Concedo 2025-06-20 11:13:04 +08:00
parent b925bbfc6d
commit 175c99081e
2 changed files with 226 additions and 29 deletions

View file

@ -470,7 +470,10 @@ __STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
struct ggml_tensor* output, struct ggml_tensor* output,
int x, int x,
int y, int y,
int overlap) { int overlap_x,
int overlap_y,
int x_skip = 0,
int y_skip = 0) {
int64_t width = input->ne[0]; int64_t width = input->ne[0];
int64_t height = input->ne[1]; int64_t height = input->ne[1];
int64_t channels = input->ne[2]; int64_t channels = input->ne[2];
@ -479,17 +482,17 @@ __STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
int64_t img_height = output->ne[1]; int64_t img_height = output->ne[1];
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32); GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
for (int iy = 0; iy < height; iy++) { for (int iy = y_skip; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) { for (int ix = x_skip; ix < width; ix++) {
for (int k = 0; k < channels; k++) { for (int k = 0; k < channels; k++) {
float new_value = ggml_tensor_get_f32(input, ix, iy, k); float new_value = ggml_tensor_get_f32(input, ix, iy, k);
if (overlap > 0) { // blend colors in overlapped area if (overlap_x > 0 || overlap_y > 0) { // blend colors in overlapped area
float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k); float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k);
const float x_f_0 = (x > 0) ? ix / float(overlap) : 1; const float x_f_0 = (overlap_x > 0 && x > 0) ? (ix - x_skip) / float(overlap_x) : 1;
const float x_f_1 = (x < (img_width - width)) ? (width - ix) / float(overlap) : 1; const float x_f_1 = (overlap_x > 0 && x < (img_width - width)) ? (width - ix) / float(overlap_x) : 1;
const float y_f_0 = (y > 0) ? iy / float(overlap) : 1; const float y_f_0 = (overlap_y > 0 && y > 0) ? (iy - y_skip) / float(overlap_y) : 1;
const float y_f_1 = (y < (img_height - height)) ? (height - iy) / float(overlap) : 1; const float y_f_1 = (overlap_y > 0 && y < (img_height - height)) ? (height - iy) / float(overlap_y) : 1;
const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f); const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f);
const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f); const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f);
@ -602,21 +605,96 @@ __STATIC_INLINE__ void ggml_tensor_scale_output(struct ggml_tensor* src) {
typedef std::function<void(ggml_tensor*, ggml_tensor*, bool)> on_tile_process; typedef std::function<void(ggml_tensor*, ggml_tensor*, bool)> on_tile_process;
__STATIC_INLINE__ void
sd_tiling_calc_tiles(int &num_tiles_dim, float& tile_overlap_factor_dim, int small_dim, int tile_size, const float tile_overlap_factor) {
int tile_overlap = (tile_size * tile_overlap_factor);
int non_tile_overlap = tile_size - tile_overlap;
num_tiles_dim = (small_dim - tile_overlap) / non_tile_overlap;
int overshoot_dim = ((num_tiles_dim + 1) * non_tile_overlap + tile_overlap) % small_dim;
if ((overshoot_dim != non_tile_overlap) && (overshoot_dim <= num_tiles_dim * (tile_size / 2 - tile_overlap))) {
// if tiles don't fit perfectly using the desired overlap
// and there is enough room to squeeze an extra tile without overlap becoming >0.5
num_tiles_dim++;
}
tile_overlap_factor_dim = (float)(tile_size * num_tiles_dim - small_dim) / (float)(tile_size * (num_tiles_dim - 1));
if (num_tiles_dim <= 2) {
if (small_dim <= tile_size) {
num_tiles_dim = 1;
tile_overlap_factor_dim = 0;
} else {
num_tiles_dim = 2;
tile_overlap_factor_dim = (2 * tile_size - small_dim) / (float)tile_size;
}
}
}
// Tiling // Tiling
