mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-12 01:54:37 +00:00
sync with sd.cpp
This commit is contained in:
parent
e5af9b5ea9
commit
186227fc26
8 changed files with 234 additions and 82 deletions
|
@ -597,7 +597,6 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
|
|||
GGML_ASSERT(it != tokens.end()); // prompt must have trigger word
|
||||
tokens.erase(it);
|
||||
return decode(tokens);
|
||||
//return prompt; //kcpp we don't care about photomaker trigger words
|
||||
}
|
||||
|
||||
SDCondition get_learned_condition(ggml_context* work_ctx,
|
||||
|
@ -903,6 +902,7 @@ struct SD3CLIPEmbedder : public Conditioner {
|
|||
|
||||
t5->compute(n_threads,
|
||||
input_ids,
|
||||
NULL,
|
||||
&chunk_hidden_states_t5,
|
||||
work_ctx);
|
||||
{
|
||||
|
@ -1148,6 +1148,7 @@ struct FluxCLIPEmbedder : public Conditioner {
|
|||
|
||||
t5->compute(n_threads,
|
||||
input_ids,
|
||||
NULL,
|
||||
&chunk_hidden_states,
|
||||
work_ctx);
|
||||
{
|
||||
|
@ -1223,10 +1224,15 @@ struct PixArtCLIPEmbedder : public Conditioner {
|
|||
T5UniGramTokenizer t5_tokenizer;
|
||||
std::shared_ptr<T5Runner> t5;
|
||||
size_t chunk_len = 512;
|
||||
bool use_mask = false;
|
||||
int mask_pad = 1;
|
||||
|
||||
PixArtCLIPEmbedder(ggml_backend_t backend,
|
||||
std::map<std::string, enum ggml_type>& tensor_types,
|
||||
int clip_skip = -1) {
|
||||
int clip_skip = -1,
|
||||
bool use_mask = false,
|
||||
int mask_pad = 1)
|
||||
: use_mask(use_mask), mask_pad(mask_pad) {
|
||||
t5 = std::make_shared<T5Runner>(backend, tensor_types, "text_encoders.t5xxl.transformer");
|
||||
}
|
||||
|
||||
|
@ -1323,16 +1329,6 @@ struct PixArtCLIPEmbedder : public Conditioner {
|
|||
|
||||
size_t chunk_count = t5_tokens.size() / chunk_len;
|
||||
|
||||
bool use_mask = false;
|
||||
const char* SD_CHROMA_USE_T5_MASK = getenv("SD_CHROMA_USE_T5_MASK");
|
||||
if (SD_CHROMA_USE_T5_MASK != nullptr) {
|
||||
std::string sd_chroma_use_t5_mask_str = SD_CHROMA_USE_T5_MASK;
|
||||
if (sd_chroma_use_t5_mask_str == "ON" || sd_chroma_use_t5_mask_str == "TRUE") {
|
||||
use_mask = true;
|
||||
} else if (sd_chroma_use_t5_mask_str != "OFF" && sd_chroma_use_t5_mask_str != "FALSE") {
|
||||
LOG_WARN("SD_CHROMA_USE_T5_MASK environment variable has unexpected value. Assuming default (\"OFF\"). (Expected \"OFF\"/\"FALSE\" or\"ON\"/\"TRUE\", got \"%s\")", SD_CHROMA_USE_T5_MASK);
|
||||
}
|
||||
}
|
||||
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
|
||||
// t5
|
||||
std::vector<int> chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len,
|
||||
|
@ -1347,9 +1343,9 @@ struct PixArtCLIPEmbedder : public Conditioner {
|
|||
|
||||
t5->compute(n_threads,
|
||||
input_ids,
|
||||
t5_attn_mask_chunk,
|
||||
&chunk_hidden_states,
|
||||
work_ctx,
|
||||
t5_attn_mask_chunk);
|
||||
work_ctx);
|
||||
{
|
||||
auto tensor = chunk_hidden_states;
|
||||
float original_mean = ggml_tensor_mean(tensor);
|
||||
|
@ -1391,18 +1387,6 @@ struct PixArtCLIPEmbedder : public Conditioner {
|
|||
ggml_set_f32(hidden_states, 0.f);
|
||||
}
|
||||
|
||||
int mask_pad = 1;
|
||||
const char* SD_CHROMA_MASK_PAD_OVERRIDE = getenv("SD_CHROMA_MASK_PAD_OVERRIDE");
|
||||
if (SD_CHROMA_MASK_PAD_OVERRIDE != nullptr) {
|
||||
std::string mask_pad_str = SD_CHROMA_MASK_PAD_OVERRIDE;
|
||||
try {
|
||||
mask_pad = std::stoi(mask_pad_str);
|
||||
} catch (const std::invalid_argument&) {
|
||||
LOG_WARN("SD_CHROMA_MASK_PAD_OVERRIDE environment variable is not a valid integer (%s). Falling back to default (%d)", SD_CHROMA_MASK_PAD_OVERRIDE, mask_pad);
|
||||
} catch (const std::out_of_range&) {
|
||||
LOG_WARN("SD_CHROMA_MASK_PAD_OVERRIDE environment variable value is out of range for `int` type (%s). Falling back to default (%d)", SD_CHROMA_MASK_PAD_OVERRIDE, mask_pad);
|
||||
}
|
||||
}
|
||||
modify_mask_to_attend_padding(t5_attn_mask, ggml_nelements(t5_attn_mask), mask_pad);
|
||||
|
||||
return SDCondition(hidden_states, t5_attn_mask, NULL);
|
||||
|
|
|
@ -137,8 +137,9 @@ struct FluxModel : public DiffusionModel {
|
|||
FluxModel(ggml_backend_t backend,
|
||||
std::map<std::string, enum ggml_type>& tensor_types,
|
||||
SDVersion version = VERSION_FLUX,
|
||||
bool flash_attn = false)
|
||||
: flux(backend, tensor_types, "model.diffusion_model", version, flash_attn) {
|
||||
bool flash_attn = false,
|
||||
bool use_mask = false)
|
||||
: flux(backend, tensor_types, "model.diffusion_model", version, flash_attn, use_mask) {
|
||||
}
|
||||
|
||||
void alloc_params_buffer() {
|
||||
|
|
|
@ -744,10 +744,10 @@ namespace Flux {
|
|||
return ids;
|
||||
}
|
||||
|
||||
|
||||
// Generate positional embeddings
|
||||
std::vector<float> gen_pe(int h, int w, int patch_size, int bs, int context_len, std::vector<ggml_tensor*> ref_latents, int theta, const std::vector<int>& axes_dim) {
|
||||
std::vector<std::vector<float>> ids = gen_ids(h, w, patch_size, bs, context_len, ref_latents);
|
||||
|
||||
std::vector<std::vector<float>> trans_ids = transpose(ids);
|
||||
size_t pos_len = ids.size();
|
||||
int num_axes = axes_dim.size();
|
||||
|
@ -872,7 +872,7 @@ namespace Flux {
|
|||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* arange = NULL,
|
||||
struct ggml_tensor* mod_index_arange = NULL,
|
||||
std::vector<int> skip_layers = {}) {
|
||||
auto img_in = std::dynamic_pointer_cast<Linear>(blocks["img_in"]);
|
||||
auto txt_in = std::dynamic_pointer_cast<Linear>(blocks["txt_in"]);
|
||||
|
@ -887,9 +887,10 @@ namespace Flux {
|
|||
auto distill_timestep = ggml_nn_timestep_embedding(ctx, timesteps, 16, 10000, 1000.f);
|
||||
auto distill_guidance = ggml_nn_timestep_embedding(ctx, guidance, 16, 10000, 1000.f);
|
||||
|
||||
// auto arange = ggml_arange(ctx, 0, (float)mod_index_length, 1); // Not working on a lot of backends, precomputing it on CPU instead
|
||||
// auto mod_index_arange = ggml_arange(ctx, 0, (float)mod_index_length, 1);
|
||||
// ggml_arange tot working on a lot of backends, precomputing it on CPU instead
|
||||
GGML_ASSERT(arange != NULL);
|
||||
auto modulation_index = ggml_nn_timestep_embedding(ctx, arange, 32, 10000, 1000.f); // [1, 344, 32]
|
||||
auto modulation_index = ggml_nn_timestep_embedding(ctx, mod_index_arange, 32, 10000, 1000.f); // [1, 344, 32]
|
||||
|
||||
// Batch broadcast (will it ever be useful)
|
||||
modulation_index = ggml_repeat(ctx, modulation_index, ggml_new_tensor_3d(ctx, GGML_TYPE_F32, modulation_index->ne[0], modulation_index->ne[1], img->ne[2])); // [N, 344, 32]
|
||||
|
@ -982,7 +983,7 @@ namespace Flux {
|
|||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
struct ggml_tensor* pe,
|
||||
struct ggml_tensor* arange = NULL,
|
||||
struct ggml_tensor* mod_index_arange = NULL,
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
std::vector<int> skip_layers = {}) {
|
||||
// Forward pass of DiT.
|
||||
|
@ -1024,7 +1025,7 @@ namespace Flux {
|
|||
}
|
||||
}
|
||||
|
||||
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe, arange, skip_layers); // [N, num_tokens, C * patch_size * patch_size]
|
||||
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe, mod_index_arange, skip_layers); // [N, num_tokens, C * patch_size * patch_size]
|
||||
if (out->ne[1] > img_tokens) {
|
||||
out = ggml_cont(ctx, ggml_permute(ctx, out, 0, 2, 1, 3)); // [num_tokens, N, C * patch_size * patch_size]
|
||||
out = ggml_view_3d(ctx, out, out->ne[0], out->ne[1], img_tokens, out->nb[1], out->nb[2], 0);
|
||||
|
@ -1044,15 +1045,18 @@ namespace Flux {
|
|||
public:
|
||||
FluxParams flux_params;
|
||||
Flux flux;
|
||||
std::vector<float> pe_vec, range; // for cache
|
||||
std::vector<float> pe_vec;
|
||||
std::vector<float> mod_index_arange_vec; // for cache
|
||||
SDVersion version;
|
||||
bool use_mask = false;
|
||||
|
||||
FluxRunner(ggml_backend_t backend,
|
||||
std::map<std::string, enum ggml_type>& tensor_types = empty_tensor_types,
|
||||
const std::string prefix = "",
|
||||
SDVersion version = VERSION_FLUX,
|
||||
bool flash_attn = false)
|
||||
: GGMLRunner(backend) {
|
||||
bool flash_attn = false,
|
||||
bool use_mask = false)
|
||||
: GGMLRunner(backend), use_mask(use_mask) {
|
||||
flux_params.flash_attn = flash_attn;
|
||||
flux_params.guidance_embed = false;
|
||||
flux_params.depth = 0;
|
||||
|
@ -1116,51 +1120,28 @@ namespace Flux {
|
|||
struct ggml_tensor* y,
|
||||
struct ggml_tensor* guidance,
|
||||
std::vector<ggml_tensor*> ref_latents = {},
|
||||
std::vector<int> skip_layers = std::vector<int>()) {
|
||||
std::vector<int> skip_layers = {}) {
|
||||
GGML_ASSERT(x->ne[3] == 1);
|
||||
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, FLUX_GRAPH_SIZE, false);
|
||||
|
||||
struct ggml_tensor* precompute_arange = NULL;
|
||||
struct ggml_tensor* mod_index_arange = NULL;
|
||||
|
||||
x = to_backend(x);
|
||||
context = to_backend(context);
|
||||
if (c_concat != NULL) {
|
||||
c_concat = to_backend(c_concat);
|
||||
}
|
||||
|
||||
if (flux_params.is_chroma) {
|
||||
const char* SD_CHROMA_ENABLE_GUIDANCE = getenv("SD_CHROMA_ENABLE_GUIDANCE");
|
||||
bool disable_guidance = true;
|
||||
if (SD_CHROMA_ENABLE_GUIDANCE != NULL) {
|
||||
std::string enable_guidance_str = SD_CHROMA_ENABLE_GUIDANCE;
|
||||
if (enable_guidance_str == "ON" || enable_guidance_str == "TRUE") {
|
||||
LOG_WARN("Chroma guidance has been enabled. Image might be broken. (SD_CHROMA_ENABLE_GUIDANCE env variable to \"OFF\" to disable)", SD_CHROMA_ENABLE_GUIDANCE);
|
||||
disable_guidance = false;
|
||||
} else if (enable_guidance_str != "OFF" && enable_guidance_str != "FALSE") {
|
||||
LOG_WARN("SD_CHROMA_ENABLE_GUIDANCE environment variable has unexpected value. Assuming default (\"OFF\"). (Expected \"ON\"/\"TRUE\" or\"OFF\"/\"FALSE\", got \"%s\")", SD_CHROMA_ENABLE_GUIDANCE);
|
||||
}
|
||||
}
|
||||
if (disable_guidance) {
|
||||
// LOG_DEBUG("Forcing guidance to 0 for chroma model (SD_CHROMA_ENABLE_GUIDANCE env variable to \"ON\" to enable)");
|
||||
guidance = ggml_set_f32(guidance, 0);
|
||||
guidance = ggml_set_f32(guidance, 0);
|
||||
|
||||
if (!use_mask) {
|
||||
y = NULL;
|
||||
}
|
||||
|
||||
|
||||
const char* SD_CHROMA_USE_DIT_MASK = getenv("SD_CHROMA_USE_DIT_MASK");
|
||||
if (SD_CHROMA_USE_DIT_MASK != nullptr) {
|
||||
std::string sd_chroma_use_DiT_mask_str = SD_CHROMA_USE_DIT_MASK;
|
||||
if (sd_chroma_use_DiT_mask_str == "OFF" || sd_chroma_use_DiT_mask_str == "FALSE") {
|
||||
y = NULL;
|
||||
} else if (sd_chroma_use_DiT_mask_str != "ON" && sd_chroma_use_DiT_mask_str != "TRUE") {
|
||||
LOG_WARN("SD_CHROMA_USE_DIT_MASK environment variable has unexpected value. Assuming default (\"ON\"). (Expected \"ON\"/\"TRUE\" or\"OFF\"/\"FALSE\", got \"%s\")", SD_CHROMA_USE_DIT_MASK);
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_arrange is not working on some backends, and y isn't used, so let's reuse y to precompute it
|
||||
range = arange(0, 344);
|
||||
precompute_arange = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_F32, range.size());
|
||||
set_backend_tensor_data(precompute_arange, range.data());
|
||||
// y = NULL;
|
||||
// ggml_arange is not working on some backends, precompute it
|
||||
mod_index_arange_vec = arange(0, 344);
|
||||
mod_index_arange = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_F32, mod_index_arange_vec.size());
|
||||
set_backend_tensor_data(mod_index_arange, mod_index_arange_vec.data());
|
||||
}
|
||||
y = to_backend(y);
|
||||
|
||||
|
@ -1189,7 +1170,7 @@ namespace Flux {
|
|||
y,
|
||||
guidance,
|
||||
pe,
|
||||
precompute_arange,
|
||||
mod_index_arange,
|
||||
ref_latents,
|
||||
skip_layers);
|
||||
|
||||
|
|
|
@ -128,6 +128,10 @@ struct SDParams {
|
|||
float slg_scale = 0.f;
|
||||
float skip_layer_start = 0.01f;
|
||||
float skip_layer_end = 0.2f;
|
||||
|
||||
bool chroma_use_dit_mask = true;
|
||||
bool chroma_use_t5_mask = false;
|
||||
int chroma_t5_mask_pad = 1;
|
||||
};
|
||||
|
||||
void print_params(SDParams params) {
|
||||
|
@ -177,6 +181,9 @@ void print_params(SDParams params) {
|
|||
printf(" batch_count: %d\n", params.batch_count);
|
||||
printf(" vae_tiling: %s\n", params.vae_tiling ? "true" : "false");
|
||||
printf(" upscale_repeats: %d\n", params.upscale_repeats);
|
||||
printf(" chroma_use_dit_mask: %s\n", params.chroma_use_dit_mask ? "true" : "false");
|
||||
printf(" chroma_use_t5_mask: %s\n", params.chroma_use_t5_mask ? "true" : "false");
|
||||
printf(" chroma_t5_mask_pad: %d\n", params.chroma_t5_mask_pad);
|
||||
}
|
||||
|
||||
void print_usage(int argc, const char* argv[]) {
|
||||
|
@ -243,6 +250,9 @@ void print_usage(int argc, const char* argv[]) {
|
|||
printf(" --control-net-cpu keep controlnet in cpu (for low vram)\n");
|
||||
printf(" --canny apply canny preprocessor (edge detection)\n");
|
||||
printf(" --color Colors the logging tags according to level\n");
|
||||
printf(" --chroma-disable-dit-mask disable dit mask for chroma\n");
|
||||
printf(" --chroma-enable-t5-mask enable t5 mask for chroma\n");
|
||||
printf(" --chroma-t5-mask-pad PAD_SIZE t5 mask pad size of chroma\n");
|
||||
printf(" -v, --verbose print extra info\n");
|
||||
printf(" -ki, --kontext_img [PATH] Reference image for Flux Kontext models (can be used multiple times) \n");
|
||||
}
|
||||
|
@ -938,7 +948,10 @@ int main(int argc, const char* argv[]) {
|
|||
params.clip_on_cpu,
|
||||
params.control_net_cpu,
|
||||
params.vae_on_cpu,
|
||||
params.diffusion_flash_attn);
|
||||
params.diffusion_flash_attn,
|
||||
params.chroma_use_dit_mask,
|
||||
params.chroma_use_t5_mask,
|
||||
params.chroma_t5_mask_pad);
|
||||
|
||||
if (sd_ctx == NULL) {
|
||||
printf("new_sd_ctx_t failed\n");
|
||||
|
|
|
@ -104,6 +104,10 @@ struct SDParams {
|
|||
float slg_scale = 0.f;
|
||||
float skip_layer_start = 0.01f;
|
||||
float skip_layer_end = 0.2f;
|
||||
|
||||
bool chroma_use_dit_mask = true;
|
||||
bool chroma_use_t5_mask = false;
|
||||
int chroma_t5_mask_pad = 1;
|
||||
};
|
||||
|
||||
//shared
|
||||
|
@ -272,7 +276,10 @@ bool sdtype_load_model(const sd_load_model_inputs inputs) {
|
|||
sd_params->clip_on_cpu,
|
||||
sd_params->control_net_cpu,
|
||||
sd_params->vae_on_cpu,
|
||||
sd_params->diffusion_flash_attn);
|
||||
sd_params->diffusion_flash_attn,
|
||||
sd_params->chroma_use_dit_mask,
|
||||
sd_params->chroma_use_t5_mask,
|
||||
sd_params->chroma_t5_mask_pad);
|
||||
|
||||
if (sd_ctx == NULL) {
|
||||
printf("\nError: KCPP SD Failed to create context!\nIf using Flux/SD3.5, make sure you have ALL files required (e.g. VAE, T5, Clip...) or baked in!\n");
|
||||
|
|
|
@ -159,7 +159,10 @@ public:
|
|||
bool clip_on_cpu,
|
||||
bool control_net_cpu,
|
||||
bool vae_on_cpu,
|
||||
bool diffusion_flash_attn) {
|
||||
bool diffusion_flash_attn,
|
||||
bool chroma_use_dit_mask,
|
||||
bool chroma_use_t5_mask,
|
||||
int chroma_t5_mask_pad) {
|
||||
use_tiny_autoencoder = taesd_path.size() > 0;
|
||||
std::string taesd_path_fixed = taesd_path;
|
||||
is_loaded_chroma = false;
|
||||
|
@ -391,11 +394,11 @@ public:
|
|||
}
|
||||
}
|
||||
if (is_chroma) {
|
||||
cond_stage_model = std::make_shared<PixArtCLIPEmbedder>(clip_backend, model_loader.tensor_storages_types);
|
||||
cond_stage_model = std::make_shared<PixArtCLIPEmbedder>(clip_backend, model_loader.tensor_storages_types, -1, chroma_use_t5_mask, chroma_t5_mask_pad);
|
||||
} else {
|
||||
cond_stage_model = std::make_shared<FluxCLIPEmbedder>(clip_backend, model_loader.tensor_storages_types);
|
||||
}
|
||||
diffusion_model = std::make_shared<FluxModel>(backend, model_loader.tensor_storages_types, version, diffusion_flash_attn);
|
||||
diffusion_model = std::make_shared<FluxModel>(backend, model_loader.tensor_storages_types, version, diffusion_flash_attn, chroma_use_dit_mask);
|
||||
} else {
|
||||
if (id_embeddings_path.find("v2") != std::string::npos) {
|
||||
cond_stage_model = std::make_shared<FrozenCLIPEmbedderWithCustomWords>(clip_backend, model_loader.tensor_storages_types, embeddings_path, version, PM_VERSION_2);
|
||||
|
@ -1337,7 +1340,10 @@ sd_ctx_t* new_sd_ctx(const char* model_path_c_str,
|
|||
bool keep_clip_on_cpu,
|
||||
bool keep_control_net_cpu,
|
||||
bool keep_vae_on_cpu,
|
||||
bool diffusion_flash_attn) {
|
||||
bool diffusion_flash_attn,
|
||||
bool chroma_use_dit_mask,
|
||||
bool chroma_use_t5_mask,
|
||||
int chroma_t5_mask_pad) {
|
||||
sd_ctx_t* sd_ctx = (sd_ctx_t*)malloc(sizeof(sd_ctx_t));
|
||||
if (sd_ctx == NULL) {
|
||||
return NULL;
|
||||
|
@ -1379,7 +1385,10 @@ sd_ctx_t* new_sd_ctx(const char* model_path_c_str,
|
|||
keep_clip_on_cpu,
|
||||
keep_control_net_cpu,
|
||||
keep_vae_on_cpu,
|
||||
diffusion_flash_attn)) {
|
||||
diffusion_flash_attn,
|
||||
chroma_use_dit_mask,
|
||||
chroma_use_t5_mask,
|
||||
chroma_t5_mask_pad)) {
|
||||
delete sd_ctx->sd;
|
||||
sd_ctx->sd = NULL;
|
||||
free(sd_ctx);
|
||||
|
@ -2231,5 +2240,133 @@ SD_API sd_image_t* img2vid(sd_ctx_t* sd_ctx,
|
|||
|
||||
LOG_INFO("img2vid completed in %.2fs", (t3 - t0) * 1.0f / 1000);
|
||||
|
||||
return result_images;
|
||||
}
|
||||
|
||||
sd_image_t* edit(sd_ctx_t* sd_ctx,
|
||||
sd_image_t* ref_images,
|
||||
int ref_images_count,
|
||||
const char* prompt_c_str,
|
||||
const char* negative_prompt_c_str,
|
||||
int clip_skip,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
float eta,
|
||||
int width,
|
||||
int height,
|
||||
sample_method_t sample_method,
|
||||
int sample_steps,
|
||||
float strength,
|
||||
int64_t seed,
|
||||
int batch_count,
|
||||
const sd_image_t* control_cond,
|
||||
float control_strength,
|
||||
float style_ratio,
|
||||
bool normalize_input,
|
||||
int* skip_layers = NULL,
|
||||
size_t skip_layers_count = 0,
|
||||
float slg_scale = 0,
|
||||
float skip_layer_start = 0.01,
|
||||
float skip_layer_end = 0.2) {
|
||||
std::vector<int> skip_layers_vec(skip_layers, skip_layers + skip_layers_count);
|
||||
LOG_DEBUG("edit %dx%d", width, height);
|
||||
if (sd_ctx == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
if (ref_images_count <= 0) {
|
||||
LOG_ERROR("ref images count should > 0");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = static_cast<size_t>(30 * 1024 * 1024); // 10 MB
|
||||
params.mem_size += width * height * 3 * sizeof(float) * 3 * ref_images_count;
|
||||
params.mem_size *= batch_count;
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
// LOG_DEBUG("mem_size %u ", params.mem_size);
|
||||
|
||||
struct ggml_context* work_ctx = ggml_init(params);
|
||||
if (!work_ctx) {
|
||||
LOG_ERROR("ggml_init() failed");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (seed < 0) {
|
||||
srand((int)time(NULL));
|
||||
seed = rand();
|
||||
}
|
||||
sd_ctx->sd->rng->manual_seed(seed);
|
||||
|
||||
int C = 4;
|
||||
if (sd_version_is_sd3(sd_ctx->sd->version)) {
|
||||
C = 16;
|
||||
} else if (sd_version_is_flux(sd_ctx->sd->version)) {
|
||||
C = 16;
|
||||
}
|
||||
int W = width / 8;
|
||||
int H = height / 8;
|
||||
ggml_tensor* init_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, 1);
|
||||
if (sd_version_is_sd3(sd_ctx->sd->version)) {
|
||||
ggml_set_f32(init_latent, 0.0609f);
|
||||
} else if (sd_version_is_flux(sd_ctx->sd->version)) {
|
||||
ggml_set_f32(init_latent, 0.1159f);
|
||||
} else {
|
||||
ggml_set_f32(init_latent, 0.f);
|
||||
}
|
||||
|
||||
size_t t0 = ggml_time_ms();
|
||||
|
||||
std::vector<struct ggml_tensor*> ref_latents;
|
||||
for (int i = 0; i < ref_images_count; i++) {
|
||||
ggml_tensor* img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, ref_images[i].width, ref_images[i].height, 3, 1);
|
||||
sd_image_to_tensor(ref_images[i].data, img);
|
||||
|
||||
ggml_tensor* latent = NULL;
|
||||
if (!sd_ctx->sd->use_tiny_autoencoder) {
|
||||
ggml_tensor* moments = sd_ctx->sd->encode_first_stage(work_ctx, img);
|
||||
latent = sd_ctx->sd->get_first_stage_encoding(work_ctx, moments);
|
||||
} else {
|
||||
latent = sd_ctx->sd->encode_first_stage(work_ctx, img);
|
||||
}
|
||||
ref_latents.push_back(latent);
|
||||
}
|
||||
|
||||
size_t t1 = ggml_time_ms();
|
||||
LOG_INFO("encode_first_stage completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
|
||||
|
||||
std::vector<float> sigmas = sd_ctx->sd->denoiser->get_sigmas(sample_steps);
|
||||
|
||||
