vulkan: fuse adds (#15252)

* vulkan: fuse adds

Fuse adds that have the same shape, which are common in MoE models.
It will currently fuse up to 6 adds, because we assume no more than
8 descriptors per dispatch. But this could be changed.

* check runtimeDescriptorArray feature

* disable multi_add for Intel due to likely driver bug
This commit is contained in:
Jeff Bolz 2025-08-16 11:48:22 -05:00 committed by GitHub
parent de2192794f
commit 1fe00296f5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 301 additions and 25 deletions

View file

@ -103,6 +103,8 @@ static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
struct ggml_backend_vk_context;
#define MAX_PARAMETER_COUNT 8
// Max number of adds that can be fused without exceeding MAX_PARAMETER_COUNT.
#define MAX_FUSED_ADDS (MAX_PARAMETER_COUNT - 2)
struct vk_pipeline_struct {
std::string name;
@ -368,6 +370,7 @@ struct vk_device_struct {
bool float_controls_rte_fp16;
bool subgroup_add;
bool subgroup_shuffle;
bool multi_add;
bool integer_dot_product;
@ -449,6 +452,9 @@ struct vk_device_struct {
vk_pipeline pipeline_div[2][2][2];
vk_pipeline pipeline_div_norepeat[2][2][2];
// indexed by num_additional_fused_ops == num_adds - 1
vk_pipeline pipeline_multi_add[MAX_FUSED_ADDS];
vk_pipeline pipeline_add_id_f32;
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
@ -801,6 +807,14 @@ struct vk_op_binary_push_constants {
float param1; float param2; int32_t param3;
};
struct vk_op_multi_add_push_constants {
// shape for dst
uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23;
// strides for srcs+dst
uint32_t nb[8][4];
};
struct vk_op_add_id_push_constants {
uint32_t ne0;
uint32_t ne1;
@ -2994,6 +3008,12 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_BINARY(div, _norepeat, {1})
#undef CREATE_BINARY
if (device->multi_add) {
for (uint32_t i = 0; i < MAX_FUSED_ADDS; ++i) {
ggml_vk_create_pipeline(device, device->pipeline_multi_add[i], "multi_add_f32_" + std::to_string(i+1), multi_add_f32_len, multi_add_f32_data, "main", MAX_PARAMETER_COUNT, sizeof(vk_op_multi_add_push_constants), {512, 1, 1}, {i+2}, 1);
}
}
ggml_vk_create_pipeline(device, device->pipeline_add_id_f32, "add_id_f32", add_id_f32_len, add_id_f32_data, "main", 4, sizeof(vk_op_add_id_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
@ -3533,6 +3553,12 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->pipeline_robustness = pl_robustness_features.pipelineRobustness;
device->multi_add = vk12_props.shaderRoundingModeRTEFloat16 &&
device->properties.limits.maxPushConstantsSize >= sizeof(vk_op_multi_add_push_constants) &&
vk12_features.runtimeDescriptorArray &&
device->vendor_id != VK_VENDOR_ID_INTEL &&
getenv("GGML_VK_DISABLE_MULTI_ADD") == nullptr;
if (device->subgroup_size_control) {
device->subgroup_min_size = subgroup_size_control_props.minSubgroupSize;
device->subgroup_max_size = subgroup_size_control_props.maxSubgroupSize;
@ -6887,6 +6913,9 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
switch (op) {
case GGML_OP_ADD:
{
if (ctx->num_additional_fused_ops > 0) {
return ctx->device->pipeline_multi_add[ctx->num_additional_fused_ops];
}
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_norepeat : ctx->device->pipeline_add;
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
}
@ -7743,6 +7772,107 @@ static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const
}, dryrun);
}
static void ggml_vk_multi_add(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx, bool dryrun = false) {
const ggml_tensor *first_node = cgraph->nodes[node_idx];
const ggml_tensor *dst = cgraph->nodes[node_idx + ctx->num_additional_fused_ops];
// Make a list of all the tensors used by the op.
// Last element of the list is the dest tensor.
const ggml_tensor *tensors[MAX_PARAMETER_COUNT];
uint32_t num_srcs = ctx->num_additional_fused_ops + 2;
uint32_t num_tensors = num_srcs + 1;
GGML_ASSERT(num_tensors <= MAX_PARAMETER_COUNT);
tensors[0] = first_node->src[0];
tensors[1] = first_node->src[1];
for (int32_t i = 0; i < ctx->num_additional_fused_ops; ++i) {
// check whether the previous result is src[0] or src[1]
if (cgraph->nodes[node_idx + i] == cgraph->nodes[node_idx + i + 1]->src[0]) {
tensors[i+2] = cgraph->nodes[node_idx + i + 1]->src[1];
} else {
tensors[i+2] = cgraph->nodes[node_idx + i + 1]->src[0];
}
}
tensors[num_srcs] = dst;
vk_op_multi_add_push_constants pc;
pc.ne20 = (uint32_t)dst->ne[0];
pc.ne21 = (uint32_t)dst->ne[1];
pc.ne22 = (uint32_t)dst->ne[2];
pc.ne23 = (uint32_t)dst->ne[3];
for (uint32_t i = 0; i < num_tensors; ++i) {
const ggml_tensor *t = tensors[i];
pc.nb[i][0] = (uint32_t)t->nb[0] / sizeof(float);
pc.nb[i][1] = (uint32_t)t->nb[1] / sizeof(float);
pc.nb[i][2] = (uint32_t)t->nb[2] / sizeof(float);
pc.nb[i][3] = (uint32_t)t->nb[3] / sizeof(float);
}
vk_pipeline pipeline = ctx->device->pipeline_multi_add[ctx->num_additional_fused_ops];
