ggml: aarch64: Implement SVE F32 kernels for vector functions (#13843)

* F32-Mamba-SVE

* F32-Mamba-SVE

* Resolve test errors-1

* Resolve test errors-2

* F32-vec-SVE

* F32-vec-SVE

* F32-vec-SVE
This commit is contained in:
Vineel Abhinav 2025-05-29 11:31:33 +05:30 committed by GitHub
parent 53ae30640e
commit 1b8fb8152d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 522 additions and 147 deletions

View file

@ -5,6 +5,7 @@
#include "ggml-impl.h"
#include "simd-mappings.h"
#include "ggml.h"
#include "ggml-cpu.h"
#if defined(GGML_USE_ACCELERATE)
#include <Accelerate/Accelerate.h>
@ -148,27 +149,108 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
#if defined(__ARM_FEATURE_SVE)
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat32_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f32_step) {
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
GGML_F32_VEC_STORE(y + i, ay1);
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_FMA(ax2, vx, ay2);
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_FMA(ax3, vx, ay3);
GGML_F32_VEC_STORE(y + i + 2*ggml_f32_epr, ay3);
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_FMA(ax4, vx, ay4);
GGML_F32_VEC_STORE(y + i + 3*ggml_f32_epr, ay4);
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_FMA(ax5, vx, ay5);
GGML_F32_VEC_STORE(y + i + 4*ggml_f32_epr, ay5);
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_FMA(ax6, vx, ay6);
GGML_F32_VEC_STORE(y + i + 5*ggml_f32_epr, ay6);
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_FMA(ax7, vx, ay7);
GGML_F32_VEC_STORE(y + i + 6*ggml_f32_epr, ay7);
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_FMA(ax8, vx, ay8);
GGML_F32_VEC_STORE(y + i + 7*ggml_f32_epr, ay8);
}
}
// leftovers
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
const int np2 = (n & ~(ggml_f32_epr - 1));
for (int i = np; i < np2; i += ggml_f32_epr) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
// leftovers
for (int i = np; i < n; ++i) {
y[i] += x[i]*v;
}
GGML_F32_VEC_STORE(y + i, ay1);
}
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np2 < n) {
svbool_t pg =svwhilelt_b32(np2, n);
ax1 = svld1_f32(pg, x + np2);
ay1 = svld1_f32(pg, y + np2);
ay1 = svmad_f32_m(pg, ax1, vx, ay1);
svst1_f32(pg, y + np2, ay1);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] += x[i]*v;
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@ -220,36 +302,45 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
}
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = 0; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
// leftovers
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = np; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
}
}
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
}
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = np; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
}
#endif
#else
// scalar
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
@ -265,25 +356,53 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#if defined(GGML_USE_ACCELERATE)
vDSP_vsmul(y, 1, &v, y, 1, n);
#elif defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 2 * ggml_f32_epr;
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t ay1;
svfloat32_t ay2;
for (int i = 0; i < np; i += ggml_f32_step) {
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_MUL(ay1, vx);
GGML_F32_VEC_STORE(y + i, ay1);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_MUL(ay2, vx);
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
}
}
// leftovers
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np < n) {
svbool_t pg = svwhilelt_b32(np, n);
ay1 = svld1_f32(pg, y + np);
ay1 = svmul_f32_m(pg, ay1, vx);
svst1_f32(pg, y + np, ay1);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
// leftovers
for (int i = np; i < n; ++i) {
y[i] *= v;
}
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] *= v;
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {