Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	.github/workflows/build.yml
#	.github/workflows/docker.yml
#	.github/workflows/editorconfig.yml
#	examples/run/run.cpp
#	examples/server/README.md
#	scripts/sync-ggml.last
This commit is contained in:
Concedo 2025-01-09 16:50:29 +08:00
commit 1b49dc305f
18 changed files with 888 additions and 107 deletions

View file

@ -23,6 +23,11 @@ common_arg & common_arg::set_examples(std::initializer_list<enum llama_example>
return *this;
}
common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
this->excludes = std::move(excludes);
return *this;
}
common_arg & common_arg::set_env(const char * env) {
help = help + "\n(env: " + env + ")";
this->env = env;
@ -38,6 +43,10 @@ bool common_arg::in_example(enum llama_example ex) {
return examples.find(ex) != examples.end();
}
bool common_arg::is_exclude(enum llama_example ex) {
return excludes.find(ex) != excludes.end();
}
bool common_arg::get_value_from_env(std::string & output) {
if (env == nullptr) return false;
char * value = std::getenv(env);
@ -421,7 +430,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
* - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
*/
auto add_opt = [&](common_arg arg) {
if (arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) {
if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
ctx_arg.options.push_back(std::move(arg));
}
};
@ -650,7 +659,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) {
params.prompt = value;
}
));
).set_excludes({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--no-perf"},
string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
@ -674,7 +683,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.prompt.pop_back();
}
}
));
).set_excludes({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--in-file"}, "FNAME",
"an input file (repeat to specify multiple files)",
@ -701,7 +710,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.prompt = ss.str();
fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
}
));
).set_excludes({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-e", "--escape"},
string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),

View file

@ -12,6 +12,7 @@
struct common_arg {
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
std::set<enum llama_example> excludes = {};
std::vector<const char *> args;
const char * value_hint = nullptr; // help text or example for arg value
const char * value_hint_2 = nullptr; // for second arg value
@ -53,9 +54,11 @@ struct common_arg {
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
common_arg & set_examples(std::initializer_list<enum llama_example> examples);
common_arg & set_excludes(std::initializer_list<enum llama_example> excludes);
common_arg & set_env(const char * env);
common_arg & set_sparam();
bool in_example(enum llama_example ex);
bool is_exclude(enum llama_example ex);
bool get_value_from_env(std::string & output);
bool has_value_from_env();
std::string to_string();

View file

@ -226,6 +226,9 @@ def get_base_tensor_name(lora_tensor_name: str) -> str:
base_name = lora_tensor_name.replace("base_model.model.", "")
base_name = base_name.replace(".lora_A.weight", ".weight")
base_name = base_name.replace(".lora_B.weight", ".weight")
# models produced by mergekit-extract-lora have token embeddings in the adapter
base_name = base_name.replace(".lora_embedding_A", ".weight")
base_name = base_name.replace(".lora_embedding_B", ".weight")
return base_name
@ -260,6 +263,10 @@ def parse_args() -> argparse.Namespace:
"--base", type=Path,
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
)
parser.add_argument(
"--base-model-id", type=str,
help="the model ID of the base model, if it is not available locally or in the adapter config. If specified, it will ignore --base and load the base model config from the Hugging Face hub (Example: 'meta-llama/Llama-3.2-1B-Instruct')",
)
parser.add_argument(
"lora_path", type=Path,
help="directory containing Hugging Face PEFT LoRA config (adapter_model.json) and weights (adapter_model.safetensors or adapter_model.bin)",
@ -290,6 +297,7 @@ if __name__ == '__main__':
dir_base_model: Path | None = args.base
dir_lora: Path = args.lora_path
base_model_id: str | None = args.base_model_id
lora_config = dir_lora / "adapter_config.json"
input_model = dir_lora / "adapter_model.safetensors"
@ -313,7 +321,10 @@ if __name__ == '__main__':
lparams: dict[str, Any] = json.load(f)
# load base model
if dir_base_model is None:
if base_model_id is not None:
logger.info(f"Loading base model from Hugging Face: {base_model_id}")
hparams = load_hparams_from_hf(base_model_id)
elif dir_base_model is None:
if "base_model_name_or_path" in lparams:
model_id = lparams["base_model_name_or_path"]
logger.info(f"Loading base model from Hugging Face: {model_id}")
@ -371,11 +382,16 @@ if __name__ == '__main__':
if self.lazy:
tensor = LazyTorchTensor.from_eager(tensor)
base_name = get_base_tensor_name(name)
is_lora_a = ".lora_A.weight" in name
is_lora_b = ".lora_B.weight" in name
# note: mergekit-extract-lora also adds token embeddings to the adapter
is_lora_a = ".lora_A.weight" in name or ".lora_embedding_A" in name
is_lora_b = ".lora_B.weight" in name or ".lora_embedding_B" in name
if not is_lora_a and not is_lora_b:
if ".base_layer.weight" in name:
continue
# mergekit-extract-lora add these layernorm to the adapter, we need to keep them
if "_layernorm" in name or ".norm" in name:
yield (base_name, tensor)
continue
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
@ -407,9 +423,21 @@ if __name__ == '__main__':
if name == "lm_head.weight" and len(dest) == 0:
raise ValueError("lm_head is present in adapter, but is ignored in base model")
for dest_name, dest_data in dest:
# mergekit-extract-lora add these layernorm to the adapter
if "_norm" in dest_name:
assert dest_data.dim() == 1
yield (dest_name, dest_data)
continue
# otherwise, we must get the lora_A and lora_B tensors
assert isinstance(dest_data, LoraTorchTensor)
lora_a, lora_b = dest_data.get_lora_A_B()
# note: mergekit-extract-lora flip and transpose A and B
# here we only need to transpose token_embd.lora_a, see llm_build_inp_embd()
if "token_embd.weight" in dest_name:
lora_a = lora_a.T
yield (dest_name + ".lora_a", lora_a)
yield (dest_name + ".lora_b", lora_b)

View file

@ -575,4 +575,9 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
ggml_backend_load_best("opencl", silent, dir_path);
ggml_backend_load_best("musa", silent, dir_path);
ggml_backend_load_best("cpu", silent, dir_path);
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
if (backend_path) {
ggml_backend_load(backend_path);
}
}

View file

@ -54,6 +54,7 @@
#include "ggml-quants.h"
#include <atomic>
#include <array>
#ifdef _MSC_VER
#define NOINLINE __declspec(noinline)
@ -1051,6 +1052,704 @@ class tinyBLAS_Q0_AVX {
} \
} \
template <typename TA, typename TB, typename TC>
class tinyBLAS_Q0_PPC {
public:
tinyBLAS_Q0_PPC(int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
private:
template<int RM, int RN>
inline void save_res(int ii, int jj, int idx, vector float* fin_res) {
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&fin_res[idx+I]+J);
}
}
}
template<int size>
inline void compute(acc_t* ACC, int c_idx, int s_idx, std::array<int, size>& comparray, vector float* vs, vector float* fin_res) {
vector signed int vec_C[4];
vector float CA[4] = {0};
vector float res[4] = {0};
__builtin_mma_disassemble_acc(vec_C, ACC);
for (int i = 0; i < 4; i++) {
CA[i] = vec_splats((float)(((double)comparray[c_idx+i]) * -128.0));
res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]);
fin_res[s_idx+i] = vec_madd(res[i], vs[s_idx+i], fin_res[s_idx+i]);
}
}
template<typename VA, typename VB>
void packNormal(const TA* a, int64_t lda, int rows, int cols, VA* vec, bool flip) {
int64_t i, j;
TA *aoffset = NULL;
VA *vecOffset = NULL;
TA *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
TA *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
__vector_pair C1, C2, C3, C4, C5, C6, C7, C8;
VB c1[2] = {0}, c2[2] = {0}, c3[2] = {0}, c4[2]={0};
VB c5[2] = {0}, c6[2] = {0}, c7[2] = {0}, c8[2]={0};
VB t1, t2, t3, t4, t5, t6, t7, t8;
vector unsigned char xor_vector;
uint8_t flip_vec = 0x80;
xor_vector = vec_splats(flip_vec);
vector unsigned char swiz1 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
vector unsigned char swiz2 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27};
vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31};
aoffset = const_cast<TA*>(a);
vecOffset = vec;
j = (rows >> 3);
if (j > 0) {
do {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset5 = aoffset4 + lda;
aoffset6 = aoffset5 + lda;
aoffset7 = aoffset6 + lda;
aoffset8 = aoffset7 + lda;
aoffset += 8 * lda;
i = (cols >> 3);
if (i > 0) {
do {
C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1->qs);
C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2->qs);
C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3->qs);
C4 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset4->qs);
C5 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset5->qs);
C6 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset6->qs);
C7 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset7->qs);
C8 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset8->qs);
__builtin_vsx_disassemble_pair(c1, &C1);
__builtin_vsx_disassemble_pair(c2, &C2);
__builtin_vsx_disassemble_pair(c3, &C3);
__builtin_vsx_disassemble_pair(c4, &C4);
__builtin_vsx_disassemble_pair(c5, &C5);
__builtin_vsx_disassemble_pair(c6, &C6);
__builtin_vsx_disassemble_pair(c7, &C7);
__builtin_vsx_disassemble_pair(c8, &C8);
t1 = vec_perm(c1[0], c2[0], swiz1);
t2 = vec_perm(c1[0], c2[0], swiz2);
t3 = vec_perm(c3[0], c4[0], swiz1);
t4 = vec_perm(c3[0], c4[0], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
vec_xst(t7, 0, vecOffset+32);
vec_xst(t8, 0, vecOffset+48);
t1 = vec_perm(c1[1], c2[1], swiz1);
t2 = vec_perm(c1[1], c2[1], swiz2);
t3 = vec_perm(c3[1], c4[1], swiz1);
t4 = vec_perm(c3[1], c4[1], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset+64);
vec_xst(t6, 0, vecOffset+80);
vec_xst(t7, 0, vecOffset+96);
vec_xst(t8, 0, vecOffset+112);
t1 = vec_perm(c5[0], c6[0], swiz1);
t2 = vec_perm(c5[0], c6[0], swiz2);
t3 = vec_perm(c7[0], c8[0], swiz1);
t4 = vec_perm(c7[0], c8[0], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset+128);
vec_xst(t6, 0, vecOffset+144);
vec_xst(t7, 0, vecOffset+160);
vec_xst(t8, 0, vecOffset+176);
t1 = vec_perm(c5[1], c6[1], swiz1);
t2 = vec_perm(c5[1], c6[1], swiz2);
t3 = vec_perm(c7[1], c8[1], swiz1);
t4 = vec_perm(c7[1], c8[1], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset+192);
vec_xst(t6, 0, vecOffset+208);
vec_xst(t7, 0, vecOffset+224);
vec_xst(t8, 0, vecOffset+240);
aoffset1 += lda;
aoffset2 += lda;
aoffset3 += lda;
aoffset4 += lda;
aoffset5 += lda;
aoffset6 += lda;
aoffset7 += lda;
aoffset8 += lda;
vecOffset += 256;
i--;
} while(i > 0);
}
j--;
} while(j > 0);
}
if (rows & 4) {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset += 4 * lda;
i = (cols >> 3);
if (i > 0) {
do {
C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1->qs);
C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2->qs);
C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3->qs);
C4 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset4->qs);
__builtin_vsx_disassemble_pair(c1, &C1);
__builtin_vsx_disassemble_pair(c2, &C2);
__builtin_vsx_disassemble_pair(c3, &C3);
__builtin_vsx_disassemble_pair(c4, &C4);
t1 = vec_perm(c1[0], c2[0], swiz1);
t2 = vec_perm(c1[0], c2[0], swiz2);
t3 = vec_perm(c3[0], c4[0], swiz1);
t4 = vec_perm(c3[0], c4[0], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
vec_xst(t7, 0, vecOffset+32);
vec_xst(t8, 0, vecOffset+48);
t1 = vec_perm(c1[1], c2[1], swiz1);
t2 = vec_perm(c1[1], c2[1], swiz2);
t3 = vec_perm(c3[1], c4[1], swiz1);
t4 = vec_perm(c3[1], c4[1], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset+64);
vec_xst(t6, 0, vecOffset+80);
vec_xst(t7, 0, vecOffset+96);
vec_xst(t8, 0, vecOffset+112);
aoffset1 += lda;
aoffset2 += lda;
aoffset3 += lda;
aoffset4 += lda;
vecOffset += 128;
i--;
} while(i > 0);
}
}
if (rows & 3) {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
i = (cols >> 3);
if (i > 0) {
do {
switch(rows) {
case 3: C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3->qs);
__builtin_vsx_disassemble_pair(c3, &C3);
case 2: C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2->qs);
__builtin_vsx_disassemble_pair(c2, &C2);
case 1: C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1->qs);
__builtin_vsx_disassemble_pair(c1, &C1);
break;
}
t1 = vec_perm(c1[0], c2[0], swiz1);
t2 = vec_perm(c1[0], c2[0], swiz2);
t3 = vec_perm(c3[0], c4[0], swiz1);
t4 = vec_perm(c3[0], c4[0], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
vec_xst(t7, 0, vecOffset+32);
vec_xst(t8, 0, vecOffset+48);
t1 = vec_perm(c1[1], c2[1], swiz1);
t2 = vec_perm(c1[1], c2[1], swiz2);
t3 = vec_perm(c3[1], c4[1], swiz1);
t4 = vec_perm(c3[1], c4[1], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset+64);
vec_xst(t6, 0, vecOffset+80);
vec_xst(t7, 0, vecOffset+96);
vec_xst(t8, 0, vecOffset+112);
aoffset1 += lda;
aoffset2 += lda;
aoffset3 += lda;
vecOffset += 128;
i--;
} while(i > 0);
}
}
}
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
int m_rem = MIN(m - m0, 8);
int n_rem = MIN(n - n0, 8);
// TO-DO: KERNEL_16x8 and KERNEL_8x16 are having some performance
// issues. After resolving them, below code will be enabled.
/*if (m_rem >= 16 && n_rem >= 8) {
mc = 16;
nc = 8;
gemm<16,8>(m0, m, n0, n);
} else if(m_rem >= 8 && n_rem >= 16) {
mc = 8;
nc = 16;
gemm<8,16>(m0, m, n0, n);
}*/
if (m_rem >= 8 && n_rem >= 8) {
mc = 8;
nc = 8;
gemm<8,8>(m0, m, n0, n);
} else if (m_rem >= 4 && n_rem >= 8) {
mc = 4;
nc = 8;
gemm<4,8>(m0, m, n0, n);
} else if (m_rem >= 8 && n_rem >= 4) {
mc = 8;
nc = 4;
gemm<8,4>(m0, m, n0, n);
} else if (m_rem >= 4 && n_rem >= 4) {
mc = 4;
nc = 4;
gemm_small<4, 4>(m0, m, n0, n);
} else if ((m_rem < 4) && (n_rem > 4)) {
nc = 4;
switch(m_rem) {
case 1:
mc = 1;
gemm_small<1, 4>(m0, m, n0, n);
break;
case 2:
mc = 2;
gemm_small<2, 4>(m0, m, n0, n);
break;
case 3:
mc = 3;
gemm_small<3, 4>(m0, m, n0, n);
break;
default:
return;
}
} else if ((m_rem > 4) && (n_rem < 4)) {
mc = 4;
switch(n_rem) {
case 1:
nc = 1;
gemm_small<4, 1>(m0, m, n0, n);
break;
case 2:
nc = 2;
gemm_small<4, 2>(m0, m, n0, n);
break;
case 3:
nc = 3;
gemm_small<4, 3>(m0, m, n0, n);
break;
default:
return;
}
} else {
switch((m_rem << 4) | n_rem) {
case 0x43:
mc = 4;
nc = 3;
gemm_small<4, 3>(m0, m, n0, n);
break;
case 0x42:
mc = 4;
nc = 2;
gemm_small<4, 2>(m0, m, n0, n);
break;
case 0x41:
mc = 4;
nc = 1;
gemm_small<4, 1>(m0, m, n0, n);
break;
case 0x34:
mc = 3;
nc = 4;
gemm_small<3, 4>(m0, m, n0, n);
break;
case 0x33:
mc = 3;
nc = 3;
gemm_small<3, 3>(m0, m, n0, n);
break;
case 0x32:
mc = 3;
nc = 2;
gemm_small<3, 2>(m0, m, n0, n);
break;
case 0x31:
mc = 3;
nc = 1;
gemm_small<3, 1>(m0, m, n0, n);
break;
case 0x24:
mc = 2;
nc = 4;
gemm_small<2, 4>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm_small<2, 3>(m0, m, n0, n);
break;
case 0x22:
mc = 2;
nc = 2;
gemm_small<2, 2>(m0, m, n0, n);
break;
case 0x21:
mc = 2;
nc = 1;
gemm_small<2, 1>(m0, m, n0, n);
break;
case 0x14:
mc = 1;
nc = 4;
gemm_small<1, 4>(m0, m, n0, n);
break;
case 0x13:
mc = 1;
nc = 3;
gemm_small<1, 3>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm_small<1, 2>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm_small<1, 1>(m0, m, n0, n);
break;
default:
return;
}
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
void KERNEL_4x8(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[16] = {0};
acc_t acc_0, acc_1;
std::array<int, 4> comparray;
vector float fin_res[8] = {0};
vector float vs[8] = {0};
for (int l = 0; l < k; l++) {
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
packNormal<int8_t, vector signed char>((A+(ii*lda)+l), lda, 4, 8, (int8_t*)vec_A, false);
packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B, true);
for(int x = 0; x < 8; x++) {
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvi8ger4pp(&acc_1, vec_A[x], vec_B[x+8]);
}
for (int I = 0; I<4; I++) {
for (int J = 0; J<4; J++) {
*((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d));
*((float*)&vs[I+4]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J+4)*ldb)+l)->d));
}
}
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < 4; i++) {
comparray[i] = 0;
int ca = 0;
const int8_t *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
}
compute<4>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<4>(&acc_1, 0, 4, comparray, vs, fin_res);
}
save_res<4, 4>(ii, jj, 0, fin_res);
save_res<4, 4>(ii, jj+4, 4, fin_res);
}
void KERNEL_8x4(int64_t ii, int64_t jj) {
vec_t vec_A[16], vec_B[8] = {0};
acc_t acc_0, acc_1;
std::array<int, 8> comparray;
vector float fin_res[8] = {0};
vector float vs[8] = {0};
for (int l = 0; l < k; l++) {
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
packNormal<int8_t, vector signed char>((A+(ii*lda)+l), lda, 8, 8, (int8_t*)vec_A, false);
packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, 4, 8, (uint8_t*)vec_B, true);
for(int x = 0; x < 8; x++) {
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvi8ger4pp(&acc_1, vec_A[x+8], vec_B[x]);
}
for (int I = 0; I<8; I++) {
for (int J = 0; J<4; J++) {
*((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d));
}
}
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < 8; i++) {
comparray[i] = 0;
int ca = 0;
const int8_t *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
}
compute<8>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<8>(&acc_1, 4, 4, comparray, vs, fin_res);
}
save_res<4, 4>(ii, jj, 0, fin_res);
save_res<4, 4>(ii+4, jj, 4, fin_res);
}
void KERNEL_8x8(int64_t ii, int64_t jj) {
vec_t vec_A[16], vec_B[16] = {0};
acc_t acc_0, acc_1, acc_2, acc_3;
std::array<int, 8> comparray;
vector float fin_res[16] = {0};
vector float vs[16] = {0};
for (int l = 0; l < k; l++) {
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
__builtin_mma_xxsetaccz(&acc_2);
__builtin_mma_xxsetaccz(&acc_3);
packNormal<int8_t, vector signed char>((A+(ii*lda)+l), lda, 8, 8, (int8_t*)vec_A, false);
packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B, true);
for(int x = 0; x < 8; x++) {
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvi8ger4pp(&acc_1, vec_A[x+8], vec_B[x]);
__builtin_mma_xvi8ger4pp(&acc_2, vec_A[x], vec_B[x+8]);
__builtin_mma_xvi8ger4pp(&acc_3, vec_A[x+8], vec_B[x+8]);
}
for (int I = 0; I<8; I++) {
for (int J = 0; J<4; J++) {
*((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d));
*((float*)&vs[I+8]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J+4)*ldb)+l)->d));
}
}
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < 8; i++) {
comparray[i] = 0;
int ca = 0;
const int8_t *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
}
compute<8>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<8>(&acc_1, 4, 4, comparray, vs, fin_res);
compute<8>(&acc_2, 0, 8, comparray, vs, fin_res);
compute<8>(&acc_3, 4, 12, comparray, vs, fin_res);
}
save_res<4, 4>(ii, jj, 0, fin_res);
save_res<4, 4>(ii+4, jj, 4, fin_res);
save_res<4, 4>(ii, jj+4, 8, fin_res);
save_res<4, 4>(ii+4, jj+4, 12, fin_res);
}
template<int RM, int RN>
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
vec_t vec_A[8], vec_B[8] = {0};
vector signed int vec_C[4];
acc_t acc_0;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
std::array<int, RM> comparray;
vector float res[4] = {0};
vector float fin_res[4] = {0};
vector float vs[4] = {0};
vector float CA[4] = {0};
__builtin_prefetch((A+(ii*lda)+0)->qs, 0, 1); // prefetch first value
__builtin_prefetch((B+(jj*ldb)+0)->qs, 0, 1); // prefetch first value
for (int l = 0; l < k; l++) {
__builtin_prefetch((A+(ii*lda)+(l+1))->qs, 0, 1); // prefetch one loop ahead
__builtin_prefetch((B+(jj*ldb)+(l+1))->qs, 0, 1); // prefetch one loop ahead
__builtin_mma_xxsetaccz(&acc_0);
packNormal<int8_t, vector signed char>((A+(ii*lda)+l), lda, RM, 8, (int8_t*)vec_A, false);
packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, RN, 8, (uint8_t*)vec_B, true);
for(int x = 0; x < 8; x+=4) {
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x+1], vec_B[x+1]);
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x+2], vec_B[x+2]);
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x+3], vec_B[x+3]);
}
for (int I = 0; I<RM; I++) {
for (int J = 0; J<RN; J++) {
*((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d));
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_0);
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < RM; i++) {
comparray[i] = 0;
int ca = 0;
const int8_t *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
}
for (int i = 0; i < RM; i++) {
CA[i] = vec_splats((float)(((double)comparray[i]) * -128.0));
res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]);
fin_res[i] = vec_madd(res[i], vs[i], fin_res[i]);
}
}
save_res<RM, RN>(ii, jj, 0, fin_res);
}
}
template<int RM, int RN>
inline void kernel(int64_t ii, int64_t jj) {
if constexpr(RM == 4 && RN == 8) {
KERNEL_4x8(ii,jj);
} else if constexpr(RM == 8 && RN == 4) {
KERNEL_8x4(ii,jj);
} else if constexpr(RM == 8 && RN == 8) {
KERNEL_8x8(ii,jj);
} else {
static_assert(false, "RN/RM values not supported");
}
}
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
kernel<RM, RN>(ii, jj);
}
}
const TA *const A;
const TB *const B;
TC *C;
TA *At;
TB *Bt;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
template <typename TA, typename TB, typename TC>
class tinyBLAS_PPC {
public:
@ -1070,13 +1769,17 @@ class tinyBLAS_PPC {
void (tinyBLAS_PPC::*kernel)(int64_t, int64_t);
void READ_BLOCK(const float* a, int64_t lda, int rows, int cols, float* vec) {
template<typename VA>
void packTranspose(const TA* a, int64_t lda, int rows, int cols, TA* vec) {
int64_t i, j;
float *aoffset = NULL, *boffset = NULL;
float *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
float *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
aoffset = const_cast<float*>(a);
TA *aoffset = NULL, *boffset = NULL;
TA *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
TA *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
__vector_pair C1, C2, C3, C4, C5, C6, C7, C8;
VA c1[2] = {0}, c2[2] = {0}, c3[2] = {0}, c4[2] = {0};
VA c5[2] = {0}, c6[2] = {0}, c7[2] = {0}, c8[2] = {0};
VA t1, t2, t3, t4, t5, t6, t7, t8;
aoffset = const_cast<TA*>(a);
boffset = vec;
j = (rows >> 3);
if (j > 0) {
@ -1092,9 +1795,6 @@ class tinyBLAS_PPC {
aoffset += 8 * lda;
i = (cols >> 3);
if (i > 0) {
__vector_pair C1, C2, C3, C4, C5, C6, C7, C8;
vector float c1[2], c2[2], c3[2], c4[2], c5[2], c6[2], c7[2], c8[2];
vector float t1, t2, t3, t4, t5, t6, t7, t8;
do {
C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1);
C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2);
@ -1174,21 +1874,19 @@ class tinyBLAS_PPC {
} while(i > 0);
}
if (cols & 4) {
vector float c1, c2, c3, c4, c5, c6, c7, c8;
vector float t1, t2, t3, t4, t5, t6, t7, t8;
c1 = vec_xl(0, aoffset1);
c2 = vec_xl(0, aoffset2);
c3 = vec_xl(0, aoffset3);
c4 = vec_xl(0, aoffset4);
c5 = vec_xl(0, aoffset5);
c6 = vec_xl(0, aoffset6);
c7 = vec_xl(0, aoffset7);
c8 = vec_xl(0, aoffset8);
c1[0] = vec_xl(0, aoffset1);
c2[0] = vec_xl(0, aoffset2);
c3[0] = vec_xl(0, aoffset3);
c4[0] = vec_xl(0, aoffset4);
c5[0] = vec_xl(0, aoffset5);
c6[0] = vec_xl(0, aoffset6);
c7[0] = vec_xl(0, aoffset7);
c8[0] = vec_xl(0, aoffset8);
t1 = vec_mergeh(c1, c2);
t2 = vec_mergeh(c3, c4);
t3 = vec_mergeh(c5, c6);
t4 = vec_mergeh(c7, c8);
t1 = vec_mergeh(c1[0], c2[0]);
t2 = vec_mergeh(c3[0], c4[0]);
t3 = vec_mergeh(c5[0], c6[0]);
t4 = vec_mergeh(c7[0], c8[0]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
@ -1198,10 +1896,10 @@ class tinyBLAS_PPC {
vec_xst(t7, 0, boffset+8);
vec_xst(t8, 0, boffset+12);
t1 = vec_mergel(c1, c2);
t2 = vec_mergel(c3, c4);
t3 = vec_mergel(c5, c6);
t4 = vec_mergel(c7, c8);
t1 = vec_mergel(c1[0], c2[0]);
t2 = vec_mergel(c3[0], c4[0]);
t3 = vec_mergel(c5[0], c6[0]);
t4 = vec_mergel(c7[0], c8[0]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
@ -1223,9 +1921,6 @@ class tinyBLAS_PPC {
aoffset += 4 * lda;
i = (cols >> 3);
if (i > 0) {
__vector_pair C1, C2, C3, C4;
vector float c1[2], c2[2], c3[2], c4[2];
vector float t1, t2, t3, t4, t5, t6, t7, t8;
do {
C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1);
C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2);
@ -1272,22 +1967,20 @@ class tinyBLAS_PPC {
}
if (cols & 4) {
vector float c1, c2, c3, c4;
vector float t1, t2, t3, t4;
c1 = vec_xl(0, aoffset1);
c2 = vec_xl(0, aoffset2);
c3 = vec_xl(0, aoffset3);
c4 = vec_xl(0, aoffset4);
c1[0] = vec_xl(0, aoffset1);
c2[0] = vec_xl(0, aoffset2);
c3[0] = vec_xl(0, aoffset3);
c4[0] = vec_xl(0, aoffset4);
t1 = vec_mergeh(c1, c2);
t2 = vec_mergeh(c3, c4);
t1 = vec_mergeh(c1[0], c2[0]);
t2 = vec_mergeh(c3[0], c4[0]);
t3 = vec_xxpermdi(t1, t2, 0);
t4 = vec_xxpermdi(t1, t2, 3);
vec_xst(t3, 0, boffset);
vec_xst(t4, 0, boffset+4);
t1 = vec_mergel(c1, c2);
t2 = vec_mergel(c3, c4);
t1 = vec_mergel(c1[0], c2[0]);
t2 = vec_mergel(c3[0], c4[0]);
t3 = vec_xxpermdi(t1, t2, 0);
t4 = vec_xxpermdi(t1, t2, 3);
vec_xst(t3, 0, boffset+8);
@ -1299,21 +1992,19 @@ class tinyBLAS_PPC {
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
if (cols & 4) {
vector float c1, c2, c3, c4 = {0};
vector float t1, t2, t3, t4;
c1 = vec_xl(0, aoffset1);
c2 = vec_xl(0, aoffset2);
c3 = vec_xl(0, aoffset3);
c1[0] = vec_xl(0, aoffset1);
c2[0] = vec_xl(0, aoffset2);
c3[0] = vec_xl(0, aoffset3);
t1 = vec_mergeh(c1, c2);
t2 = vec_mergeh(c3, c4);
t1 = vec_mergeh(c1[0], c2[0]);
t2 = vec_mergeh(c3[0], c4[0]);
t3 = vec_xxpermdi(t1, t2, 0);
t4 = vec_xxpermdi(t1, t2, 3);
vec_xst(t3, 0, boffset);
vec_xst(t4, 0, boffset+4);
t1 = vec_mergel(c1, c2);
t2 = vec_mergel(c3, c4);
t1 = vec_mergel(c1[0], c2[0]);
t2 = vec_mergel(c3[0], c4[0]);
t3 = vec_xxpermdi(t1, t2, 0);
t4 = vec_xxpermdi(t1, t2, 3);
vec_xst(t3, 0, boffset+8);
@ -1321,14 +2012,13 @@ class tinyBLAS_PPC {
}
}
}
void KERNEL_4x4(int64_t ii, int64_t jj) {
vec_t vec_A[4], vec_B[4], vec_C[4];
acc_t acc_0;
__builtin_mma_xxsetaccz(&acc_0);
for (int l = 0; l < k; l+=4) {
READ_BLOCK(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
packTranspose<vector float>(A+(ii*lda)+l, lda, 4, 4, (TA*)vec_A);
packTranspose<vector float>(B+(jj*ldb)+l, ldb, 4, 4, (TA*)vec_B);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]);
@ -1343,8 +2033,8 @@ class tinyBLAS_PPC {
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int64_t l = 0; l < k; l+=4) {
READ_BLOCK(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
READ_BLOCK(B+(jj*ldb)+l, ldb, 8, 4, (float*)vec_B);
packTranspose<vector float>(A+(ii*lda)+l, lda, 4, 4, (TA*)vec_A);
packTranspose<vector float>(B+(jj*ldb)+l, ldb, 8, 4, (TA*)vec_B);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], (vec_t)vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_1, vec_A[0], (vec_t)vec_B[1]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], (vec_t)vec_B[2]);
@ -1364,8 +2054,8 @@ class tinyBLAS_PPC {
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int64_t l = 0; l < k; l+=4) {
READ_BLOCK(A+(ii*lda)+l, lda, 8, 4, (float*)vec_A);
READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
packTranspose<vector float>(A+(ii*lda)+l, lda, 8, 4, (TA*)vec_A);
packTranspose<vector float>(B+(jj*ldb)+l, ldb, 4, 4, (TA*)vec_B);
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[0], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[1], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[2], vec_B[1]);
@ -1387,8 +2077,8 @@ class tinyBLAS_PPC {
__builtin_mma_xxsetaccz(&acc_2);
__builtin_mma_xxsetaccz(&acc_3);
for (int l = 0; l < k; l+=8) {
READ_BLOCK(A+(ii*lda)+l, lda, 8, 8, (float*)vec_A);
READ_BLOCK(B+(jj*ldb)+l, ldb, 8, 8, (float*)vec_B);
packTranspose<vector float>(A+(ii*lda)+l, lda, 8, 8, (TA*)vec_A);
packTranspose<vector float>(B+(jj*ldb)+l, ldb, 8, 8, (TA*)vec_B);
for(int x = 0; x < 16; x+=2) {
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[x], vec_B[x]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x+1]);
@ -1571,15 +2261,15 @@ class tinyBLAS_PPC {
vec_t vec_A[4], vec_B[4];
for (int l=0; l<k; l+=4) {
if (RN >= 4 && RM == 1) {
float* a = const_cast<float*>(A+(ii)*lda+l);
READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
TA* a = const_cast<TA*>(A+(ii)*lda+l);
packTranspose<vector float>(B+(jj*ldb)+l, ldb, 4, 4, (TA*)vec_B);
vec_A[0] = (vec_t)vec_xl(0,a);
vec_A[1] = (vec_t)vec_splats(*((float*)&vec_A+1));
vec_A[2] = (vec_t)vec_splats(*((float*)&vec_A+2));
vec_A[3] = (vec_t)vec_splats(*((float*)&vec_A+3));
vec_A[1] = (vec_t)vec_splats(*((TA*)&vec_A+1));
vec_A[2] = (vec_t)vec_splats(*((TA*)&vec_A+2));
vec_A[3] = (vec_t)vec_splats(*((TA*)&vec_A+3));
} else {
READ_BLOCK(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A);
READ_BLOCK(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B);
packTranspose<vector float>(A+(ii*lda)+l, lda, RM, 4, (TA*)vec_A);
packTranspose<vector float>(B+(jj*ldb)+l, ldb, RN, 4, (TA*)vec_B);
}
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
@ -1589,7 +2279,7 @@ class tinyBLAS_PPC {
__builtin_mma_disassemble_acc(vec_C, &acc_0);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J);
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
}
}
}
@ -1812,6 +2502,20 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
params->ith, params->nth};
tb.matmul(m, n);
return true;
#elif defined(__MMA__)
if (n < 8 && n != 4)
return false;
if (m < 8 && m != 4)
return false;
tinyBLAS_Q0_PPC<block_q8_0, block_q8_0, float> tb{
k, (const block_q8_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
params->ith, params->nth};
tb.matmul(m, n);
return true;
#else
return false;
#endif

View file

@ -124,7 +124,7 @@ static __global__ void __launch_bounds__(CUDA_CONCAT_BLOCK_SIZE)
uint64_t nb1,
uint64_t nb2,
uint64_t nb3){
static_assert(dim >= 0 && dim <= 3);
static_assert(dim >= 0 && dim <= 3, "dim must be in [0, 3]");
const int64_t i3 = blockIdx.z;
const int64_t i2 = blockIdx.y;

View file

@ -15,13 +15,13 @@ pip install gguf
[examples/writer.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/examples/writer.py) — Generates `example.gguf` in the current directory to demonstrate generating a GGUF file. Note that this file cannot be used as a model.
[scripts/gguf_dump.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_dump.py) — Dumps a GGUF file's metadata to the console.
[gguf/scripts/gguf_dump.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/gguf/scripts/gguf_dump.py) — Dumps a GGUF file's metadata to the console.
[scripts/gguf_set_metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_set_metadata.py) — Allows changing simple metadata values in a GGUF file by key.
[gguf/scripts/gguf_set_metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/gguf/scripts/gguf_set_metadata.py) — Allows changing simple metadata values in a GGUF file by key.
[scripts/gguf_convert_endian.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_convert_endian.py) — Allows converting the endianness of GGUF files.
[gguf/scripts/gguf_convert_endian.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/gguf/scripts/gguf_convert_endian.py) — Allows converting the endianness of GGUF files.
[scripts/gguf_new_metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_new_metadata.py) — Copies a GGUF file with added/modified/removed metadata values.
[gguf/scripts/gguf_new_metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/gguf/scripts/gguf_new_metadata.py) — Copies a GGUF file with added/modified/removed metadata values.
## Development
Maintainers who participate in development of this package are advised to install it in editable mode:

View file

@ -1,12 +1,11 @@
[tool.poetry]
name = "gguf"
version = "0.13.0"
version = "0.14.0"
description = "Read and write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [
{include = "gguf"},
{include = "gguf/py.typed"},
{include = "scripts"},
]
readme = "README.md"
homepage = "https://ggml.ai"
@ -33,7 +32,7 @@ requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.poetry.scripts]
gguf-convert-endian = "scripts:gguf_convert_endian_entrypoint"
gguf-dump = "scripts:gguf_dump_entrypoint"
gguf-set-metadata = "scripts:gguf_set_metadata_entrypoint"
gguf-new-metadata = "scripts:gguf_new_metadata_entrypoint"
gguf-convert-endian = "gguf.scripts:gguf_convert_endian_entrypoint"
gguf-dump = "gguf.scripts:gguf_dump_entrypoint"
gguf-set-metadata = "gguf.scripts:gguf_set_metadata_entrypoint"
gguf-new-metadata = "gguf.scripts:gguf_new_metadata_entrypoint"

View file

@ -242,6 +242,10 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
} else {
ab_map[name].b = cur;
}
} else if (str_endswith(name, "_norm.weight")) {
// TODO: add support for norm vector
// for now, we don't really care because most adapters still work fine without it
continue;
} else {
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
}
@ -251,6 +255,7 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
for (auto & it : ab_map) {
const std::string & name = it.first;
llama_lora_weight & w = it.second;
bool is_token_embd = str_endswith(name, "token_embd.weight");
if (!w.a || !w.b) {
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
@ -259,17 +264,24 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
// device buft and device ctx
auto * model_tensor = llama_model_get_tensor(model, name.c_str());
if (!model_tensor) {
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
}
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
// validate tensor shape
if (is_token_embd) {
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) {
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
}
} else {
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
}
if (w.a->ne[1] != w.b->ne[0]) {
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
}
}
// save tensor to adapter
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);

View file

@ -45,6 +45,13 @@ struct llama_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
// get actual scale based on rank and alpha
float get_scale(float alpha, float adapter_scale) {
const float rank = (float) b->ne[0];
const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
return scale;
}
llama_lora_weight() = default;
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
};

View file

@ -7,14 +7,12 @@
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cinttypes>
#include <fstream>
#include <mutex>
#include <thread>
#include <unordered_map>
// TODO: replace with ggml API call
#define QK_K 256
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
@ -154,8 +152,10 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
new_type = qs.params->output_tensor_type;
} else {
int nx = tensor->ne[0];
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
const int64_t nx = tensor->ne[0];
const int64_t qk_k = ggml_blck_size(new_type);
if (arch == LLM_ARCH_FALCON || nx % qk_k != 0) {
new_type = GGML_TYPE_Q8_0;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
@ -367,20 +367,19 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
//}
bool convert_incompatible_tensor = false;
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
new_type == GGML_TYPE_IQ1_M) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
{
const int64_t nx = tensor->ne[0];
const int64_t ny = tensor->ne[1];
const int64_t qk_k = ggml_blck_size(new_type);
if (nx % qk_k != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type));
convert_incompatible_tensor = true;
} else {
++qs.n_k_quantized;
}
}
if (convert_incompatible_tensor) {
switch (new_type) {
case GGML_TYPE_TQ1_0:

View file

@ -2652,6 +2652,21 @@ static struct ggml_tensor * llm_build_inp_embd(
ggml_set_input(lctx.inp_tokens);
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
// apply lora for embedding tokens if needed
for (auto & it : lctx.lora_adapters) {
struct llama_lora_weight * lora = it.first->get_weight(tok_embd);
if (lora == nullptr) {
continue;
}
const float adapter_scale = it.second;
const float scale = lora->get_scale(it.first->alpha, adapter_scale);
struct ggml_tensor * inpL_delta = ggml_scale(ctx, ggml_mul_mat(
ctx, lora->b, // non-transposed lora_b
ggml_get_rows(ctx, lora->a, lctx.inp_tokens)
), scale);
inpL = ggml_add(ctx, inpL, inpL_delta);
}
} else {
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
inpL = lctx.inp_embd;
@ -2724,9 +2739,8 @@ static struct ggml_tensor * llm_build_lora_mm(
if (lora == nullptr) {
continue;
}
const float alpha = it.first->alpha;
const float rank = (float) lora->b->ne[0];
const float scale = alpha ? it.second * alpha / rank : it.second;
const float adapter_scale = it.second;
const float scale = lora->get_scale(it.first->alpha, adapter_scale);
struct ggml_tensor * ab_cur = ggml_mul_mat(
ctx0, lora->b,
ggml_mul_mat(ctx0, lora->a, cur)
@ -4092,6 +4106,7 @@ struct llm_build_context {
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);