sd_image_t* result_images = generate_image(sd_ctx,
|
||||
work_ctx,
|
||||
init_latent,
|
||||
prompt_c_str,
|
||||
negative_prompt_c_str,
|
||||
clip_skip,
|
||||
cfg_scale,
|
||||
guidance,
|
||||
eta,
|
||||
width,
|
||||
height,
|
||||
sample_method,
|
||||
sigmas,
|
||||
seed,
|
||||
batch_count,
|
||||
control_cond,
|
||||
control_strength,
|
||||
style_ratio,
|
||||
normalize_input,
|
||||
"",
|
||||
ref_latents,
|
||||
skip_layers_vec,
|
||||
slg_scale,
|
||||
skip_layer_start,
|
||||
skip_layer_end,
|
||||
NULL);
|
||||
|
||||
size_t t2 = ggml_time_ms();
|
||||
|
||||
LOG_INFO("edit completed in %.2fs", (t2 - t0) * 1.0f / 1000);
|
||||
|
||||
return result_images;
|
||||
}
|
|
@ -154,7 +154,10 @@ SD_API sd_ctx_t* new_sd_ctx(const char* model_path,
|
|||
bool keep_clip_on_cpu,
|
||||
bool keep_control_net_cpu,
|
||||
bool keep_vae_on_cpu,
|
||||
bool diffusion_flash_attn);
|
||||
bool diffusion_flash_attn,
|
||||
bool chroma_use_dit_mask,
|
||||
bool chroma_use_t5_mask,
|
||||
int chroma_t5_mask_pad);
|
||||
|
||||
SD_API void free_sd_ctx(sd_ctx_t* sd_ctx);
|
||||
|
||||
|
@ -230,6 +233,32 @@ SD_API sd_image_t* img2vid(sd_ctx_t* sd_ctx,
|
|||
float strength,
|
||||
int64_t seed);
|
||||
|
||||
SD_API sd_image_t* edit(sd_ctx_t* sd_ctx,
|
||||
sd_image_t* ref_images,
|
||||
int ref_images_count,
|
||||
const char* prompt,
|
||||
const char* negative_prompt,
|
||||
int clip_skip,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
float eta,
|
||||
int width,
|
||||
int height,
|
||||
enum sample_method_t sample_method,
|
||||
int sample_steps,
|
||||
float strength,
|
||||
int64_t seed,
|
||||
int batch_count,
|
||||
const sd_image_t* control_cond,
|
||||
float control_strength,
|
||||
float style_strength,
|
||||
bool normalize_input,
|
||||
int* skip_layers,
|
||||
size_t skip_layers_count,
|
||||
float slg_scale,
|
||||
float skip_layer_start,
|
||||
float skip_layer_end);
|
||||
|
||||
typedef struct upscaler_ctx_t upscaler_ctx_t;
|
||||
|
||||
SD_API upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path,
|
||||
|
|
|
@ -795,9 +795,9 @@ struct T5Runner : public GGMLRunner {
|
|||
|
||||
void compute(const int n_threads,
|
||||
struct ggml_tensor* input_ids,
|
||||
struct ggml_tensor* attention_mask,
|
||||
ggml_tensor** output,
|
||||
ggml_context* output_ctx = NULL,
|
||||
struct ggml_tensor* attention_mask = NULL) {
|
||||
ggml_context* output_ctx = NULL) {
|
||||
auto get_graph = [&]() -> struct ggml_cgraph* {
|
||||
return build_graph(input_ids, attention_mask);
|
||||
};
|
||||
|
@ -966,7 +966,7 @@ struct T5Embedder {
|
|||
struct ggml_tensor* out = NULL;
|
||||
|
||||
int t0 = ggml_time_ms();
|
||||
model.compute(8, input_ids, &out, work_ctx);
|
||||
model.compute(8, input_ids, NULL, &out, work_ctx);
|
||||
int t1 = ggml_time_ms();
|
||||
|
||||
print_ggml_tensor(out);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue