
||||
gray = inverse ? 1.0f - gray : gray;
|
||||
ggml_tensor_set_f32(image, gray, ix, iy);
|
||||
ggml_tensor_set_f32(image, gray, ix, iy, 1);
|
||||
ggml_tensor_set_f32(image, gray, ix, iy, 2);
|
||||
}
|
||||
}
|
||||
free(img);
|
||||
uint8_t* output = sd_tensor_to_image(image);
|
||||
ggml_free(work_ctx);
|
||||
return output;
|
||||
}
|
||||
|
||||
#endif // __PREPROCESSING_HPP__
|
Loading…
Add table
Add a link
Reference in a new issue