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) { __STATIC_INLINE__ void sd_tiling_non_square(ggml_tensor* input, ggml_tensor* output, const int scale,
const int p_tile_size_x, const int p_tile_size_y,
const float tile_overlap_factor, on_tile_process on_processing) {
output = ggml_set_f32(output, 0); output = ggml_set_f32(output, 0);
int input_width = (int)input->ne[0]; int input_width = (int)input->ne[0];
int input_height = (int)input->ne[1]; int input_height = (int)input->ne[1];
int output_width = (int)output->ne[0]; int output_width = (int)output->ne[0];
int output_height = (int)output->ne[1]; int output_height = (int)output->ne[1];
GGML_ASSERT(input_width / output_width == input_height / output_height && output_width / input_width == output_height / input_height);
GGML_ASSERT(input_width / output_width == scale || output_width / input_width == scale);
int small_width = output_width;
int small_height = output_height;
bool big_out = output_width > input_width;
if (big_out) {
// Ex: decode
small_width = input_width;
small_height = input_height;
}
int num_tiles_x;
float tile_overlap_factor_x;
sd_tiling_calc_tiles(num_tiles_x, tile_overlap_factor_x, small_width, p_tile_size_x, tile_overlap_factor);
int num_tiles_y;
float tile_overlap_factor_y;
sd_tiling_calc_tiles(num_tiles_y, tile_overlap_factor_y, small_height, p_tile_size_y, tile_overlap_factor);
// LOG_DEBUG("num tiles : %d, %d ", num_tiles_x, num_tiles_y);
// LOG_DEBUG("optimal overlap : %f, %f (targeting %f)", tile_overlap_factor_x, tile_overlap_factor_y, tile_overlap_factor);
GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2 GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2
int tile_overlap = (int32_t)(tile_size * tile_overlap_factor); int tile_overlap_x = (int32_t)(p_tile_size_x * tile_overlap_factor_x);
int non_tile_overlap = tile_size - tile_overlap; int non_tile_overlap_x = p_tile_size_x - tile_overlap_x;
int tile_overlap_y = (int32_t)(p_tile_size_y * tile_overlap_factor_y);
int non_tile_overlap_y = p_tile_size_y - tile_overlap_y;
int tile_size_x = p_tile_size_x < small_width ? p_tile_size_x : small_width;
int tile_size_y = p_tile_size_y < small_height ? p_tile_size_y : small_height;
int input_tile_size_x = tile_size_x;
int input_tile_size_y = tile_size_y;
int output_tile_size_x = tile_size_x;
int output_tile_size_y = tile_size_y;
if (big_out) {
output_tile_size_x *= scale;
output_tile_size_y *= scale;
} else {
input_tile_size_x *= scale;
input_tile_size_y *= scale;
}
struct ggml_init_params params = {}; struct ggml_init_params params = {};
params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk params.mem_size += input_tile_size_x * input_tile_size_y * input->ne[2] * sizeof(float); // input chunk
params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk params.mem_size += output_tile_size_x * output_tile_size_y * output->ne[2] * sizeof(float); // output chunk
params.mem_size += 3 * ggml_tensor_overhead(); params.mem_size += 3 * ggml_tensor_overhead();
params.mem_buffer = NULL; params.mem_buffer = NULL;
params.no_alloc = false; params.no_alloc = false;
@ -631,29 +709,50 @@ __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const
} }
// tiling // tiling
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1); ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, input_tile_size_x, input_tile_size_y, input->ne[2], 1);
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1); ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, output_tile_size_x, output_tile_size_y, output->ne[2], 1);
on_processing(input_tile, NULL, true); int num_tiles = num_tiles_x * num_tiles_y;
int num_tiles = ceil((float)input_width / non_tile_overlap) * ceil((float)input_height / non_tile_overlap);
LOG_INFO("processing %i tiles", num_tiles); LOG_INFO("processing %i tiles", num_tiles);
pretty_progress(1, num_tiles, 0.0f); pretty_progress(0, num_tiles, 0.0f);
int tile_count = 1; int tile_count = 1;
bool last_y = false, last_x = false; bool last_y = false, last_x = false;
float last_time = 0.0f; float last_time = 0.0f;
for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) { for (int y = 0; y < small_height && !last_y; y += non_tile_overlap_y) {
if (y + tile_size >= input_height) { int dy = 0;
y = input_height - tile_size; if (y + tile_size_y >= small_height) {
int _y = y;
y = small_height - tile_size_y;
dy = _y - y;
if (big_out) {
dy *= scale;
}
last_y = true; last_y = true;
} }
for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) { for (int x = 0; x < small_width && !last_x; x += non_tile_overlap_x) {
if (x + tile_size >= input_width) { int dx = 0;
x = input_width - tile_size; if (x + tile_size_x >= small_width) {
int _x = x;
x = small_width - tile_size_x;
dx = _x - x;
if (big_out) {
dx *= scale;
}
last_x = true; last_x = true;
} }
int x_in = big_out ? x : scale * x;
int y_in = big_out ? y : scale * y;
int x_out = big_out ? x * scale : x;
int y_out = big_out ? y * scale : y;
int overlap_x_out = big_out ? tile_overlap_x * scale : tile_overlap_x;
int overlap_y_out = big_out ? tile_overlap_y * scale : tile_overlap_y;
int64_t t1 = ggml_time_ms(); int64_t t1 = ggml_time_ms();
ggml_split_tensor_2d(input, input_tile, x, y); ggml_split_tensor_2d(input, input_tile, x_in, y_in);
on_processing(input_tile, output_tile, false); on_processing(input_tile, output_tile, false);
ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale); ggml_merge_tensor_2d(output_tile, output, x_out, y_out, overlap_x_out, overlap_y_out, dx, dy);
int64_t t2 = ggml_time_ms(); int64_t t2 = ggml_time_ms();
last_time = (t2 - t1) / 1000.0f; last_time = (t2 - t1) / 1000.0f;
pretty_progress(tile_count, num_tiles, last_time); pretty_progress(tile_count, num_tiles, last_time);
@ -667,6 +766,11 @@ __STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const
ggml_free(tiles_ctx); ggml_free(tiles_ctx);
} }
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale,
const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) {
sd_tiling_non_square(input, output, scale, tile_size, tile_size, tile_overlap_factor, on_processing);
}
__STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx, __STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx,
struct ggml_tensor* a) { struct ggml_tensor* a) {
const float eps = 1e-6f; // default eps parameter const float eps = 1e-6f; // default eps parameter

View file

@ -1139,18 +1139,111 @@ public:
decode ? 3 : C, decode ? 3 : C,
x->ne[3]); // channels x->ne[3]); // channels
int64_t t0 = ggml_time_ms(); int64_t t0 = ggml_time_ms();
// TODO: args instead of env for tile size / overlap?
float tile_overlap = 0.5f;
const char* SD_TILE_OVERLAP = getenv("SD_TILE_OVERLAP");
if (SD_TILE_OVERLAP != nullptr) {
std::string sd_tile_overlap_str = SD_TILE_OVERLAP;
try {
tile_overlap = std::stof(sd_tile_overlap_str);
if (tile_overlap < 0.0) {
LOG_WARN("SD_TILE_OVERLAP too low, setting it to 0.0");
tile_overlap = 0.0;
}
else if (tile_overlap > 0.5) {
LOG_WARN("SD_TILE_OVERLAP too high, setting it to 0.5");
tile_overlap = 0.5;
}
} catch (const std::invalid_argument&) {
LOG_WARN("SD_TILE_OVERLAP is invalid, keeping the default");
} catch (const std::out_of_range&) {
LOG_WARN("SD_TILE_OVERLAP is out of range, keeping the default");
}
}
int tile_size_x = 32;
int tile_size_y = 32;
const char* SD_TILE_SIZE = getenv("SD_TILE_SIZE");
if (SD_TILE_SIZE != nullptr) {
// format is AxB, or just A (equivalent to AxA)
// A and B can be integers (tile size) or floating point
// floating point <= 1 means simple fraction of the latent dimension
// floating point > 1 means number of tiles across that dimension
// a single number gets applied to both
auto get_tile_factor = [tile_overlap](const std::string& factor_str) {
float factor = std::stof(factor_str);
if (factor > 1.0)
factor = 1 / (factor - factor * tile_overlap + tile_overlap);
return factor;
};
const int latent_x = W / (decode ? 1 : 8);
const int latent_y = H / (decode ? 1 : 8);
const int min_tile_dimension = 4;
std::string sd_tile_size_str = SD_TILE_SIZE;
size_t x_pos = sd_tile_size_str.find('x');
try {
int tmp_x = tile_size_x, tmp_y = tile_size_y;
if (x_pos != std::string::npos) {
std::string tile_x_str = sd_tile_size_str.substr(0, x_pos);
std::string tile_y_str = sd_tile_size_str.substr(x_pos + 1);
if (tile_x_str.find('.') != std::string::npos) {
tmp_x = std::round(latent_x * get_tile_factor(tile_x_str));
}
else {
tmp_x = std::stoi(tile_x_str);
}
if (tile_y_str.find('.') != std::string::npos) {
tmp_y = std::round(latent_y * get_tile_factor(tile_y_str));
}
else {
tmp_y = std::stoi(tile_y_str);
}
}
else {
if (sd_tile_size_str.find('.') != std::string::npos) {
float tile_factor = get_tile_factor(sd_tile_size_str);
tmp_x = std::round(latent_x * tile_factor);
tmp_y = std::round(latent_y * tile_factor);
}
else {
tmp_x = tmp_y = std::stoi(sd_tile_size_str);
}
}
tile_size_x = std::max(std::min(tmp_x, latent_x), min_tile_dimension);
tile_size_y = std::max(std::min(tmp_y, latent_y), min_tile_dimension);
} catch (const std::invalid_argument&) {
LOG_WARN("SD_TILE_SIZE is invalid, keeping the default");
} catch (const std::out_of_range&) {
LOG_WARN("SD_TILE_SIZE is out of range, keeping the default");
}
}
if(!decode){
// TODO: also use and arg for this one?
// to keep the compute buffer size consistent
tile_size_x*=1.30539;
tile_size_y*=1.30539;
}
if (!use_tiny_autoencoder) { if (!use_tiny_autoencoder) {
if (decode) { if (decode) {
ggml_tensor_scale(x, 1.0f / scale_factor); ggml_tensor_scale(x, 1.0f / scale_factor);
} else { } else {
ggml_tensor_scale_input(x); ggml_tensor_scale_input(x);
} }
if (vae_tiling && decode) { // TODO: support tiling vae encode if (vae_tiling) {
if (SD_TILE_SIZE != nullptr) {
LOG_INFO("VAE Tile size: %dx%d", tile_size_x, tile_size_y);
}
if (SD_TILE_OVERLAP != nullptr) {
LOG_INFO("VAE Tile overlap: %.2f", tile_overlap);
}
// split latent in 32x32 tiles and compute in several steps // split latent in 32x32 tiles and compute in several steps
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) { auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
first_stage_model->compute(n_threads, in, decode, &out); first_stage_model->compute(n_threads, in, decode, &out);
}; };
sd_tiling(x, result, 8, 32, 0.5f, on_tiling); sd_tiling_non_square(x, result, 8, tile_size_x, tile_size_y, tile_overlap, on_tiling);
} else { } else {
first_stage_model->compute(n_threads, x, decode, &result); first_stage_model->compute(n_threads, x, decode, &result);
} }
@ -1160,7 +1253,7 @@ public:
} }
} else { } else {
//koboldcpp never use tiling with taesd //koboldcpp never use tiling with taesd
if (false && vae_tiling && decode) { // TODO: support tiling vae encode if (false && vae_tiling) { // TODO: support tiling vae encode
// split latent in 64x64 tiles and compute in several steps // split latent in 64x64 tiles and compute in several steps
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) { auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
tae_first_stage->compute(n_threads, in, decode, &out); tae_first_stage->compute(n_threads, in, decode, &out);