mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 09:04:36 +00:00
quiet flags now set at load time
This commit is contained in:
parent
bec231422a
commit
0e45d3bb7a
7 changed files with 100 additions and 94 deletions
10
expose.h
10
expose.h
|
@ -54,7 +54,6 @@ struct load_model_inputs
|
|||
const int cublas_info = 0;
|
||||
const char * vulkan_info = nullptr;
|
||||
const int blasbatchsize = 512;
|
||||
const int debugmode = 0;
|
||||
const int forceversion = 0;
|
||||
const int gpulayers = 0;
|
||||
const float rope_freq_scale = 1.0f;
|
||||
|
@ -64,6 +63,8 @@ struct load_model_inputs
|
|||
const float tensor_split[tensor_split_max] = {};
|
||||
const int quant_k = 0;
|
||||
const int quant_v = 0;
|
||||
const bool quiet = false;
|
||||
const int debugmode = 0;
|
||||
};
|
||||
struct generation_inputs
|
||||
{
|
||||
|
@ -97,7 +98,6 @@ struct generation_inputs
|
|||
const bool stream_sse = false;
|
||||
const char * grammar = nullptr;
|
||||
const bool grammar_retain_state = false;
|
||||
const bool quiet = false;
|
||||
const float dynatemp_range = 0.0f;
|
||||
const float dynatemp_exponent = 1.0f;
|
||||
const float smoothing_factor = 0.0f;
|
||||
|
@ -157,6 +157,7 @@ struct sd_load_model_inputs
|
|||
const char * vae_filename = nullptr;
|
||||
const char * lora_filename = nullptr;
|
||||
const float lora_multiplier = 1.0f;
|
||||
const bool quiet = false;
|
||||
const int debugmode = 0;
|
||||
};
|
||||
struct sd_generation_inputs
|
||||
|
@ -172,7 +173,6 @@ struct sd_generation_inputs
|
|||
const int seed = 0;
|
||||
const char * sample_method = nullptr;
|
||||
const int clip_skip = -1;
|
||||
const bool quiet = false;
|
||||
};
|
||||
struct sd_generation_outputs
|
||||
{
|
||||
|
@ -187,6 +187,7 @@ struct whisper_load_model_inputs
|
|||
const int clblast_info = 0;
|
||||
const int cublas_info = 0;
|
||||
const char * vulkan_info = nullptr;
|
||||
const bool quiet = false;
|
||||
const int debugmode = 0;
|
||||
};
|
||||
struct whisper_generation_inputs
|
||||
|
@ -195,7 +196,6 @@ struct whisper_generation_inputs
|
|||
const char * audio_data = nullptr;
|
||||
const bool suppress_non_speech = false;
|
||||
const char * langcode = nullptr;
|
||||
const bool quiet = false;
|
||||
};
|
||||
struct whisper_generation_outputs
|
||||
{
|
||||
|
@ -214,6 +214,7 @@ struct tts_load_model_inputs
|
|||
const char * vulkan_info = nullptr;
|
||||
const int gpulayers = 0;
|
||||
const bool flash_attention = false;
|
||||
const bool quiet = false;
|
||||
const int debugmode = 0;
|
||||
};
|
||||
struct tts_generation_inputs
|
||||
|
@ -221,7 +222,6 @@ struct tts_generation_inputs
|
|||
const char * prompt = nullptr;
|
||||
const int speaker_seed = 0;
|
||||
const int audio_seed = 0;
|
||||
const bool quiet = false;
|
||||
const bool nocache = false;
|
||||
};
|
||||
struct tts_generation_outputs
|
||||
|
|
|
@ -106,7 +106,7 @@ static kcpp_params * kcpp_data = nullptr;
|
|||
static int max_context_limit_at_load = 0;
|
||||
static int n_past = 0;
|
||||
static int debugmode = 0; //-1 = hide all, 0 = normal, 1 = showall
|
||||
static bool quiet = false;
|
||||
static bool is_quiet = false;
|
||||
static std::vector<gpt_vocab::id> last_n_tokens;
|
||||
static std::vector<gpt_vocab::id> current_context_tokens;
|
||||
static size_t mem_per_token = 0;
|
||||
|
@ -939,12 +939,12 @@ void sample_xtc(llama_token_data_array * candidates, float xtc_threshold, float
|
|||
|
||||
if(last_idx>1) //if there are 2 or more viable candidates
|
||||
{
|
||||
if (debugmode==1 && !quiet) {
|
||||
if (debugmode==1 && !is_quiet) {
|
||||
printf("XTC penalties [");
|
||||
}
|
||||
// then remove all other tokens above threshold EXCEPT the least likely one
|
||||
for (size_t i = 0; i < last_idx - 1; ++i) {
|
||||
if (debugmode==1 && !quiet)
|
||||
if (debugmode==1 && !is_quiet)
|
||||
{
|
||||
gpt_vocab::id token = candidates->data[i].id;
|
||||
std::string tokenizedstr = FileFormatTokenizeID(token, file_format);
|
||||
|
@ -953,7 +953,7 @@ void sample_xtc(llama_token_data_array * candidates, float xtc_threshold, float
|
|||
}
|
||||
candidates->data[i].logit -= 999.0f; //infinity gets wonky results downstream, this hack works well enough
|
||||
}
|
||||
if (debugmode==1 && !quiet) {
|
||||
if (debugmode==1 && !is_quiet) {
|
||||
printf("]\n");
|
||||
}
|
||||
candidates->sorted = false;
|
||||
|
@ -1142,7 +1142,7 @@ void sample_dry(int n_ctx, int penalty_range, float penalty_multiplier, float pe
|
|||
max_exponent = FLOAT_MAX_LOG / std::log(penalty_base);
|
||||
}
|
||||
|
||||
if (debugmode==1 && !quiet && !dry_max_token_repeat.empty()) {
|
||||
if (debugmode==1 && !is_quiet && !dry_max_token_repeat.empty()) {
|
||||
printf("DRY penalties [");
|
||||
}
|
||||
size_t count = 0;
|
||||
|
@ -1153,7 +1153,7 @@ void sample_dry(int n_ctx, int penalty_range, float penalty_multiplier, float pe
|
|||
repeat_exp = max_exponent;
|
||||
}
|
||||
float penalty = penalty_multiplier * pow(penalty_base, repeat_exp);
|
||||
if (debugmode==1 && !quiet)
|
||||
if (debugmode==1 && !is_quiet)
|
||||
{
|
||||
std::string tokenizedstr = FileFormatTokenizeID(token, file_format);
|
||||
::utreplace(tokenizedstr, "\n", "\\n");
|
||||
|
@ -1166,7 +1166,7 @@ void sample_dry(int n_ctx, int penalty_range, float penalty_multiplier, float pe
|
|||
{
|
||||
candidates->sorted = false;
|
||||
}
|
||||
if (debugmode==1 && !quiet && !dry_max_token_repeat.empty()) {
|
||||
if (debugmode==1 && !is_quiet && !dry_max_token_repeat.empty()) {
|
||||
printf("]\n");
|
||||
}
|
||||
}
|
||||
|
@ -1697,7 +1697,7 @@ static void load_grammar(const std::string & gammarstr)
|
|||
printf("\nIgnored invalid grammar sampler.");
|
||||
return;
|
||||
}
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
parsed_grammar.print(stderr);
|
||||
}
|
||||
|
@ -1840,7 +1840,7 @@ static float CalcGradientAIRopeFreqBase(float original_rope_base, int n_ctx_trai
|
|||
float chi_ctx_value = (n_ctx_desired * ctx_multiplier) / 6.28318;
|
||||
float gradient_ai_rope_freq_base_value = powf(original_rope_base, log10f(chi_ctx_value) / log10f(chi_ctx_train_value));
|
||||
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
printf("Trained max context length (value:%.d).\n", n_ctx_train);
|
||||
printf("Desired context length (value:%.d).\n", n_ctx_desired);
|
||||
|
@ -1857,7 +1857,7 @@ static float CalcGradientAIRopeFreqBase(float original_rope_base, int n_ctx_trai
|
|||
{
|
||||
float extended_rope_positive_offset_value = 1 + ((log10f(chi_ctx_value) - log10f(chi_ctx_train_value)) / ((log10f(chi_ctx_value) * log10f(chi_ctx_train_value)) - (log10f(chi_ctx_value) + log10f(chi_ctx_train_value))));
|
||||
float rope_freq_base_with_positive_offset = gradient_ai_rope_freq_base_value * extended_rope_positive_offset_value;
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
printf("Extended RoPE Positive Offset (multiplicator) for Solar based models. (value:%.3f).\n", extended_rope_positive_offset_value);
|
||||
printf("RoPE base calculated via Gradient AI formula for Solar based models. (value:%.1f).\n", rope_freq_base_with_positive_offset);
|
||||
|
@ -1873,6 +1873,7 @@ static float CalcGradientAIRopeFreqBase(float original_rope_base, int n_ctx_trai
|
|||
|
||||
ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format, FileFormatExtraMeta in_file_format_meta)
|
||||
{
|
||||
is_quiet = inputs.quiet;
|
||||
ggml_time_init();
|
||||
kcpp_data = new kcpp_params(); //allocate on heap to avoid linux segfault. yes this leaks memory.
|
||||
|
||||
|
@ -2688,13 +2689,13 @@ std::vector<int> gpttype_get_token_arr(const std::string & input, bool addbos)
|
|||
printf("\nWarning: KCPP text generation not initialized!\n");
|
||||
return toks;
|
||||
}
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
printf("\nFileFormat: %d, Tokenizing: %s",file_format ,input.c_str());
|
||||
}
|
||||
TokenizeString(input, toks, file_format,addbos);
|
||||
int tokcount = toks.size();
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
printf("\nTokens Counted: %d\n",tokcount);
|
||||
}
|
||||
|
@ -2779,7 +2780,6 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
llama_perf_context_reset(llama_ctx_v4);
|
||||
}
|
||||
|
||||
quiet = inputs.quiet;
|
||||
generation_finished = false; // Set current generation status
|
||||
generated_tokens.clear(); // New Generation, new tokens
|
||||
delayed_generated_tokens.clear();
|
||||
|
@ -2858,7 +2858,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
banned_token_ids.clear();
|
||||
if(banned_tokens.size()>0)
|
||||
{
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
printf("\nBanning %zu single character sequences...",banned_tokens.size());
|
||||
}
|
||||
|
@ -2875,13 +2875,13 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
}
|
||||
}
|
||||
}
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
printf("\nBanned a total of %zu individual tokens.\n",banned_token_ids.size());
|
||||
}
|
||||
}
|
||||
|
||||
if(debugmode==1 && !quiet && banned_phrases.size()>0)
|
||||
if(debugmode==1 && !is_quiet && banned_phrases.size()>0)
|
||||
{
|
||||
printf("\nBanned a total of %zu phrases, with max token count of %d.\n",banned_phrases.size(),delayed_generated_tokens_limit);
|
||||
}
|
||||
|
@ -2926,7 +2926,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
//images have changed. swap identifiers to force reprocessing
|
||||
current_llava_identifier = (current_llava_identifier==LLAVA_TOKEN_IDENTIFIER_A?LLAVA_TOKEN_IDENTIFIER_B:LLAVA_TOKEN_IDENTIFIER_A);
|
||||
llava_composite_image_signature = new_llava_composite;
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
printf("\nLLAVA images changed, existing cache invalidated");
|
||||
}
|
||||
|
@ -2982,7 +2982,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
const int MAX_CHAR_LEN = 40;
|
||||
const int MAX_SEQ_LEN = 20;
|
||||
|
||||
if (debugmode == 1 && !quiet)
|
||||
if (debugmode == 1 && !is_quiet)
|
||||
{
|
||||
printf("\nProcessing %zu dry break strings...", kcpp_data->dry_sequence_breakers.size());
|
||||
}
|
||||
|
@ -2994,7 +2994,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
}
|
||||
GetOverlappingTokenSequences(sequence_break, dry_sequence_breakers, MAX_SEQ_LEN);
|
||||
}
|
||||
if (debugmode == 1 && !quiet)
|
||||
if (debugmode == 1 && !is_quiet)
|
||||
{
|
||||
int trivial = 0, non_trivial = 0;
|
||||
for (const auto &seq : dry_sequence_breakers)
|
||||
|
@ -3014,7 +3014,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
}
|
||||
|
||||
bool stream_sse = inputs.stream_sse;
|
||||
bool allow_regular_prints = (!quiet && debugmode!=-1);
|
||||
bool allow_regular_prints = (!is_quiet && debugmode!=-1);
|
||||
|
||||
std::string grammarstr = inputs.grammar;
|
||||
bool grammar_retain_state = inputs.grammar_retain_state;
|
||||
|
@ -3047,7 +3047,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
if (kcpp_data->seed <= 0 || kcpp_data->seed==0xFFFFFFFF)
|
||||
{
|
||||
kcpp_data->seed = (((uint32_t)time(NULL)) % 1000000u);
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
printf("\nUsing Seed: %d",kcpp_data->seed);
|
||||
}
|
||||
|
@ -3079,7 +3079,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
}
|
||||
else
|
||||
{
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
printf("\nCreating clip image embed...");
|
||||
}
|
||||
|
@ -3087,7 +3087,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
if (!llava_image_embed_make_with_clip_img(clp_ctx, kcpp_data->n_threads, clp_img_data, &llava_images[i].clp_img_embd, &llava_images[i].clp_image_tokens)) {
|
||||
printf("\nError: Clip image %d failed to create embd!",i);
|
||||
}
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
printf("\nLLAVA Clip Embed %i used Tokens: %d",i,llava_images[i].clp_image_tokens);
|
||||
}
|
||||
|
@ -3210,7 +3210,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||
n_past = 0;
|
||||
|
||||
if (debugmode==1 && !quiet)
|
||||
if (debugmode==1 && !is_quiet)
|
||||
{
|
||||
std::string outstr = "";
|
||||
printf("\n\n[Debug: Dump Raw Input Tokens, format: %d]\n", file_format);
|
||||
|
@ -3355,7 +3355,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
printf("\n");
|
||||
}
|
||||
|
||||
if (debugmode==1 && !quiet)
|
||||
if (debugmode==1 && !is_quiet)
|
||||
{
|
||||
std::string outstr = "";
|
||||
printf("\n[Debug: Dump Forwarded Input Tokens, format: %d]\n", file_format);
|
||||
|
@ -3404,7 +3404,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
draft_used = true;
|
||||
draft_results = speculative_decoding_eval_chunk(draft_ctx, llama_ctx_v4, embd, n_vocab, n_past);
|
||||
evalres = draft_results.draft_success;
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
std::string draftedtoks = get_tok_vec_str(draft_results.draftids);
|
||||
printf("\nDrafted %d Tokens: [%s]\n",speculative_chunk_amt,draftedtoks.c_str());
|
||||
|
@ -3607,7 +3607,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
if(draft_used)
|
||||
{
|
||||
int32_t draftedid = draft_results.draftids[logits_sampled];
|
||||
if(debugmode==1 && !quiet)
|
||||
if(debugmode==1 && !is_quiet)
|
||||
{
|
||||
std::string drafttok = FileFormatTokenizeID(draftedid, file_format, true);
|
||||
std::string realtok = FileFormatTokenizeID(id, file_format, true);
|
||||
|
@ -3660,7 +3660,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
{
|
||||
printf("\rGenerating (%d / %d tokens)", (kcpp_data->n_predict - remaining_tokens), kcpp_data->n_predict);
|
||||
}
|
||||
if(debugmode==1 && !quiet && top_picks_history.size()>0)
|
||||
if(debugmode==1 && !is_quiet && top_picks_history.size()>0)
|
||||
{
|
||||
printf(" [");
|
||||
bool firstloop = true;
|
||||
|
@ -3912,7 +3912,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
|
|||
delayed_generated_tokens.pop_front();
|
||||
}
|
||||
|
||||
if(debugmode==1 && !quiet && file_format == FileFormat::GGUF_GENERIC)
|
||||
if(debugmode==1 && !is_quiet && file_format == FileFormat::GGUF_GENERIC)
|
||||
{
|
||||
printf("\n");
|
||||
llama_perf_context_print(llama_ctx_v4);
|
||||
|
|
22
klite.embd
22
klite.embd
|
@ -12,7 +12,7 @@ Current version indicated by LITEVER below.
