mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 01:24:36 +00:00
Merge commit '32c8486e1f
' into concedo_experimental
# Conflicts: # .devops/nix/package.nix # CMakeLists.txt # Makefile # Package.swift # README.md # build.zig # llama.cpp # tests/test-backend-ops.cpp
This commit is contained in:
commit
22f543d09b
32 changed files with 3521 additions and 1792 deletions
|
@ -27,6 +27,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
|
@ -88,13 +89,17 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
|||
//
|
||||
[[noreturn]]
|
||||
static void usage(const char * executable) {
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
|
||||
printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
|
||||
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
|
||||
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
|
||||
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
|
||||
printf("\nAllowed quantization types:\n");
|
||||
for (auto & it : QUANT_OPTIONS) {
|
||||
|
@ -108,14 +113,14 @@ static void usage(const char * executable) {
|
|||
exit(1);
|
||||
}
|
||||
|
||||
static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
|
||||
static void load_imatrix(const std::string & imatrix_file, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
||||
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
|
||||
if (!in) {
|
||||
printf("%s: failed to open %s\n",__func__,imatrix_file.c_str());
|
||||
printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
|
||||
return;
|
||||
}
|
||||
int n_entries;
|
||||
in.read((char*)&n_entries, sizeof(n_entries));
|
||||
in.read((char *)&n_entries, sizeof(n_entries));
|
||||
if (in.fail() || n_entries < 1) {
|
||||
printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
|
||||
return;
|
||||
|
@ -125,25 +130,25 @@ static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std
|
|||
std::vector<char> name_as_vec(len+1);
|
||||
in.read((char *)name_as_vec.data(), len);
|
||||
if (in.fail()) {
|
||||
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file.c_str());
|
||||
printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
|
||||
return;
|
||||
}
|
||||
name_as_vec[len] = 0;
|
||||
std::string name{name_as_vec.data()};
|
||||
auto& e = imatrix_data[std::move(name)];
|
||||
auto & e = imatrix_data[std::move(name)];
|
||||
int ncall;
|
||||
in.read((char*)&ncall, sizeof(ncall));
|
||||
in.read((char *)&ncall, sizeof(ncall));
|
||||
int nval;
|
||||
in.read((char *)&nval, sizeof(nval));
|
||||
if (in.fail() || nval < 1) {
|
||||
printf("%s: failed reading number of values for entry %d\n",__func__,i);
|
||||
printf("%s: failed reading number of values for entry %d\n", __func__, i);
|
||||
imatrix_data = {};
|
||||
return;
|
||||
}
|
||||
e.resize(nval);
|
||||
in.read((char*)e.data(), nval*sizeof(float));
|
||||
in.read((char *)e.data(), nval*sizeof(float));
|
||||
if (in.fail()) {
|
||||
printf("%s: failed reading data for entry %d\n",__func__,i);
|
||||
printf("%s: failed reading data for entry %d\n", __func__, i);
|
||||
imatrix_data = {};
|
||||
return;
|
||||
}
|
||||
|
@ -151,13 +156,13 @@ static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std
|
|||
for (auto& v : e) v /= ncall;
|
||||
}
|
||||
}
|
||||
printf("%s: loaded %d importance matrix entries from %s\n",__func__,int(imatrix_data.size()),imatrix_file.c_str());
|
||||
printf("%s: loaded %d importance matrix entries from %s\n", __func__, int(imatrix_data.size()), imatrix_file.c_str());
|
||||
}
|
||||
|
||||
static void prepare_imatrix(const std::string& imatrix_file,
|
||||
const std::vector<std::string>& included_weights,
|
||||
const std::vector<std::string>& excluded_weights,
|
||||
std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
|
||||
static void prepare_imatrix(const std::string & imatrix_file,
|
||||
const std::vector<std::string> & included_weights,
|
||||
const std::vector<std::string> & excluded_weights,
|
||||
std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
||||
if (!imatrix_file.empty()) {
|
||||
load_imatrix(imatrix_file, imatrix_data);
|
||||
}
|
||||
|
@ -202,6 +207,43 @@ static ggml_type parse_ggml_type(const char * arg) {
|
|||
return result;
|
||||
}
|
||||
|
||||
static bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
|
||||
const char* sep = strchr(data, '=');
|
||||
if (sep == nullptr || sep - data >= 128) {
|
||||
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, data, sep - data);
|
||||
kvo.key[sep - data] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
overrides.emplace_back(std::move(kvo));
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
usage(argv[0]);
|
||||
|
@ -212,6 +254,7 @@ int main(int argc, char ** argv) {
|
|||
int arg_idx = 1;
|
||||
std::string imatrix_file;
|
||||
std::vector<std::string> included_weights, excluded_weights;
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
||||
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
|
||||
|
@ -228,6 +271,10 @@ int main(int argc, char ** argv) {
|
|||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
|
||||
if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
|
||||
params.allow_requantize = true;
|
||||
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
|
||||
|
@ -268,6 +315,11 @@ int main(int argc, char ** argv) {
|
|||
if (!imatrix_data.empty()) {
|
||||
params.imatrix = &imatrix_data;
|
||||
}
|
||||
if (!kv_overrides.empty()) {
|
||||
kv_overrides.emplace_back();
|
||||
kv_overrides.back().key[0] = 0;
|
||||
params.kv_overrides = &kv_overrides;
|
||||
}
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
|
@ -289,8 +341,7 @@ int main(int argc, char ** argv) {
|
|||
if (ftype_str == "COPY") {
|
||||
params.only_copy = true;
|
||||
}
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
fname_out = argv[arg_idx];
|
||||
arg_idx++;
|
||||
|
||||
|
@ -321,10 +372,12 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) && imatrix_data.empty()) {
|
||||
fprintf(stderr, "\n===============================================================================================\n");
|
||||
fprintf(stderr, "Please do not use IQ1_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
fprintf(stderr, "===============================================================================================\n\n\n");
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
|
||||
fprintf(stderr, "\n==========================================================================================================\n");
|
||||
fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
fprintf(stderr, "==========================================================================================================\n\n\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue