Merge commit '5215b91e93' into concedo_experimental

# Conflicts:
#	.github/workflows/build.yml
#	cmake/x64-windows-llvm.cmake
#	ggml/src/ggml-rpc/ggml-rpc.cpp
#	ggml/src/ggml-sycl/ggml-sycl.cpp
#	tests/CMakeLists.txt
#	tools/imatrix/imatrix.cpp
#	tools/llava/clip.cpp
#	tools/rpc/rpc-server.cpp
This commit is contained in:
Concedo 2025-05-06 23:15:04 +08:00
commit 1377a93a73
21 changed files with 1183 additions and 467 deletions

View file

@ -1778,6 +1778,12 @@ class LlamaModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# fix for SmolVLM2, missing `num_attention_heads` in config.json
if self.hf_arch == "VLlama3ForCausalLM":
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
@ -2123,6 +2129,9 @@ class DeciModel(TextModel):
# if n_heads_in_group is not None, then
# _num_kv_heads[il] is num_attention_head // n_heads_in_group and
# _num_heads[il] is num_attention_head
# ***dummy layer*** for nemotron 253B
# if n_heads_in_group is None and ffn_mult is None
# then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
for il in range(len(_block_configs)):
if _block_configs[il]["attention"]["n_heads_in_group"] is None:
if _block_configs[il]["attention"]["replace_with_linear"] is True:
@ -2134,6 +2143,9 @@ class DeciModel(TextModel):
else:
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
self._num_heads.append(self.hparams["num_attention_heads"])
if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
_ffn_multipliers.append(0.0)
else:
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
assert self.block_count == len(self._num_kv_heads)
assert self.block_count == len(self._num_heads)
@ -5674,6 +5686,11 @@ class BailingMoeModel(TextModel):
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
if (self.hparams.get("rope_scaling") or {}).get("type") == "yarn" and "factor" in self.hparams["rope_scaling"]:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
else:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])

View file

@ -6597,7 +6597,118 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
*s = hsum_float_8(acc);
#elif defined(__VXE__) || defined(__VXE2__)
uint32_t aux[3];
uint32_t utmp[4];
const int32x4_t v_z = vec_splat_s32(0);
const uint8x16_t v_3m = vec_splat_u8(0x03);
const uint8x16_t v_0c = vec_splat_u8(1);
const uint8x16_t v_1c = vec_sl(v_0c, 1);
const uint8x16_t v_2c = vec_sl(v_0c, 2);
const uint8x16_t v_3c = vec_sl(v_0c, 3);
uint8x16_t q3h[4];
uint8x16_t q3b[2];
int8x16_t q3bytes[4];
int8x16_t q8bytes[4];
uint8x16_t qhbits[2];
float sum = 0;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const uint8_t * restrict x0l = x[i].qs;
const uint8_t * restrict x0h = x[i].hmask;
const int8_t * restrict y0 = y[i].qs;
qhbits[0] = vec_xl(0 , x0h);
qhbits[1] = vec_xl(16, x0h);
int32_t isum = 0;
memcpy(aux, x[i].scales, 12);
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
int8_t * scale = (int8_t *)utmp;
for (int j = 0; j < 16; ++j) scale[j] -= 32;
for (int j = 0; j < QK_K/128; ++j) {
int32x4_t isum0, isum1, isum2, isum3;
q3b[0] = vec_xl(0 , x0l);
q3b[1] = vec_xl(16, x0l);
x0l += 32;
q8bytes[0] = vec_xl(0 , y0);
q8bytes[1] = vec_xl(16 , y0);
q8bytes[2] = vec_xl(32 , y0);
q8bytes[3] = vec_xl(48 , y0);
q8bytes[4] = vec_xl(64 , y0);
q8bytes[5] = vec_xl(80 , y0);
q8bytes[6] = vec_xl(96 , y0);
q8bytes[7] = vec_xl(112, y0);
y0 += 128;
q3h[0] = vec_sl(vec_andc(v_0c, qhbits[0]), 2);
q3h[1] = vec_sl(vec_andc(v_0c, qhbits[1]), 2);
q3h[2] = vec_sl(vec_andc(v_1c, qhbits[0]), 1);
q3h[3] = vec_sl(vec_andc(v_1c, qhbits[1]), 1);
q3bytes[0] = vec_sub((int8x16_t)vec_and(q3b[0], v_3m), (int8x16_t)q3h[0]);
q3bytes[1] = vec_sub((int8x16_t)vec_and(q3b[1], v_3m), (int8x16_t)q3h[1]);
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 2), v_3m), (int8x16_t)q3h[2]);
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 2), v_3m), (int8x16_t)q3h[3]);
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[0]);
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[1]);
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[2]);
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[3]);
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
scale += 4;
q3h[0] = vec_andc(v_2c, qhbits[0]);
q3h[1] = vec_andc(v_2c, qhbits[1]);
q3h[2] = vec_sr(vec_andc(v_3c, qhbits[0]), 1);
q3h[3] = vec_sr(vec_andc(v_3c, qhbits[1]), 1);
q3bytes[0] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 4), v_3m), (int8x16_t)q3h[0]);
q3bytes[1] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 4), v_3m), (int8x16_t)q3h[1]);
q3bytes[2] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[0], 6), v_3m), (int8x16_t)q3h[2]);
q3bytes[3] = vec_sub((int8x16_t)vec_and(vec_sr(q3b[1], 6), v_3m), (int8x16_t)q3h[3]);
isum0 = ggml_vec_dot(v_z, q3bytes[0], q8bytes[4]);
isum1 = ggml_vec_dot(v_z, q3bytes[1], q8bytes[5]);
isum2 = ggml_vec_dot(v_z, q3bytes[2], q8bytes[6]);
isum3 = ggml_vec_dot(v_z, q3bytes[3], q8bytes[7]);
isum += (isum0[0] + isum0[1] + isum0[2] + isum0[3]) * scale[0];
isum += (isum1[0] + isum1[1] + isum1[2] + isum1[3]) * scale[1];
isum += (isum2[0] + isum2[1] + isum2[2] + isum2[3]) * scale[2];
isum += (isum3[0] + isum3[1] + isum3[2] + isum3[3]) * scale[3];
scale += 4;
if (j == 0) {
qhbits[0] = vec_sr(qhbits[0], 4);
qhbits[1] = vec_sr(qhbits[1], 4);
}
}
sum += d * isum;
}
*s = sum;
#else
// scalar version
// This function is written like this so the compiler can manage to vectorize most of it

View file

@ -11,24 +11,26 @@
#include <vector>
#ifdef GGML_USE_CPU_HBM
#include "ggml-cpu-hbm.h"
# include "ggml-cpu-hbm.h"
#endif
#ifdef GGML_USE_CPU_KLEIDIAI
#include "kleidiai/kleidiai.h"
#endif
#if defined(__APPLE__)
#include <sys/types.h>
#include <sys/sysctl.h>
# include "kleidiai/kleidiai.h"
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#else
# include <unistd.h>
#endif
#include <windows.h>
#if defined(__APPLE__)
# include <sys/sysctl.h>
# include <sys/types.h>
#endif
// ggml-backend interface
@ -70,8 +72,10 @@ static ggml_backend_buffer_type_t * ggml_backend_cpu_device_get_extra_buffers_ty
}
static bool ggml_backend_cpu_is_extra_buffer_type(ggml_backend_buffer_type_t buft) {
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra && extra == buft) return true;
for (auto * extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra && extra == buft) {
return true;
}
}
return false;
}
@ -330,9 +334,18 @@ static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t d
}
static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
// TODO
*free = 0;
*total = 0;
#ifdef _WIN32
MEMORYSTATUSEX status;
status.dwLength = sizeof(status);
GlobalMemoryStatusEx(&status);
*total = status.ullTotalPhys;
*free = status.ullAvailPhys;
#else
long pages = sysconf(_SC_PHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
*total = pages * page_size;
*free = *total;
#endif
GGML_UNUSED(dev);
}

View file

@ -2637,6 +2637,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = j;
}
__syncthreads();
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
@ -2665,6 +2666,7 @@ static __global__ void mul_mat_q(
return;
}
// __syncthreads(); // There is no previous tile that could cause a race condition.
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
@ -2675,6 +2677,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
@ -2741,6 +2744,7 @@ static __global__ void mul_mat_q(
continue;
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
@ -2751,6 +2755,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
@ -2806,6 +2811,7 @@ static __global__ void mul_mat_q(
}
// The memory layout for the fixup buffer is always contiguous, therefore reset ids:
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*WARP_SIZE) {
const int j = j0 + threadIdx.y*WARP_SIZE + threadIdx.x;
@ -2816,6 +2822,7 @@ static __global__ void mul_mat_q(
ids_dst_shared[j] = j;
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
@ -2952,6 +2959,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
for (int j = threadIdx.y*WARP_SIZE + threadIdx.x; j < mmq_x; j += nwarps*WARP_SIZE) {
ids_dst_shared[j] = ids_dst[col_low + j];
}
__syncthreads();
const int offset_dst = it*mmq_y;
dst += offset_dst;

View file

@ -356,11 +356,17 @@ struct vk_device_struct {
vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT];
vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_acc_f32;
vk_pipeline pipeline_add_f32, pipeline_add_f32_norepeat;
vk_pipeline pipeline_add_f16_f32_f16, pipeline_add_f16_f32_f16_norepeat;
vk_pipeline pipeline_sub_f32, pipeline_sub_f32_norepeat;
vk_pipeline pipeline_mul_f32, pipeline_mul_f32_norepeat;
vk_pipeline pipeline_div_f32, pipeline_div_f32_norepeat;
// [src0 0=fp32,1=fp16][src1 0=fp32,1=fp16][dst 0=fp32,1=fp16]
vk_pipeline pipeline_add[2][2][2];
vk_pipeline pipeline_add_norepeat[2][2][2];
vk_pipeline pipeline_sub[2][2][2];
vk_pipeline pipeline_sub_norepeat[2][2][2];
vk_pipeline pipeline_mul[2][2][2];
vk_pipeline pipeline_mul_norepeat[2][2][2];
vk_pipeline pipeline_div[2][2][2];
vk_pipeline pipeline_div_norepeat[2][2][2];
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
vk_pipeline pipeline_upscale_f32;
vk_pipeline pipeline_scale_f32;
@ -370,8 +376,8 @@ struct vk_device_struct {
vk_pipeline pipeline_clamp_f32;
vk_pipeline pipeline_pad_f32;
vk_pipeline pipeline_repeat_f32, pipeline_repeat_back_f32;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16, pipeline_cpy_f32_bf16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f32_bf16;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16, pipeline_cpy_f16_f32, pipeline_cpy_f32_bf16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f16_f32, pipeline_contig_cpy_f32_bf16;
vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_norm_f32;
@ -379,14 +385,17 @@ struct vk_device_struct {
vk_pipeline pipeline_rms_norm_f32;
vk_pipeline pipeline_rms_norm_back_f32;
vk_pipeline pipeline_l2_norm_f32;
vk_pipeline pipeline_gelu_f32;
vk_pipeline pipeline_gelu_quick_f32;
vk_pipeline pipeline_silu_f32;
vk_pipeline pipeline_silu_back_f32;
vk_pipeline pipeline_relu_f32;
// [src/dst 0=fp32,1=fp16]
vk_pipeline pipeline_gelu[2];
vk_pipeline pipeline_gelu_quick[2];
vk_pipeline pipeline_silu[2];
vk_pipeline pipeline_relu[2];
vk_pipeline pipeline_tanh[2];
vk_pipeline pipeline_sigmoid[2];
vk_pipeline pipeline_leaky_relu_f32;
vk_pipeline pipeline_tanh_f32;
vk_pipeline pipeline_sigmoid_f32;
vk_pipeline pipeline_silu_back_f32;
vk_pipeline pipeline_diag_mask_inf_f32;
vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512;
@ -2524,11 +2533,13 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f32, "cpy_f16_f32", cpy_f16_f32_len, cpy_f16_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_bf16,"cpy_f32_bf16",cpy_f32_bf16_len,cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f32, "contig_cpy_f16_f32", contig_cpy_f16_f32_len, contig_cpy_f16_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_bf16,"contig_cpy_f32_bf16",contig_cpy_f32_bf16_len,contig_cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
@ -2554,20 +2565,32 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q8_0], "cpy_q8_0_f32", cpy_q8_0_f32_len, cpy_q8_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_IQ4_NL], "cpy_iq4_nl_f32", cpy_iq4_nl_f32_len, cpy_iq4_nl_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f32_norepeat, "add_f32_norepeat", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16_norepeat, "add_f16_f32_f16_norepeat", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
auto get_suffix = [](bool src0_f16, bool src1_f16, bool dst_f16) {
std::string s;
s += std::string(src0_f16 ? "_f16" : "_f32");
s += std::string(src1_f16 ? "_f16" : "_f32");
s += std::string(dst_f16 ? "_f16" : "_f32");
return s;
};
#define CREATE_BINARY(name, namemod, spec) \
for (int s0 : {0,1}) for (int s1 : {0,1}) for (int d : {0,1}) \
ggml_vk_create_pipeline(device, device->pipeline_ ## name ## namemod[s0][s1][d], \
#name + get_suffix(s0, s1, d) + #namemod, name ## _len[s0][s1][d], name ## _data[s0][s1][d], \
"main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, spec, 1);
CREATE_BINARY(add, , {0})
CREATE_BINARY(add, _norepeat, {1})
CREATE_BINARY(sub, , {0})
CREATE_BINARY(sub, _norepeat, {1})
CREATE_BINARY(mul, , {0})
CREATE_BINARY(mul, _norepeat, {1})
CREATE_BINARY(div, , {0})
CREATE_BINARY(div, _norepeat, {1})
#undef CREATE_BINARY
ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sub_f32, "sub_f32", sub_f32_len, sub_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sub_f32_norepeat, "sub_f32_norepeat", sub_f32_len, sub_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_f32_norepeat, "mul_f32_norepeat", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_div_f32_norepeat, "div_f32_norepeat", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
@ -2587,14 +2610,20 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_repeat_back_f32, "repeat_back_f32", repeat_back_f32_len, repeat_back_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_gelu_quick_f32, "gelu_quick_f32", gelu_quick_f32_len, gelu_quick_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
#define CREATE_UNARY(name) \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32", name ## _f32_len, name ## _f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16", name ## _f16_len, name ## _f16_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
CREATE_UNARY(gelu)
CREATE_UNARY(gelu_quick)
CREATE_UNARY(silu)
CREATE_UNARY(relu)
CREATE_UNARY(tanh)
CREATE_UNARY(sigmoid)
#undef CREATE_UNARY
ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_sigmoid_f32, "sigmoid_f32", sigmoid_f32_len, sigmoid_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {1, 512, 1}, {}, 1, true);
@ -4528,6 +4557,13 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_cpy_f16_f16;
}
}
if (src->type == GGML_TYPE_F16 && to == GGML_TYPE_F32) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f16_f32;
} else {
return ctx->device->pipeline_cpy_f16_f32;
}
}
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_BF16) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f32_bf16;
@ -5918,26 +5954,37 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
}
return nullptr;
case GGML_OP_ADD:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f32_norepeat : ctx->device->pipeline_add_f32;
}
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f16_f32_f16_norepeat : ctx->device->pipeline_add_f16_f32_f16;
}
return nullptr;
case GGML_OP_SUB:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_sub_f32_norepeat : ctx->device->pipeline_sub_f32;
}
return nullptr;
case GGML_OP_MUL:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_f32_norepeat : ctx->device->pipeline_mul_f32;
}
return nullptr;
case GGML_OP_DIV:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_f32_norepeat : ctx->device->pipeline_div_f32;
if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
(src1->type != GGML_TYPE_F32 && src1->type != GGML_TYPE_F16) ||
(dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16)) {
return nullptr;
}
switch (op) {
case GGML_OP_ADD:
{
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_norepeat : ctx->device->pipeline_add;
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
}
case GGML_OP_SUB:
{
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_sub_norepeat : ctx->device->pipeline_sub;
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
}
case GGML_OP_MUL:
{
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_norepeat : ctx->device->pipeline_mul;
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
}
case GGML_OP_DIV:
{
auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_norepeat : ctx->device->pipeline_div;
return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
}
default:
break;
}
return nullptr;
case GGML_OP_CONCAT:
@ -6031,37 +6078,25 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
}
return nullptr;
case GGML_OP_UNARY:
if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
(dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16) ||
(src0->type != dst->type)) {
return nullptr;
}
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_SILU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_silu_f32;
}
break;
return ctx->device->pipeline_silu[dst->type == GGML_TYPE_F16];
case GGML_UNARY_OP_GELU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_gelu_f32;
}
break;
return ctx->device->pipeline_gelu[dst->type == GGML_TYPE_F16];
case GGML_UNARY_OP_GELU_QUICK:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_gelu_quick_f32;
}
break;
return ctx->device->pipeline_gelu_quick[dst->type == GGML_TYPE_F16];
case GGML_UNARY_OP_RELU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_relu_f32;
}
break;
return ctx->device->pipeline_relu[dst->type == GGML_TYPE_F16];
case GGML_UNARY_OP_TANH:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_tanh_f32;
}
break;
return ctx->device->pipeline_tanh[dst->type == GGML_TYPE_F16];
case GGML_UNARY_OP_SIGMOID:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_sigmoid_f32;
}
break;
return ctx->device->pipeline_sigmoid[dst->type == GGML_TYPE_F16];
default:
break;
}
@ -9447,7 +9482,10 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_SIGMOID:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
return ggml_is_contiguous(op->src[0]) &&
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) &&
(op->src[0]->type == op->type);
default:
return false;
}
@ -9627,6 +9665,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
}
if (src1_type == GGML_TYPE_F32) {
switch (src0_type) {
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@ -9665,6 +9704,9 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
(op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16) &&
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
case GGML_OP_SILU_BACK:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_SQR:

View file

@ -17,5 +17,5 @@ void main() {
return;
}
data_d[i] = max(float(data_a[i]), 0);
data_d[i] = D_TYPE(max(float(data_a[i]), 0));
}

View file

@ -16,5 +16,5 @@ void main() {
if (i >= p.KX) {
return;
}
data_d[i] = D_TYPE(1. / (1 + exp(-1. *data_a[i])));
data_d[i] = D_TYPE(1. / (1 + exp(-1. * float(data_a[i]))));
}

View file

@ -16,5 +16,5 @@ void main() {
if (i >= p.KX) {
return;
}
data_d[i] = D_TYPE(1. - 2. / (exp(2.*data_a[i]) + 1.));
data_d[i] = D_TYPE(1. - 2. / (exp(2.*float(data_a[i])) + 1.));
}