if (pipeline == nullptr) {
std::cerr << "ggml_vulkan: Error: Missing multi_add";
GGML_ABORT("fatal error");
}
if (dryrun) {
ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
return;
}
ggml_backend_vk_buffer_context * buf_ctx[MAX_PARAMETER_COUNT];
vk_buffer buf[MAX_PARAMETER_COUNT];
size_t offset[MAX_PARAMETER_COUNT];
bool uma[MAX_PARAMETER_COUNT];
for (uint32_t i = 0; i < num_tensors; ++i) {
buf_ctx[i] = (ggml_backend_vk_buffer_context *)tensors[i]->buffer->context;
buf[i] = nullptr;
offset[i] = 0;
uma[i] = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, tensors[i]->data, buf[i], offset[i]);
uma[i] = buf[i] != nullptr;
}
if (!uma[i]) {
buf[i] = buf_ctx[i]->dev_buffer;
offset[i] = vk_tensor_offset(tensors[i]) + tensors[i]->view_offs;
}
GGML_ASSERT(buf[i] != nullptr);
}
// If any remaining descriptors are unused, just point them at src[0]
for (uint32_t i = num_tensors; i < MAX_PARAMETER_COUNT; ++i) {
buf[i] = buf[0];
offset[i] = 0;
}
std::array<uint32_t, 3> elements;
uint32_t ne = ggml_nelements(dst);
if (ne > 262144) {
elements = { 512, 512, CEIL_DIV(ne, 262144) };
} else if (ne > 512) {
elements = { 512, CEIL_DIV(ne, 512), 1 };
} else {
elements = { ne, 1, 1 };
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
{
vk_subbuffer{ buf[0], offset[0], VK_WHOLE_SIZE },
vk_subbuffer{ buf[1], offset[1], VK_WHOLE_SIZE },
vk_subbuffer{ buf[2], offset[2], VK_WHOLE_SIZE },
vk_subbuffer{ buf[3], offset[3], VK_WHOLE_SIZE },
vk_subbuffer{ buf[4], offset[4], VK_WHOLE_SIZE },
vk_subbuffer{ buf[5], offset[5], VK_WHOLE_SIZE },
vk_subbuffer{ buf[6], offset[6], VK_WHOLE_SIZE },
vk_subbuffer{ buf[7], offset[7], VK_WHOLE_SIZE },
}, pc, elements);
}
static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
@ -9703,8 +9833,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
break;
case GGML_OP_ADD:
ggml_vk_add(ctx, compute_ctx, src0, src1, node, dryrun);
if (ctx->num_additional_fused_ops) {
ggml_vk_multi_add(ctx, compute_ctx, cgraph, node_idx, dryrun);
} else {
ggml_vk_add(ctx, compute_ctx, src0, src1, node, dryrun);
}
break;
case GGML_OP_SUB:
ggml_vk_sub(ctx, compute_ctx, src0, src1, node, dryrun);
@ -10586,6 +10719,58 @@ static bool ggml_vk_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, st
return true;
}
static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph, int node_idx) {
const ggml_tensor *first_node = cgraph->nodes[node_idx];
if (first_node->op != GGML_OP_ADD) {
return 0;
}
if (!ctx->device->multi_add) {
return 0;
}
int32_t num_adds = 1;
while (node_idx + num_adds < cgraph->n_nodes &&
cgraph->nodes[node_idx + num_adds]->op == GGML_OP_ADD &&
num_adds < MAX_FUSED_ADDS) {
num_adds++;
}
// The shader currently requires same shapes (but different strides are allowed),
// everything f32, and no misalignment
for (int32_t i = 0; i < num_adds; ++i) {
const ggml_tensor *next_node = cgraph->nodes[node_idx + i];
if (!ggml_are_same_shape(first_node, next_node->src[0]) ||
!ggml_are_same_shape(first_node, next_node->src[1]) ||
next_node->type != GGML_TYPE_F32 ||
next_node->src[0]->type != GGML_TYPE_F32 ||
next_node->src[1]->type != GGML_TYPE_F32 ||
get_misalign_bytes(ctx, next_node) ||
get_misalign_bytes(ctx, next_node->src[0]) ||
get_misalign_bytes(ctx, next_node->src[1])) {
num_adds = i;
}
}
// Verify we can fuse these
ggml_op adds[MAX_FUSED_ADDS];
for (int32_t i = 0; i < num_adds; ++i) {
adds[i] = GGML_OP_ADD;
}
// decrease num_adds if they can't all be fused
while (num_adds > 1 && !ggml_can_fuse(cgraph, node_idx, adds, num_adds)) {
num_adds--;
}
// a single add is not "fused", so just return zero
if (num_adds == 1) {
return 0;
}
return num_adds;
}
static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
@ -10599,8 +10784,13 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
uint64_t total_mat_mul_bytes = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
if (!ctx->device->disable_fusion && ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1;
if (!ctx->device->disable_fusion) {
uint32_t num_adds = ggml_vk_fuse_multi_add(ctx, cgraph, i);
if (num_adds) {
ctx->num_additional_fused_ops = num_adds - 1;
} else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1;
}
}
ggml_vk_build_graph(ctx, cgraph, i, nullptr, 0, true, false, false, false);
if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT || cgraph->nodes[i]->op == GGML_OP_MUL_MAT_ID) {
@ -10675,8 +10865,13 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
mul_mat_bytes += ggml_nbytes(cgraph->nodes[i]->src[0]);
}
if (!ctx->device->disable_fusion && ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1;
if (!ctx->device->disable_fusion) {
uint32_t num_adds = ggml_vk_fuse_multi_add(ctx, cgraph, i);
if (num_adds) {
ctx->num_additional_fused_ops = num_adds - 1;
} else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1;
}
}
// Signal the almost_ready fence when the graph is mostly complete (< 20% remaining)