View file

@ -499,10 +499,12 @@ void process_shaders() {
string_to_spv("cpy_f32_f32", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("cpy_f32_f16", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("cpy_f16_f16", "copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("cpy_f16_f32", "copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("cpy_f32_bf16","copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "uint16_t"}, {"DATA_D_BF16", "1"}});
string_to_spv("contig_cpy_f32_f32", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("contig_cpy_f32_f16", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("contig_cpy_f16_f16", "contig_copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("contig_cpy_f16_f32", "contig_copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("contig_cpy_f32_bf16","contig_copy.comp",{{"A_TYPE", "float"}, {"D_TYPE", "uint16_t"}, {"DATA_D_BF16", "1"}});
for (std::string t : {"q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "iq4_nl"}) {
@ -511,8 +513,26 @@ void process_shaders() {
string_to_spv("cpy_" + t + "_f32", "copy_from_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
}
string_to_spv("add_f32", "add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("add_f16_f32_f16", "add.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"FLOAT_TYPE", "float"}});
auto get_type_str = [](bool f16) {
return f16 ? "float16_t" : "float";
};
auto get_suffix = [](bool src0_f16, bool src1_f16, bool dst_f16) {
std::string s;
s += std::string(src0_f16 ? "_f16" : "_f32");
s += std::string(src1_f16 ? "_f16" : "_f32");
s += std::string(dst_f16 ? "_f16" : "_f32");
return s;
};
for (std::string op : {"add", "sub", "mul", "div"}) {
for (auto src0_f16 : {false, true}) {
for (auto src1_f16 : {false, true}) {
for (auto dst_f16 : {false, true}) {
auto name = op + get_suffix(src0_f16, src1_f16, dst_f16);
string_to_spv(name.c_str(), op + ".comp", {{"A_TYPE", get_type_str(src0_f16)}, {"B_TYPE", get_type_str(src1_f16)}, {"D_TYPE", get_type_str(dst_f16)}, {"FLOAT_TYPE", "float"}});
}
}
}
}
string_to_spv("sub_f32", "sub.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
@ -547,15 +567,22 @@ void process_shaders() {
string_to_spv("upscale_f32", "upscale.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("gelu_f16", "gelu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("gelu_f32", "gelu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("gelu_quick_f16", "gelu_quick.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("gelu_quick_f32", "gelu_quick.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("silu_f16", "silu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("silu_f32", "silu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("silu_back_f32", "silu_back.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("relu_f16", "relu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("relu_f32", "relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("leaky_relu_f32", "leaky_relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("tanh_f16", "tanh.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("tanh_f32", "tanh.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("sigmoid_f16", "sigmoid.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("sigmoid_f32", "sigmoid.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("leaky_relu_f32", "leaky_relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("silu_back_f32", "silu_back.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("diag_mask_inf_f32", "diag_mask_inf.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("soft_max_f32", "soft_max.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
@ -655,7 +682,12 @@ void write_output_files() {
std::remove(path.c_str());
}
}
for (const char *op : {"add", "sub", "mul", "div"}) {
fprintf(hdr, "extern unsigned char *%s_data[2][2][2];\n", op);
fprintf(hdr, "extern uint64_t %s_len[2][2][2];\n", op);
fprintf(src, "unsigned char *%s_data[2][2][2] = {{{%s_f32_f32_f32_data, %s_f32_f32_f16_data}, {%s_f32_f16_f32_data, %s_f32_f16_f16_data}}, {{%s_f16_f32_f32_data, %s_f16_f32_f16_data}, {%s_f16_f16_f32_data, %s_f16_f16_f16_data}}};\n", op, op, op, op, op, op, op, op, op);
fprintf(src, "uint64_t %s_len[2][2][2] = {{{%s_f32_f32_f32_len, %s_f32_f32_f16_len}, {%s_f32_f16_f32_len, %s_f32_f16_f16_len}}, {{%s_f16_f32_f32_len, %s_f16_f32_f16_len}, {%s_f16_f16_f32_len, %s_f16_f16_f16_len}}};\n", op, op, op, op, op, op, op, op, op);
}
fclose(hdr);
fclose(src);
}

View file

@ -977,15 +977,12 @@ class TensorNameMap:
"visual.blocks.{bid}.norm2", # qwen2vl
),
# some namings are messed up because the original llava code swapped fc1 and fc2
# we have no better way to fix it, just be careful
# new models like pixtral use the correct naming
MODEL_TENSOR.V_ENC_FFN_UP: (
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
"vpm.encoder.layers.{bid}.mlp.fc1",
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3 (note: name is swapped)
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
"vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
"visual.blocks.{bid}.mlp.fc2", # qwen2vl
"visual.blocks.{bid}.mlp.fc1", # qwen2vl
"visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
),
@ -997,9 +994,9 @@ class TensorNameMap:
MODEL_TENSOR.V_ENC_FFN_DOWN: (
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
"vpm.encoder.layers.{bid}.mlp.fc2",
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3 (note: name is swapped)
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
"vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
"visual.blocks.{bid}.mlp.fc1", # qwen2vl
"visual.blocks.{bid}.mlp.fc2", # qwen2vl
"visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
),

View file

@ -85,6 +85,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_236B: return "236B";
case LLM_TYPE_290B: return "290B";
case LLM_TYPE_314B: return "314B";
case LLM_TYPE_405B: return "405B";
case LLM_TYPE_671B: return "671B";
case LLM_TYPE_SMALL: return "0.1B";
case LLM_TYPE_MEDIUM: return "0.4B";
@ -587,6 +588,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
switch (hparams.n_layer) {
case 32: type = LLM_TYPE_7B; break;
case 80: type = LLM_TYPE_70B; break;
case 162: type = LLM_TYPE_405B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -1905,7 +1907,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
if (n_ff > 0) {
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
}
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
@ -1915,9 +1919,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
if (n_ff > 0) {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
// optional MLP bias
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
@ -4808,6 +4814,7 @@ struct llm_build_deci : public llm_graph_context {
ggml_tensor * inpSA = inpL;
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_head = hparams.n_head(il);
const int64_t n_ff = hparams.n_ff(il);
if (n_head == 0) {
// attention-free layer of Llama-3_1-Nemotron-51B
@ -4883,6 +4890,11 @@ struct llm_build_deci : public llm_graph_context {
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
if (n_head == 0 && n_ff == 0) {
continue;
}
// For Granite architecture
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);

View file

@ -76,6 +76,7 @@ enum llm_type {
LLM_TYPE_236B,
LLM_TYPE_290B,
LLM_TYPE_314B,
LLM_TYPE_405B,
LLM_TYPE_671B,
LLM_TYPE_SMALL,
LLM_TYPE_MEDIUM,

63
tests/test-mtmd-c-api.c Normal file
View file

@ -0,0 +1,63 @@
#include <stdio.h>
#include <assert.h>
#include "mtmd.h"
int main(void) {
printf("\n\nTesting libmtmd C API...\n");
printf("--------\n\n");
struct mtmd_context_params params = mtmd_context_params_default();
printf("Default image marker: %s\n", params.image_marker);
mtmd_input_chunks * chunks = mtmd_test_create_input_chunks();
if (!chunks) {
fprintf(stderr, "Failed to create input chunks\n");
return 1;
}
size_t n_chunks = mtmd_input_chunks_size(chunks);
printf("Number of chunks: %zu\n", n_chunks);
assert(n_chunks > 0);
for (size_t i = 0; i < n_chunks; i++) {
const mtmd_input_chunk * chunk = mtmd_input_chunks_get(chunks, i);
assert(chunk != NULL);
enum mtmd_input_chunk_type type = mtmd_input_chunk_get_type(chunk);
printf("Chunk %zu type: %d\n", i, type);
if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens;
const llama_token * tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
printf(" Text chunk with %zu tokens\n", n_tokens);
assert(tokens != NULL);
assert(n_tokens > 0);
for (size_t j = 0; j < n_tokens; j++) {
assert(tokens[j] >= 0);
printf(" > Token %zu: %d\n", j, tokens[j]);
}
} else if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
const mtmd_image_tokens * image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
size_t n_tokens = mtmd_image_tokens_get_n_tokens(image_tokens);
size_t nx = mtmd_image_tokens_get_nx(image_tokens);
size_t ny = mtmd_image_tokens_get_ny(image_tokens);
const char * id = mtmd_image_tokens_get_id(image_tokens);
assert(n_tokens > 0);
assert(nx > 0);
assert(ny > 0);
assert(id != NULL);
printf(" Image chunk with %zu tokens\n", n_tokens);
printf(" Image size: %zu x %zu\n", nx, ny);
printf(" Image ID: %s\n", id);
}
}
// Free the chunks
mtmd_input_chunks_free(chunks);
printf("\n\nDONE: test libmtmd C API...\n");
return 0;
}

View file

@ -27,13 +27,13 @@ else()
add_subdirectory(run)
add_subdirectory(tokenize)
add_subdirectory(tts)
if (NOT GGML_BACKEND_DL)
# these examples use the backends directly and cannot be built with dynamic loading
add_subdirectory(cvector-generator)
add_subdirectory(export-lora)
add_subdirectory(llava)
if (GGML_RPC)
add_subdirectory(rpc)
endif()
if (NOT GGML_BACKEND_DL)
# these examples use the backends directly and cannot be built with dynamic loading
add_subdirectory(cvector-generator)
add_subdirectory(export-lora)
endif()
endif()

View file

@ -75,6 +75,8 @@
#define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
#define TN_MM_PATCH_MERGER "mm.patch_merger.weight" // mistral small 3.1
#define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
#define TN_TOK_GLM_BOI "adapter.boi" // glm-edge (these embeddings are not in text model)
#define TN_TOK_GLM_EOI "adapter.eoi" // glm-edge (these embeddings are not in text model)
// mimicpmv
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
@ -231,6 +233,15 @@ struct clip_image_u8_batch {
struct clip_image_f32_batch {
std::vector<clip_image_f32_ptr> entries;
clip_image_f32_batch clone() const {
clip_image_f32_batch new_batch;
new_batch.entries.reserve(entries.size());
for (const auto & entry : entries) {
new_batch.entries.emplace_back(new clip_image_f32(*entry));
}
return new_batch;
}
};
//

View file

@ -169,8 +169,8 @@ enum patch_merge_type {
struct clip_hparams {
int32_t image_size;
int32_t patch_size;
int32_t hidden_size;
int32_t n_intermediate;
int32_t n_embd;
int32_t n_ff;
int32_t projection_dim;
int32_t n_head;
int32_t n_layer;
@ -205,12 +205,6 @@ struct clip_layer {
struct ggml_tensor * ln_1_w = nullptr;
struct ggml_tensor * ln_1_b = nullptr;
// ff
struct ggml_tensor * ff_i_w = nullptr; // legacy naming
struct ggml_tensor * ff_i_b = nullptr; // legacy naming
struct ggml_tensor * ff_o_w = nullptr; // legacy naming
struct ggml_tensor * ff_o_b = nullptr; // legacy naming
struct ggml_tensor * ff_up_w = nullptr;
struct ggml_tensor * ff_up_b = nullptr;
struct ggml_tensor * ff_gate_w = nullptr;
@ -218,9 +212,6 @@ struct clip_layer {
struct ggml_tensor * ff_down_w = nullptr;
struct ggml_tensor * ff_down_b = nullptr;
struct ggml_tensor * ff_g_w = NULL;
struct ggml_tensor * ff_g_b = NULL;
// layernorm 2
struct ggml_tensor * ln_2_w = nullptr;
struct ggml_tensor * ln_2_b = nullptr;
@ -263,9 +254,11 @@ struct clip_vision_model {
struct ggml_tensor * mm_4_w = nullptr;
struct ggml_tensor * mm_4_b = nullptr;
//GLMV-Edge projection
// GLMV-Edge projection
struct ggml_tensor * mm_model_adapter_conv_w = nullptr;
struct ggml_tensor * mm_model_adapter_conv_b = nullptr;
struct ggml_tensor * mm_glm_tok_boi = nullptr;
struct ggml_tensor * mm_glm_tok_eoi = nullptr;
// MobileVLM projection
struct ggml_tensor * mm_model_mlp_1_w = nullptr;
@ -411,9 +404,9 @@ static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_im
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int hidden_size = hparams.hidden_size;
const int n_embd = hparams.n_embd;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
const int d_head = n_embd / n_head;
const int n_layer = hparams.n_layer;
const float eps = hparams.eps;
@ -434,7 +427,7 @@ static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_im
ggml_set_input(inp_raw);
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
inp = ggml_reshape_2d(ctx0, inp, num_patches, n_embd);
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
inp = ggml_add(ctx0, inp, model.patch_bias);
@ -479,7 +472,7 @@ static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_im
KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
cur = ggml_cont_2d(ctx0, KQV, n_embd, num_patches);
}
// attention output
@ -496,14 +489,14 @@ static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_im
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
cur = ggml_mul_mat(ctx0, model.layers[il].ff_up_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_up_b);
// siglip uses gelu
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_down_b);
// residual 2
cur = ggml_add(ctx0, embeddings, cur);
@ -527,11 +520,11 @@ static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_im
const int kernel_size = patches_per_image / tokens_per_side;
embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size);
embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, n_embd, batch_size);
// doing a pool2d to reduce the number of output tokens to 256
embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size);
embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], n_embd, batch_size);
embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
// apply norm before projection
@ -660,9 +653,9 @@ static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_i
const int n_patches_x = image_size_width / patch_size;
const int n_patches_y = image_size_height / patch_size;
const int num_patches = n_patches_x * n_patches_y;
const int hidden_size = hparams.hidden_size;
const int n_embd = hparams.n_embd;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
const int d_head = n_embd / n_head;
const int n_layer = hparams.n_layer;
const float eps = hparams.eps;
const int n_merge = hparams.spatial_merge_size;
@ -692,7 +685,7 @@ static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_i
ggml_set_input(pos_w);
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
inp = ggml_reshape_2d(ctx0, inp, num_patches, n_embd);
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
struct ggml_tensor * embeddings = inp;
@ -733,7 +726,7 @@ static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_i
KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
cur = ggml_cont_2d(ctx0, KQV, n_embd, num_patches);
cur = ggml_mul_mat(ctx0, model.layers[il].o_w, cur);
}
@ -776,8 +769,8 @@ static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_i
cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
// reshape image tokens to 2D grid
cur = ggml_reshape_3d(ctx0, cur, hidden_size, n_patches_x, n_patches_y);
cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, hidden_size]
cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
cur = ggml_cont(ctx0, cur);
// torch.nn.functional.unfold is just an im2col under the hood
@ -785,7 +778,7 @@ static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_i
ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
// project to hidden_size
// project to n_embd
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
embeddings = cur;
@ -808,9 +801,9 @@ static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_i
// arrangement of the [IMG_BREAK] token
{
// not efficient, but works
// the trick is to view the embeddings as a 3D tensor with shape [hidden_size, n_patches_per_row, n_rows]
// the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
// and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
// after the concatenation, we have a tensor with shape [hidden_size, n_patches_per_row + 1, n_rows]
// after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
@ -850,9 +843,9 @@ static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_
const int patches_h = image_size_height / patch_size;
const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
const int num_position_ids = num_positions * 4; // m-rope requires 4 dim per position
const int hidden_size = hparams.hidden_size;
const int n_embd = hparams.n_embd;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
const int d_head = n_embd / n_head;
const int n_layer = hparams.n_layer;
const float eps = hparams.eps;
@ -887,14 +880,14 @@ static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_reshape_4d(
ctx0, inp,
hidden_size * 2, patches_w / 2, patches_h, batch_size);
n_embd * 2, patches_w / 2, patches_h, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
n_embd * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
inp = ggml_reshape_3d(
ctx0, inp,
hidden_size, patches_w * patches_h, batch_size);
n_embd, patches_w * patches_h, batch_size);
if (model.patch_bias) {
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
@ -927,11 +920,11 @@ static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_
ggml_set_name(window_mask, "window_mask");
ggml_set_input(window_mask);
// embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
// embeddings shape: [n_embd, patches_w * patches_h, batch_size]
GGML_ASSERT(batch_size == 1);
embeddings = ggml_reshape_2d(ctx0, embeddings, hidden_size * 4, patches_w * patches_h * batch_size / 4);
embeddings = ggml_reshape_2d(ctx0, embeddings, n_embd * 4, patches_w * patches_h * batch_size / 4);
embeddings = ggml_get_rows(ctx0, embeddings, inv_window_idx);
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, patches_w * patches_h, batch_size);
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd, patches_w * patches_h, batch_size);
}
// loop over layers
@ -984,7 +977,7 @@ static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
cur = ggml_cont_3d(ctx0, KQV, n_embd, num_positions, batch_size);
}
// attention output
@ -1001,11 +994,11 @@ static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_
// mlp
// ffn_up
auto cur_up = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur_up = ggml_add(ctx0, cur_up, model.layers[il].ff_o_b);
auto cur_up = ggml_mul_mat(ctx0, model.layers[il].ff_up_w, cur);
cur_up = ggml_add(ctx0, cur_up, model.layers[il].ff_up_b);
auto cur_gate = ggml_mul_mat(ctx0, model.layers[il].ff_g_w, cur);
cur_gate = ggml_add(ctx0, cur_gate, model.layers[il].ff_g_b);
auto cur_gate = ggml_mul_mat(ctx0, model.layers[il].ff_gate_w, cur);
cur_gate = ggml_add(ctx0, cur_gate, model.layers[il].ff_gate_b);
// TODO : only 2 of these 3 are actually used, should we remove one of them?
if (ctx->use_gelu) {
cur_gate = ggml_gelu_inplace(ctx0, cur_gate);
@ -1017,8 +1010,8 @@ static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_
cur = ggml_mul(ctx0, cur_gate, cur_up);
// ffn_down
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_down_b);
// residual 2
cur = ggml_add(ctx0, embeddings, cur);
@ -1034,7 +1027,7 @@ static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_
embeddings = ggml_mul(ctx0, embeddings, model.post_ln_w);
}
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, num_positions / 4, batch_size);
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
@ -1051,7 +1044,7 @@ static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_
ggml_set_name(window_idx, "window_idx");
ggml_set_input(window_idx);
// embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
// embeddings shape: [n_embd, patches_w * patches_h, batch_size]
GGML_ASSERT(batch_size == 1);
embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4);
embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
@ -1097,9 +1090,9 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
const int patches_h = image_size_height / patch_size;
const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
const int num_position_ids = ctx->proj_type == PROJECTOR_TYPE_QWEN2VL ? num_positions * 4 : num_positions;
const int hidden_size = hparams.hidden_size;
const int n_embd = hparams.n_embd;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
const int d_head = n_embd / n_head;
const float eps = hparams.eps;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
@ -1137,17 +1130,17 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_reshape_4d(
ctx0, inp,
hidden_size * 2, patches_w / 2, patches_h, batch_size);
n_embd * 2, patches_w / 2, patches_h, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
n_embd * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
inp = ggml_reshape_3d(
ctx0, inp,
hidden_size, patches_w * patches_h, batch_size);
n_embd, patches_w * patches_h, batch_size);
}
else {
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
inp = ggml_reshape_3d(ctx0, inp, num_patches, n_embd, batch_size);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
}
@ -1160,7 +1153,7 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
// concat class_embeddings and patch_embeddings
if (model.class_embedding) {
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd, num_positions, batch_size);
embeddings = ggml_scale(ctx0, embeddings, 0.0f); // set to all zeros
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
@ -1257,7 +1250,7 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
cur = ggml_cont_3d(ctx0, KQV, n_embd, num_positions, batch_size);
}
// attention output
@ -1275,8 +1268,8 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
cur = ggml_mul_mat(ctx0, model.layers[il].ff_up_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_up_b);
if (ctx->use_gelu) {
cur = ggml_gelu_inplace(ctx0, cur);
@ -1286,8 +1279,8 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
cur = ggml_gelu_quick_inplace(ctx0, cur);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_down_b);
// residual 2
cur = ggml_add(ctx0, embeddings, cur);
@ -1519,9 +1512,9 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
}
{ // attention
int hidden_size = clip_n_mmproj_embd(ctx);
int n_embd = clip_n_mmproj_embd(ctx);
const int d_head = 128;
int n_head = hidden_size/d_head;
int n_head = n_embd/d_head;
int num_query = 96;
if (ctx->minicpmv_version == 2) {
num_query = 96;
@ -1551,7 +1544,7 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
KQV = ggml_cont_3d(ctx0, KQV, n_embd, num_query, batch_size);
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
}
@ -1584,10 +1577,17 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
embeddings = ggml_mul(ctx0, embeddings,x);
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
}
// arrangement of BOI/EOI token embeddings
// note: these embeddings are not present in text model, hence we cannot process them as text tokens
// see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
{
embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
}
}
else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, num_positions / 4, batch_size);
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
@ -1727,9 +1727,9 @@ struct clip_model_loader {
get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);
get_u32(KEY_N_EMBD, hparams.hidden_size);
get_u32(KEY_N_EMBD, hparams.n_embd);
get_u32(KEY_N_HEAD, hparams.n_head);
get_u32(KEY_N_FF, hparams.n_intermediate);
get_u32(KEY_N_FF, hparams.n_ff);
get_u32(KEY_N_BLOCK, hparams.n_layer);
get_u32(KEY_PROJ_DIM, hparams.projection_dim);
get_f32(KEY_LAYER_NORM_EPS, hparams.eps);
@ -1848,6 +1848,7 @@ struct clip_model_loader {
}
void load_tensors() {
auto & hparams = ctx_clip.vision_model.hparams;
std::map<std::string, size_t> tensor_offset;
std::vector<ggml_tensor *> tensors_to_load;
@ -1901,8 +1902,8 @@ struct clip_model_loader {
vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
// layers
vision_model.layers.resize(vision_model.hparams.n_layer);
for (int il = 0; il < vision_model.hparams.n_layer; ++il) {
vision_model.layers.resize(hparams.n_layer);
for (int il = 0; il < hparams.n_layer; ++il) {
auto & layer = vision_model.layers[il];
layer.k_w = get_tensor(string_format(TN_ATTN_K, "v", il, "weight"));
layer.q_w = get_tensor(string_format(TN_ATTN_Q, "v", il, "weight"));
@ -1925,13 +1926,18 @@ struct clip_model_loader {
layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight"));
layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"), false);
// legacy naming (the in and out is reversed! don't ask me why)
layer.ff_i_w = layer.ff_down_w;
layer.ff_o_w = layer.ff_up_w;
layer.ff_g_w = layer.ff_gate_w;
layer.ff_i_b = layer.ff_down_b;
layer.ff_o_b = layer.ff_up_b;
layer.ff_g_b = layer.ff_gate_b;
// some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
// note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
// swap up and down weights
ggml_tensor * tmp = layer.ff_up_w;
layer.ff_up_w = layer.ff_down_w;
layer.ff_down_w = tmp;
// swap up and down biases
tmp = layer.ff_up_b;
layer.ff_up_b = layer.ff_down_b;
layer.ff_down_b = tmp;
}
}
switch (ctx_clip.proj_type) {
@ -2022,12 +2028,14 @@ struct clip_model_loader {
{
vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight"));
vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight"));
vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias"));
vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight"));
vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
vision_model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
vision_model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
@ -3030,7 +3038,7 @@ int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
}
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.hidden_size;
return ctx->vision_model.hparams.n_embd;
}
const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
@ -3089,6 +3097,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
n_patches /= 4;
n_patches += 2; // for BOI and EOI token embeddings
} else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
if (ctx->minicpmv_version == 2) {
n_patches = 96;

View file

@ -78,10 +78,10 @@ CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(); // only used by libllava
CLIP_API struct clip_image_size * clip_image_size_init(void);
CLIP_API struct clip_image_u8 * clip_image_u8_init (void);
CLIP_API struct clip_image_f32 * clip_image_f32_init(void);
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(void); // only used by libllava
// nx, ny are the output image dimensions
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);

View file

@ -2,6 +2,7 @@
#include "llava.h"
#include "llama.h"
#include "ggml-cpp.h"
#include <algorithm>
#include <cerrno>
@ -209,7 +210,10 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
ggml_build_forward_expand(gf, flatten);
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
ggml_backend_ptr backend { ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr) };
ggml_backend_graph_compute(backend.get(), gf);
struct ggml_tensor* result = ggml_graph_node(gf, -1);
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context

View file

@ -63,7 +63,7 @@ static void sigint_handler(int signo) {
#endif
struct mtmd_cli_context {
mtmd_context_ptr ctx_vision;
mtmd::context_ptr ctx_vision;
common_init_result llama_init;
llama_model * model;
@ -72,7 +72,7 @@ struct mtmd_cli_context {
llama_batch batch;
int n_batch;
std::vector<mtmd_bitmap> bitmaps;
mtmd::bitmaps bitmaps;
// note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
// so here we don't need to keep track of chat history
@ -92,6 +92,10 @@ struct mtmd_cli_context {
batch = llama_batch_init(params.n_batch, 0, 1);
n_batch = params.n_batch;
if (!model || !lctx) {
exit(1);
}
if (!llama_model_chat_template(model, nullptr) && params.chat_template.empty()) {
LOG_ERR("Model does not have chat template.\n");
LOG_ERR(" For old llava models, you may need to use '--chat-template vicuna'\n");
@ -115,12 +119,12 @@ struct mtmd_cli_context {
void init_vision_context(common_params & params) {
const char * clip_path = params.mmproj.path.c_str();
ctx_vision.reset(mtmd_init_from_file(clip_path, model, mtmd_context_params{
/* use_gpu */ params.mmproj_use_gpu,
/* timings */ true,
/* n_threads */ params.cpuparams.n_threads,
/* verbosity */ params.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO,
}));
mtmd_context_params mparams = mtmd_context_params_default();
mparams.use_gpu = params.mmproj_use_gpu;
mparams.print_timings = true;
mparams.n_threads = params.cpuparams.n_threads;
mparams.verbosity = params.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
ctx_vision.reset(mtmd_init_from_file(clip_path, model, mparams));
if (!ctx_vision.get()) {
LOG_ERR("Failed to load vision model from %s\n", clip_path);
exit(1);
@ -139,11 +143,11 @@ struct mtmd_cli_context {
}
bool load_image(const std::string & fname) {
mtmd_bitmap bitmap;
if (mtmd_helper_bitmap_init_from_file(fname.c_str(), bitmap)) {
mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_file(fname.c_str()));
if (!bmp.ptr) {
return false;
}
bitmaps.push_back(std::move(bitmap));
bitmaps.entries.push_back(std::move(bmp));
return true;
}
};
@ -193,27 +197,40 @@ static int eval_message(mtmd_cli_context & ctx, common_chat_msg & msg, bool add_
LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
mtmd_input_text text;
text.text = formatted_chat.prompt;
text.text = formatted_chat.prompt.c_str();
text.add_special = add_bos;
text.parse_special = true;
mtmd_input_chunks chunks;
if (g_is_interrupted) return 0;
int32_t res = mtmd_tokenize(ctx.ctx_vision.get(), chunks, text, ctx.bitmaps);
mtmd::input_chunks chunks(mtmd_input_chunks_init());
auto bitmaps_c_ptr = ctx.bitmaps.c_ptr();
int32_t res = mtmd_tokenize(ctx.ctx_vision.get(),
chunks.ptr.get(), // output
&text, // text
bitmaps_c_ptr.data(),
bitmaps_c_ptr.size());
if (res != 0) {
LOG_ERR("Unable to tokenize prompt, res = %d\n", res);
return 1;
}
ctx.bitmaps.clear();
ctx.bitmaps.entries.clear();
if (mtmd_helper_eval(ctx.ctx_vision.get(), ctx.lctx, chunks, ctx.n_past, 0, ctx.n_batch)) {
llama_pos new_n_past;
if (mtmd_helper_eval_chunks(ctx.ctx_vision.get(),
ctx.lctx, // lctx
chunks.ptr.get(), // chunks
ctx.n_past, // n_past
0, // seq_id
ctx.n_batch, // n_batch
true, // logits_last
&new_n_past)) {
LOG_ERR("Unable to eval prompt\n");
return 1;
}
ctx.n_past += mtmd_helper_get_n_pos(chunks);
ctx.n_past = new_n_past;
LOG("\n");
@ -246,7 +263,7 @@ int main(int argc, char ** argv) {
struct common_sampler * smpl = common_sampler_init(ctx.model, params.sampling);
int n_predict = params.n_predict < 0 ? INT_MAX : params.n_predict;
// ctrl+C handling
// Ctrl+C handling
{
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;