View file

@ -2,6 +2,7 @@
#extension GL_EXT_control_flow_attributes : require
#include "rte.comp"
#include "utils.comp"
layout (push_constant) uniform parameter
{
@ -28,25 +29,9 @@ uint get_aoffset() { return p.misalign_offsets >> 16; }
uint get_boffset() { return (p.misalign_offsets >> 8) & 0xFF; }
uint get_doffset() { return p.misalign_offsets & 0xFF; }
// mod and div are expensive and coordinates/dimensions are often power of 2 or equal to 1
uint fastmod(uint a, uint b) {
if ((b & (b-1)) == 0) {
return a & (b-1);
}
return a % b;
}
uint fastdiv(uint a, uint b) {
return (a < b) ? 0 : (a / b);
}
void get_indices(uint idx, out uint i00, out uint i01, out uint i02, out uint i03) {
i03 = fastdiv(idx, (p.ne02*p.ne01*p.ne00));
const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
i02 = fastdiv((idx - i03_offset), (p.ne01*p.ne00));
const uint i02_offset = i02*p.ne01*p.ne00;
i01 = (idx - i03_offset - i02_offset) / p.ne00;
i00 = idx - i03_offset - i02_offset - i01*p.ne00;
get_indices(idx, i00, i01, i02, i03, p.ne00, p.ne01, p.ne02, p.ne03);
}
uint src0_idx(uint i00, uint i01, uint i02, uint i03) {

View file

@ -0,0 +1,68 @@
#version 450
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_control_flow_attributes : require
#include "rte.comp"
#include "types.comp"
#include "utils.comp"
layout (push_constant) uniform parameter2
{
// shape for dst
uint ne20; uint ne21; uint ne22; uint ne23;
// strides for srcs+dst
uint nb[8][4];
} p;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];} a[];
layout (binding = 0) writeonly buffer D {D_TYPE data_d[];} d[];
layout(constant_id = 0) const uint num_srcs = 2;
uint src_idx(uint s, uint i00, uint i01, uint i02, uint i03) {
return i03*p.nb[s][3] + i02*p.nb[s][2] + i01*p.nb[s][1] + i00*p.nb[s][0];
}
uint dst_idx(uint i00, uint i01, uint i02, uint i03) {
uint nb20 = p.nb[num_srcs][0];
uint nb21 = p.nb[num_srcs][1];
uint nb22 = p.nb[num_srcs][2];
uint nb23 = p.nb[num_srcs][3];
return i03*nb23 + i02*nb22 + i01*nb21 + i00*nb20;
}
uint get_idx() {
return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
}
const uint num_threads = 256;
layout(local_size_x = num_threads, local_size_y = 1, local_size_z = 1) in;
void main() {
uint idx = get_idx();
uint ne = p.ne20 * p.ne21 * p.ne22 * p.ne23;
// num_threads * num_iter must equal 512, to match the wg_denoms and get_idx calculation
const uint num_iter = 2;
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
if (idx >= ne) {
continue;
}
uint i00, i01, i02, i03;
get_indices(idx, i00, i01, i02, i03, p.ne20, p.ne21, p.ne22, p.ne23);
FLOAT_TYPE sum = FLOAT_TYPE(0);
[[unroll]] for (uint s = 0; s < num_srcs; ++s) {
sum += FLOAT_TYPE(a[s].data_a[src_idx(s, i00, i01, i02, i03)]);
}
d[num_srcs].data_d[dst_idx(i00, i01, i02, i03)] = D_TYPE(sum);
idx += num_threads;
}
}

View file

@ -0,0 +1,25 @@
#ifndef UTILS_COMP
#define UTILS_COMP
// mod and div are expensive and coordinates/dimensions are often power of 2 or equal to 1
uint fastmod(uint a, uint b) {
if ((b & (b-1)) == 0) {
return a & (b-1);
}
return a % b;
}
uint fastdiv(uint a, uint b) {
return (a < b) ? 0 : (a / b);
}
void get_indices(uint idx, out uint i00, out uint i01, out uint i02, out uint i03, uint ne00, uint ne01, uint ne02, uint ne03) {
i03 = fastdiv(idx, (ne02*ne01*ne00));
const uint i03_offset = i03 * ne02*ne01*ne00;
i02 = fastdiv((idx - i03_offset), (ne01*ne00));
const uint i02_offset = i02*ne01*ne00;
i01 = (idx - i03_offset - i02_offset) / ne00;
i00 = idx - i03_offset - i02_offset - i01*ne00;
}
#endif // UTILS_COMP

View file

@ -677,6 +677,8 @@ void process_shaders() {
string_to_spv("add_id_f32", "add_id.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("multi_add_f32", "multi_add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}});
for (auto &c : compiles) {
c.wait();
}

View file

@ -2491,12 +2491,12 @@ struct test_bin_bcast : public test_case {
: op(op), type(type), ne(ne), nr(nr), nf(nf) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
GGML_ASSERT(nf <= 8);
GGML_ASSERT(nf <= 16);
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
ggml_set_name(a, "a");
ggml_tensor * b[8];
ggml_tensor * b[16];
for (int i = 0; i < nf; ++i) {
b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
@ -5658,6 +5658,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
test_cases.emplace_back(new test_add1());
test_cases.emplace_back(new test_scale());