View file

@ -12,6 +12,30 @@
#include <limits>
#include <vector>
// represents raw image data, layout is RGBRGBRGB...
// length of data must be nx * ny * 3
struct mtmd_bitmap {
uint32_t nx;
uint32_t ny;
std::vector<unsigned char> data;
std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
};
struct mtmd_image_tokens_deleter {
void operator()(mtmd_image_tokens * val); // forward declaration
};
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens, mtmd_image_tokens_deleter>;
struct mtmd_input_chunk {
mtmd_input_chunk_type type;
std::vector<llama_token> tokens_text;
mtmd_image_tokens_ptr tokens_image;
};
struct mtmd_input_chunks {
std::vector<mtmd_input_chunk> entries;
};
// slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings
// models not having it (llava-1.6) will process embeddings without any special tokens in-between
enum mtmd_slice_tmpl {
@ -21,6 +45,16 @@ enum mtmd_slice_tmpl {
// TODO @ngxson : add support for idefics (SmolVLM)
};
mtmd_context_params mtmd_context_params_default() {
mtmd_context_params params;
params.use_gpu = true;
params.print_timings = true;
params.n_threads = 4;
params.verbosity = GGML_LOG_LEVEL_INFO;
params.image_marker = MTMD_DEFAULT_IMAGE_MARKER;
return params;
}
struct mtmd_context {
struct clip_ctx * ctx_clip;
const struct llama_model * text_model;
@ -132,6 +166,16 @@ struct mtmd_image_tokens {
uint32_t n_tokens() const { return nx * ny; }
clip_image_f32_batch batch_f32; // preprocessed image patches
std::string id; // optional user-defined ID, useful for KV cache tracking
mtmd_image_tokens clone() {
return mtmd_image_tokens{
nx,
ny,
use_mrope_pos,
batch_f32.clone(),
id
};
}
};
mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
@ -172,12 +216,13 @@ static std::vector<llama_token> mtmd_tokenize_text_internal(
}
int32_t mtmd_tokenize(mtmd_context * ctx,
std::vector<mtmd_input_chunk> & output,
const mtmd_input_text & text,
const std::vector<mtmd_bitmap> & bitmaps) {
mtmd_input_chunks * output,
const mtmd_input_text * text,
const mtmd_bitmap ** bitmaps,
size_t n_bitmaps) {
auto vocab = llama_model_get_vocab(ctx->text_model);
std::string prompt_modified(text.text);
std::string prompt_modified(text->text);
std::string marker_modified(ctx->image_marker);
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
@ -189,11 +234,6 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
} else if (proj_type == PROJECTOR_TYPE_GLM_EDGE) {
// <|begin_of_image|> ... (image embeddings) ... <|end_of_image|>
marker_modified = "<|begin_of_image|>" + ctx->image_marker + "<|end_of_image|>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
} else if (proj_type == PROJECTOR_TYPE_IDEFICS3) {
// https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
marker_modified = "<fake_token_around_image><global-img>" + ctx->image_marker + "<fake_token_around_image>";
@ -213,10 +253,11 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
}
// llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix
// for glm-edge, BOI and EOI token's embeddings are not present in the text model
std::vector<std::string> parts = string_split_str(prompt_modified, ctx->image_marker);
output.clear();
output.reserve(parts.size());
output->entries.clear();
output->entries.reserve(parts.size());
size_t i_img = 0;
@ -227,7 +268,7 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
std::move(tokens),
{},
};
output.emplace_back(std::move(chunk));
output->entries.emplace_back(std::move(chunk));
};
// utility for splitting batch of multiple images into chunks of batch having single images
@ -255,7 +296,7 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
for (const auto & part : parts) {
// printf("tokenizing part: %s\n", part.c_str());
bool add_bos = &parts.front() == &part;
auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special);
auto tokens = mtmd_tokenize_text_internal(vocab, part, text->add_special && add_bos, text->parse_special);
if (tokens.empty()) {
continue;
}
@ -264,22 +305,22 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
std::move(tokens),
{},
};
output.emplace_back(std::move(chunk));
output->entries.emplace_back(std::move(chunk));
if (&parts.back() != &part) {
// add image token to middle of 2 parts
if (i_img >= bitmaps.size()) {
if (i_img >= n_bitmaps) {
LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
return 1;
}
// convert mtmd_bitmap to clip_image_u8
clip_image_u8_ptr img_u8(clip_image_u8_init());
img_u8->nx = bitmaps[i_img].nx;
img_u8->ny = bitmaps[i_img].ny;
img_u8->buf.resize(bitmaps[i_img].data.size());
std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3);
img_u8->nx = bitmaps[i_img]->nx;
img_u8->ny = bitmaps[i_img]->ny;
img_u8->buf.resize(bitmaps[i_img]->data.size());
std::memcpy(img_u8->buf.data(), bitmaps[i_img]->data.data(), img_u8->nx * img_u8->ny * 3);
clip_image_size img_u8_size{img_u8->nx, img_u8->ny};
// preprocess image
@ -292,12 +333,12 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
if (ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5 || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6) {
// split batch into chunks of single images
auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmaps[i_img].id);
auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmaps[i_img]->id);
GGML_ASSERT(chunks.size() > 0);
// add overview image
add_text_chunk({ctx->tok_ov_img_start});
output.emplace_back(std::move(chunks.front()));
output->entries.emplace_back(std::move(chunks.front()));
chunks.erase(chunks.begin());
add_text_chunk({ctx->tok_ov_img_end});
@ -315,7 +356,7 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_sli_img_start});
}
output.emplace_back(std::move(chunks[y * n_col + x]));
output->entries.emplace_back(std::move(chunks[y * n_col + x]));
if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_sli_img_end});
}
@ -347,7 +388,7 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
image_tokens->ny = 1;
}
image_tokens->batch_f32 = std::move(batch_f32);
image_tokens->id = bitmaps[i_img].id; // optional
image_tokens->id = bitmaps[i_img]->id; // optional
LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx);
LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny);
@ -358,7 +399,7 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
{},
std::move(image_tokens),
};
output.emplace_back(std::move(chunk));
output->entries.emplace_back(std::move(chunk));
}
i_img++; // move to next image
@ -368,35 +409,12 @@ int32_t mtmd_tokenize(mtmd_context * ctx,
return 0;
}
void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens) {
static void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens) {
if (image_tokens) {
delete image_tokens;
}
}
size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) {
return image_tokens->n_tokens();
}
size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) {
return image_tokens->nx;
}
size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) {
return image_tokens->ny;
}
std::string mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
return image_tokens->id;
}
llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) {
if (image_tokens->use_mrope_pos) {
return 1; // for M-RoPE, the whole image is 1 in temporal dimension
}
return image_tokens->n_tokens();
}
int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
@ -436,13 +454,18 @@ float * mtmd_get_output_embd(mtmd_context * ctx) {
return ctx->image_embd_v.data();
}
size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks) {
size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks) {
size_t n_tokens = 0;
for (auto & chunk : chunks) {
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
n_tokens += chunk.tokens_text.size();
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
n_tokens += mtmd_image_tokens_get_n_tokens(chunk.tokens_image.get());
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
auto chunk = mtmd_input_chunks_get(chunks, i);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens_text;
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
n_tokens += n_tokens_text;
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
n_tokens += mtmd_image_tokens_get_n_tokens(tokens_image);
} else {
GGML_ASSERT(false && "chunk type not supported");
}
@ -450,13 +473,18 @@ size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks) {
return n_tokens;
}
llama_pos mtmd_helper_get_n_pos(mtmd_input_chunks & chunks) {
llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks) {
llama_pos n_pos = 0;
for (auto & chunk : chunks) {
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
n_pos += chunk.tokens_text.size();
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
n_pos += mtmd_image_tokens_get_n_pos(chunk.tokens_image.get());
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
auto chunk = mtmd_input_chunks_get(chunks, i);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens_text;
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
n_pos += n_tokens_text;
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
n_pos += mtmd_image_tokens_get_n_pos(tokens_image);
} else {
GGML_ASSERT(false && "chunk type not supported");
}
@ -552,33 +580,37 @@ struct decode_embd_batch {
}
};
int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_context * lctx,
mtmd_input_chunks & chunks,
llama_pos pos0,
int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunk * chunk,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch) {
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past) {
int32_t ret;
llama_pos n_past = pos0;
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
for (auto & chunk : chunks) {
bool is_last = &chunk == &chunks.back();
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
text_batch.n_tokens = chunk.tokens_text.size();
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens;
const auto tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
LOG_DBG("decoding text chunk, n_tokens = %zu\n", n_tokens);
size_t i = 0;
while (i < chunk.tokens_text.size()) { // split into batches
for (; i < chunk.tokens_text.size() && text_batch.n_tokens < n_batch; i++) {
text_batch.token [i] = chunk.tokens_text[i];
while (i < n_tokens) { // split into batches
text_batch.n_tokens = 0; // clear the batch
for (; i < n_tokens && text_batch.n_tokens < n_batch; i++) {
text_batch.n_tokens++;
text_batch.token [i] = tokens[i];
text_batch.pos [i] = n_past++;
text_batch.n_seq_id[i] = 1;
text_batch.seq_id [i][0] = seq_id;
text_batch.logits [i] = false;
}
if (is_last) {
// always get logits for last input chunk
bool is_last_token = (i == n_tokens);
if (logits_last && is_last_token) {
text_batch.logits[text_batch.n_tokens - 1] = true;
}
ret = llama_decode(lctx, text_batch);
@ -587,16 +619,16 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_batch_free(text_batch);
return ret;
}
*new_n_past += text_batch.n_tokens;
}
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
GGML_ASSERT(!is_last && "logits for last image chunk is not yet supported");
GGML_ASSERT(chunk.tokens_image != nullptr);
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
int64_t t0 = ggml_time_ms();
if (ctx->print_timings) {
LOG_INF("encoding image or slice...\n");
}
ret = mtmd_encode(ctx, chunk.tokens_image.get());
ret = mtmd_encode(ctx, image_tokens);
if (ret != 0) {
LOG_ERR("failed to encode image\n");
llama_batch_free(text_batch);
@ -606,14 +638,14 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
LOG_INF("image/slice encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
}
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(chunk.tokens_image.get());
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(image_tokens);
int32_t i_batch = 0;
int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
float * embd = mtmd_get_output_embd(ctx);
decode_embd_batch batch_embd(embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
const int nx = mtmd_image_tokens_get_nx(chunk.tokens_image.get());
const int ny = mtmd_image_tokens_get_ny(chunk.tokens_image.get());
const int nx = mtmd_image_tokens_get_nx(image_tokens);
const int ny = mtmd_image_tokens_get_ny(image_tokens);
if (mtmd_decode_use_mrope(ctx)) {
batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
@ -649,46 +681,71 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
i_batch++;
}
// for mrope, one image is one single **temporal** position
n_past += mtmd_decode_use_mrope(ctx) ? 1 : n_tokens;
n_past += mtmd_image_tokens_get_n_pos(image_tokens);
*new_n_past = n_past;
if (mtmd_decode_use_non_causal(ctx)) {
llama_set_causal_attn(lctx, true);
}
} else {
GGML_ASSERT(false && "chunk type not supported");
}
GGML_ABORT("chunk type not supported");
}
llama_batch_free(text_batch);
return 0;
}
int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output) {
int32_t mtmd_helper_eval_chunks(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunks * chunks,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past) {
size_t n_chunks = mtmd_input_chunks_size(chunks);
if (n_chunks == 0) {
LOG_WRN("no chunks to eval\n");
return 0;
}
for (size_t i = 0; i < n_chunks; i++) {
bool chunk_logits_last = (i == n_chunks - 1) && logits_last;
auto chunk = mtmd_input_chunks_get(chunks, i);
int32_t res = mtmd_helper_eval_chunk_single(ctx, lctx, chunk, n_past, seq_id, n_batch, chunk_logits_last, &n_past);
if (res != 0) {
LOG_ERR("failed to eval chunk %zu\n", i);
return res;
}
*new_n_past = n_past;
}
return 0;
}
mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_bytes(buf, len, img_u8.get(),2048);
if (!ok) {
LOG_ERR("Unable to load image from buffer\n");
return 1;
return nullptr;
}
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
output.data.resize(output.nx * output.ny * 3);
std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
return 0;
uint32_t nx, ny;
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &nx, &ny);
return mtmd_bitmap_init(nx, ny, data);
}
int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output) {
mtmd_bitmap * mtmd_helper_bitmap_init_from_file(const char * fname) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_file(fname, img_u8.get());
if (!ok) {
LOG_ERR("Unable to load image %s\n", fname);
return 1;
return nullptr;
}
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
output.data.resize(output.nx * output.ny * 3);
std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
return 0;
uint32_t nx, ny;
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &nx, &ny);
return mtmd_bitmap_init(nx, ny, data);
}
bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
@ -706,3 +763,175 @@ bool mtmd_decode_use_mrope(mtmd_context * ctx) {
void mtmd_image_tokens_deleter::operator()(mtmd_image_tokens * val) {
mtmd_image_tokens_free(val);
}
//
// public API functions
//
// mtmd_bitmap
mtmd_bitmap * mtmd_bitmap_init(uint32_t nx,
uint32_t ny,
const unsigned char * data) {
mtmd_bitmap * bitmap = new mtmd_bitmap;
bitmap->nx = nx;
bitmap->ny = ny;
size_t data_size = (size_t)nx * ny * 3;
bitmap->data.resize(data_size);
std::memcpy(bitmap->data.data(), data, data_size);
return bitmap;
}
uint32_t mtmd_bitmap_get_nx(const mtmd_bitmap * bitmap) {
return bitmap->nx;
}
uint32_t mtmd_bitmap_get_ny(const mtmd_bitmap * bitmap) {
return bitmap->ny;
}
const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap) {
return bitmap->data.data();
}
const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap) {
return bitmap->id.c_str();
}
void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id) {
if (id) {
bitmap->id = std::string(id);
} else {
bitmap->id.clear();
}
}
void mtmd_bitmap_free(mtmd_bitmap * bitmap) {
if (bitmap) {
delete bitmap;
}
}
// mtmd_input_chunks
mtmd_input_chunks * mtmd_input_chunks_init() {
return new mtmd_input_chunks;
}
size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks) {
return chunks->entries.size();
}
const mtmd_input_chunk * mtmd_input_chunks_get(const mtmd_input_chunks * chunks, size_t idx) {
if (idx >= chunks->entries.size()) {
return nullptr;
}
return &chunks->entries[idx];
}
void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
if (chunks) {
delete chunks;
}
}
// mtmd_input_chunk
enum mtmd_input_chunk_type mtmd_input_chunk_get_type(const mtmd_input_chunk * chunk) {
return chunk->type;
}
const llama_token * mtmd_input_chunk_get_tokens_text(const mtmd_input_chunk * chunk, size_t * n_tokens_output) {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
*n_tokens_output = chunk->tokens_text.size();
return chunk->tokens_text.data();
}
*n_tokens_output = 0;
return nullptr;
}
const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk) {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
return chunk->tokens_image.get();
}
return nullptr;
}
mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk) {
mtmd_input_chunk * copy = new mtmd_input_chunk{
chunk->type,
chunk->tokens_text,
mtmd_image_tokens_ptr(),
};
if (chunk->tokens_image) {
// copy the image tokens
copy->tokens_image = mtmd_image_tokens_ptr(new mtmd_image_tokens());
*copy->tokens_image = chunk->tokens_image->clone();
}
return copy;
}
void mtmd_input_chunk_free(mtmd_input_chunk * chunk) {
if (chunk) {
delete chunk;
}
}
// mtmd_image_tokens
size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) {
return image_tokens->n_tokens();
}
size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) {
return image_tokens->nx;
}
size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) {
return image_tokens->ny;
}
const char * mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
return image_tokens->id.c_str();
}
llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) {
if (image_tokens->use_mrope_pos) {
return 1; // for M-RoPE, the whole image is 1 in temporal dimension
}
return image_tokens->n_tokens();
}
// test function
mtmd_input_chunks * mtmd_test_create_input_chunks() {
mtmd_input_chunks * chunks = mtmd_input_chunks_init();
if (!chunks) {
return nullptr;
}
// create a text chunk
std::vector<llama_token> tokens_text = { 1, 2, 3, 4, 5 };
mtmd_input_chunk chunk_text{
MTMD_INPUT_CHUNK_TYPE_TEXT,
std::move(tokens_text),
{},
};
chunks->entries.emplace_back(std::move(chunk_text));
// create an image chunk
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
image_tokens->nx = 4;
image_tokens->ny = 4;
image_tokens->batch_f32.entries.resize(16);
image_tokens->id = "image_1";
mtmd_input_chunk chunk_image{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{},
std::move(image_tokens),
};
chunks->entries.emplace_back(std::move(chunk_image));
return chunks;
}

View file

@ -5,9 +5,24 @@
#include "llama.h"
#include "clip.h"
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#ifdef __cplusplus
#include <vector>
#include <cinttypes>
#include <memory>
#endif
/**
* libmtmd: A library for multimodal support in llama.cpp.
*
* WARNING: This API is experimental and subject to many BREAKING CHANGES.
* Issues related to API usage may receive lower priority support.
*
* For the usage, see an example in mtmd-cli.cpp
*/
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
@ -23,60 +38,118 @@
# define MTMD_API
#endif
#define MTMD_DEFAULT_IMAGE_MARKER "<__image__>"
#ifdef __cplusplus
extern "C" {
#endif
enum mtmd_input_chunk_type {
MTMD_INPUT_CHUNK_TYPE_TEXT,
MTMD_INPUT_CHUNK_TYPE_IMAGE,
};
// opaque types
struct mtmd_context;
struct mtmd_bitmap;
struct mtmd_image_tokens;
// represents raw image data, layout is RGBRGBRGB...
// length of data must be nx * ny * 3
struct mtmd_bitmap {
uint32_t nx;
uint32_t ny;
std::vector<unsigned char> data;
std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
};
struct mtmd_image_tokens_deleter {
void operator()(mtmd_image_tokens * val); // forward declaration
};
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens, mtmd_image_tokens_deleter>;
struct mtmd_input_chunk {
mtmd_input_chunk_type type;
std::vector<llama_token> tokens_text;
mtmd_image_tokens_ptr tokens_image;
};
using mtmd_input_chunks = std::vector<mtmd_input_chunk>;
struct mtmd_context_params {
bool use_gpu = true;
bool print_timings = true;
int n_threads = 4;
enum ggml_log_level verbosity = GGML_LOG_LEVEL_INFO;
const char * image_marker = "<__image__>";
};
struct mtmd_input_chunk;
struct mtmd_input_chunks;
struct mtmd_input_text {
std::string text;
const char * text;
bool add_special;
bool parse_special;
};
//
// C API
//
typedef struct mtmd_context mtmd_context;
typedef struct mtmd_bitmap mtmd_bitmap;
typedef struct mtmd_image_tokens mtmd_image_tokens;
typedef struct mtmd_input_chunk mtmd_input_chunk;
typedef struct mtmd_input_chunks mtmd_input_chunks;
typedef struct mtmd_input_text mtmd_input_text;
struct mtmd_context_params {
bool use_gpu;
bool print_timings;
int n_threads;
enum ggml_log_level verbosity;
const char * image_marker;
};
MTMD_API struct mtmd_context_params mtmd_context_params_default(void);
// initialize the mtmd context
// return nullptr on failure
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params ctx_params);
const struct llama_model * text_model,
const struct mtmd_context_params ctx_params);
MTMD_API void mtmd_free(mtmd_context * ctx);
// whether we need to set non-causal mask before llama_decode
MTMD_API bool mtmd_decode_use_non_causal(mtmd_context * ctx);
// whether the current model use M-RoPE for llama_decode
MTMD_API bool mtmd_decode_use_mrope(mtmd_context * ctx);
// mtmd_bitmap
//
// length of data must be nx * ny * 3
// the data is in RGBRGBRGB... format
MTMD_API mtmd_bitmap * mtmd_bitmap_init (uint32_t nx,
uint32_t ny,
const unsigned char * data);
MTMD_API uint32_t mtmd_bitmap_get_nx (const mtmd_bitmap * bitmap);
MTMD_API uint32_t mtmd_bitmap_get_ny (const mtmd_bitmap * bitmap);
MTMD_API const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap);
MTMD_API void mtmd_bitmap_free (mtmd_bitmap * bitmap);
// bitmap ID is optional, but useful for KV cache tracking
// these getters/setters are dedicated functions, so you can for example calculate the hash of the image based on mtmd_bitmap_get_data()
MTMD_API const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap);
MTMD_API void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id);
// mtmd_input_chunks
//
// this is simply a list of mtmd_input_chunk
// the elements can only be populated via mtmd_tokenize()
MTMD_API mtmd_input_chunks * mtmd_input_chunks_init(void);
MTMD_API size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks);
MTMD_API const mtmd_input_chunk * mtmd_input_chunks_get (const mtmd_input_chunks * chunks, size_t idx);
MTMD_API void mtmd_input_chunks_free(mtmd_input_chunks * chunks);
// mtmd_input_chunk
//
// the instance will be constructed via mtmd_tokenize()
// it will be freed along with mtmd_input_chunks
MTMD_API enum mtmd_input_chunk_type mtmd_input_chunk_get_type (const mtmd_input_chunk * chunk);
MTMD_API const llama_token * mtmd_input_chunk_get_tokens_text (const mtmd_input_chunk * chunk, size_t * n_tokens_output);
MTMD_API const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk);
// in case you want to use custom logic to handle the chunk (i.e. KV cache management)
// you can move the chunk ownership to your own code by copying it
// remember to free the chunk when you are done with it
MTMD_API mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk);
MTMD_API void mtmd_input_chunk_free(mtmd_input_chunk * chunk);
// mtmd_image_tokens
//
// the instance will be constructed via mtmd_tokenize()
// it will be freed along with mtmd_input_chunk
MTMD_API size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_nx (const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_ny (const mtmd_image_tokens * image_tokens);
MTMD_API const char * mtmd_image_tokens_get_id (const mtmd_image_tokens * image_tokens);
// number of temporal positions (always 1 for M-RoPE, n_tokens otherwise)
MTMD_API llama_pos mtmd_image_tokens_get_n_pos (const mtmd_image_tokens * image_tokens);
// tokenize an input text prompt and an image
// the prompt must have the input image marker (default: "<__image__>") in it
// the marker will be replaced with the image tokens
@ -93,17 +166,10 @@ MTMD_API void mtmd_free(mtmd_context * ctx);
// 1 on number of images not matching the number of markers
// 2 on image preprocessing error
MTMD_API int32_t mtmd_tokenize(mtmd_context * ctx,
std::vector<mtmd_input_chunk> & output,
const mtmd_input_text & text,
const std::vector<mtmd_bitmap> & bitmaps);
// access mtmd_image_tokens
MTMD_API size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens);
MTMD_API std::string mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens);
MTMD_API llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens); // number of temporal positions (always 1 for M-RoPE, n_tokens otherwise)
MTMD_API void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens);
mtmd_input_chunks * output,
const mtmd_input_text * text,
const mtmd_bitmap ** bitmaps,
size_t n_bitmaps);
// returns 0 on success
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
@ -112,56 +178,140 @@ MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
// get output embeddings from the last encode pass
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
// whether we need to set non-causal mask before llama_decode
MTMD_API bool mtmd_decode_use_non_causal(mtmd_context * ctx);
// whether the current model use M-RoPE for llama_decode
MTMD_API bool mtmd_decode_use_mrope(mtmd_context * ctx);
/////////////////////////////////////////
//
// helper functions (can be implemented based on other functions)
// Helper functions (can be implemented based on other functions)
//
// Please note that these helpers are not guaranteed to be stable.
// BREAKING CHANGES are expected.
//
// helper function to construct a mtmd_bitmap from a file
// returns nullptr on failure
// this function is thread-safe
MTMD_API mtmd_bitmap * mtmd_helper_bitmap_init_from_file(const char * fname);
// helper function to construct a mtmd_bitmap from a buffer containing a file
// the file content must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
// returns nullptr on failure
// this function is thread-safe
MTMD_API mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len);
// helper to count the total number of tokens from a list of chunks, useful to keep track of KV cache
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks & chunks);
MTMD_API size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks);
// helper to count the total position of tokens from a list of chunks, useful to keep track of n_past
MTMD_API llama_pos mtmd_helper_get_n_pos(mtmd_input_chunks & chunks);
// normally, n_pos is equal to n_tokens, but for M-RoPE it is different
MTMD_API llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks);
// helper function that automatically:
// 1. run llama_decode() on text chunks
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
// otherwise, returns 0 on success
MTMD_API int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_context * lctx,
mtmd_input_chunks & chunks,
llama_pos pos0,
// this function is NOT thread-safe
MTMD_API int32_t mtmd_helper_eval_chunks(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunks * chunks,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch);
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past);
// helper function to construct a mtmd_bitmap from a file
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output);
// works like mtmd_helper_eval_chunks(), but only for a single chunk
// this function is NOT thread-safe
MTMD_API int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunk * chunk,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past);
// helper function to construct a mtmd_bitmap from a buffer
// the buffer must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output);
/////////////////////////////////////////
// test function, to be used in test-mtmd-c-api.c
MTMD_API mtmd_input_chunks * mtmd_test_create_input_chunks(void);
#ifdef __cplusplus
} // extern "C"
#endif
//
// C++ wrappers
//
#ifdef __cplusplus
namespace mtmd {
// convenient unique_ptr wrappers
struct mtmd_context_deleter {
void operator()(mtmd_context * val) { mtmd_free(val); }
};
using mtmd_context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
using context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
#else
struct mtmd_bitmap_deleter {
void operator()(mtmd_bitmap * val) { mtmd_bitmap_free(val); }
};
using bitmap_ptr = std::unique_ptr<mtmd_bitmap, mtmd_bitmap_deleter>;
static_assert(false && "C header is not yet supported by this library");
struct mtmd_input_chunks_deleter {
void operator()(mtmd_input_chunks * val) { mtmd_input_chunks_free(val); }
};
using input_chunks_ptr = std::unique_ptr<mtmd_input_chunks, mtmd_input_chunks_deleter>;
struct mtmd_input_chunk_deleter {
void operator()(mtmd_input_chunk * val) { mtmd_input_chunk_free(val); }
};
using input_chunk_ptr = std::unique_ptr<mtmd_input_chunk, mtmd_input_chunk_deleter>;
struct bitmap {
bitmap_ptr ptr;
bitmap() : ptr(nullptr) {}
bitmap(mtmd_bitmap * bitmap) : ptr(bitmap) {}
bitmap(bitmap && other) noexcept : ptr(std::move(other.ptr)) {}
bitmap(uint32_t nx, uint32_t ny, const unsigned char * data) {
ptr.reset(mtmd_bitmap_init(nx, ny, data));
}
~bitmap() = default;
uint32_t nx() { return mtmd_bitmap_get_nx(ptr.get()); }
uint32_t ny() { return mtmd_bitmap_get_ny(ptr.get()); }
const unsigned char * data() { return mtmd_bitmap_get_data(ptr.get()); }
std::string id() { return mtmd_bitmap_get_id(ptr.get()); }
void set_id(const char * id) { mtmd_bitmap_set_id(ptr.get(), id); }
};
struct bitmaps {
std::vector<bitmap> entries;
~bitmaps() = default;
// return list of pointers to mtmd_bitmap
// example:
// auto bitmaps_c_ptr = bitmaps.c_ptr();
// int32_t res = mtmd_tokenize(... bitmaps_c_ptr.data(), bitmaps_c_ptr.size());
std::vector<const mtmd_bitmap *> c_ptr() {
std::vector<const mtmd_bitmap *> res(entries.size());
for (size_t i = 0; i < entries.size(); i++) {
res[i] = entries[i].ptr.get();
}
return res;
}
};
struct input_chunks {
input_chunks_ptr ptr;
input_chunks() = default;
input_chunks(mtmd_input_chunks * chunks) : ptr(chunks) {}
~input_chunks() = default;
size_t size() { return mtmd_input_chunks_size(ptr.get()); }
const mtmd_input_chunk * operator[](size_t idx) {
return mtmd_input_chunks_get(ptr.get(), idx);
}
};
} // namespace mtmd
#endif