|
|||
-->
|
||||
|
||||
<script>
|
||||
const LITEVER = 205;
|
||||
const LITEVER = 206;
|
||||
const urlParams = new URLSearchParams(window.location.search);
|
||||
var localflag = true;
|
||||
const STORAGE_PREFIX = (localflag?"e_":"")+"kaihordewebui_";
|
||||
|
@ -5009,8 +5009,17 @@ initializeInstructUIFunctionality();
|
|||
function copyMarkdownCode(btn)
|
||||
{
|
||||
const codeContainer = btn.parentElement.querySelector('pre code');
|
||||
//selectElementContents(codeContainer);
|
||||
navigator.clipboard.writeText(codeContainer.innerText);
|
||||
let innercode = codeContainer.innerText;
|
||||
//remove common language descriptiors from the start
|
||||
let langsmatched = ["matlab","jsonc","powershell","ps1","haskell","hs","vbnet","vb","apache","apacheconf","makefile","mk","ini","protobuf","proto","typescript","tsx","markdown","md","mkdown","mkd","python","py","javascript","js","jsx","html","xhtml","xml","css","json","typescript","ts","tsx","bash","sh","zsh","java","csharp","cs","c","h","cpp","hpp","php","sql","ruby","rb","go","golang","kotlin","kt","swift","rust","rs","r","dart","scala","dockerfile","docker","yaml","yml","ini","toml","perl","pl","shell","console","powershell","ps1","lua","typescript","ts"];
|
||||
for(let i = 0; i < langsmatched.length; ++i) {
|
||||
let matcher = langsmatched[i]+"\n";
|
||||
if (innercode.startsWith(matcher)) {
|
||||
innercode = innercode.substring(matcher.length);
|
||||
break;
|
||||
}
|
||||
}
|
||||
navigator.clipboard.writeText(innercode);
|
||||
}
|
||||
|
||||
function simpleMarkdown(text) {
|
||||
|
@ -13469,7 +13478,12 @@ initializeInstructUIFunctionality();
|
|||
if (document.getElementById("jailbreakprompt2") && document.getElementById("jailbreakprompt2").checked && document.getElementById("jailbreakprompttext2").value!="") {
|
||||
let addrole = document.getElementById("jailbreakprompttext2role").value;
|
||||
addrole = ((addrole==2)?"system":(addrole==1?"assistant":"user"));
|
||||
oai_payload.messages.push({ "role": addrole, "content": document.getElementById("jailbreakprompttext2").value });
|
||||
let postmsg = { "role": addrole, "content": document.getElementById("jailbreakprompttext2").value };
|
||||
if(addrole=="assistant" && targetep.toLowerCase().includes("api.deepseek.com"))
|
||||
{
|
||||
postmsg["prefix"] = true;
|
||||
}
|
||||
oai_payload.messages.push(postmsg);
|
||||
}
|
||||
|
||||
oaiemulatecompletionscontent = "";
|
||||
|
|
44
koboldcpp.py
44
koboldcpp.py
|
@ -160,7 +160,6 @@ class load_model_inputs(ctypes.Structure):
|
|||
("cublas_info", ctypes.c_int),
|
||||
("vulkan_info", ctypes.c_char_p),
|
||||
("blasbatchsize", ctypes.c_int),
|
||||
("debugmode", ctypes.c_int),
|
||||
("forceversion", ctypes.c_int),
|
||||
("gpulayers", ctypes.c_int),
|
||||
("rope_freq_scale", ctypes.c_float),
|
||||
|
@ -169,7 +168,9 @@ class load_model_inputs(ctypes.Structure):
|
|||
("flash_attention", ctypes.c_bool),
|
||||
("tensor_split", ctypes.c_float * tensor_split_max),
|
||||
("quant_k", ctypes.c_int),
|
||||
("quant_v", ctypes.c_int)]
|
||||
("quant_v", ctypes.c_int),
|
||||
("quiet", ctypes.c_bool),
|
||||
("debugmode", ctypes.c_int)]
|
||||
|
||||
class generation_inputs(ctypes.Structure):
|
||||
_fields_ = [("seed", ctypes.c_int),
|
||||
|
@ -202,7 +203,6 @@ class generation_inputs(ctypes.Structure):
|
|||
("stream_sse", ctypes.c_bool),
|
||||
("grammar", ctypes.c_char_p),
|
||||
("grammar_retain_state", ctypes.c_bool),
|
||||
("quiet", ctypes.c_bool),
|
||||
("dynatemp_range", ctypes.c_float),
|
||||
("dynatemp_exponent", ctypes.c_float),
|
||||
("smoothing_factor", ctypes.c_float),
|
||||
|
@ -242,6 +242,7 @@ class sd_load_model_inputs(ctypes.Structure):
|
|||
("vae_filename", ctypes.c_char_p),
|
||||
("lora_filename", ctypes.c_char_p),
|
||||
("lora_multiplier", ctypes.c_float),
|
||||
("quiet", ctypes.c_bool),
|
||||
("debugmode", ctypes.c_int)]
|
||||
|
||||
class sd_generation_inputs(ctypes.Structure):
|
||||
|
@ -255,8 +256,7 @@ class sd_generation_inputs(ctypes.Structure):
|
|||
("height", ctypes.c_int),
|
||||
("seed", ctypes.c_int),
|
||||
("sample_method", ctypes.c_char_p),
|
||||
("clip_skip", ctypes.c_int),
|
||||
("quiet", ctypes.c_bool)]
|
||||
("clip_skip", ctypes.c_int)]
|
||||
|
||||
class sd_generation_outputs(ctypes.Structure):
|
||||
_fields_ = [("status", ctypes.c_int),
|
||||
|
@ -268,14 +268,14 @@ class whisper_load_model_inputs(ctypes.Structure):
|
|||
("clblast_info", ctypes.c_int),
|
||||
("cublas_info", ctypes.c_int),
|
||||
("vulkan_info", ctypes.c_char_p),
|
||||
("quiet", ctypes.c_bool),
|
||||
("debugmode", ctypes.c_int)]
|
||||
|
||||
class whisper_generation_inputs(ctypes.Structure):
|
||||
_fields_ = [("prompt", ctypes.c_char_p),
|
||||
("audio_data", ctypes.c_char_p),
|
||||
("suppress_non_speech", ctypes.c_bool),
|
||||
("langcode", ctypes.c_char_p),
|
||||
("quiet", ctypes.c_bool)]
|
||||
("langcode", ctypes.c_char_p)]
|
||||
|
||||
class whisper_generation_outputs(ctypes.Structure):
|
||||
_fields_ = [("status", ctypes.c_int),
|
||||
|
@ -291,13 +291,13 @@ class tts_load_model_inputs(ctypes.Structure):
|
|||
("vulkan_info", ctypes.c_char_p),
|
||||
("gpulayers", ctypes.c_int),
|
||||
("flash_attention", ctypes.c_bool),
|
||||
("quiet", ctypes.c_bool),
|
||||
("debugmode", ctypes.c_int)]
|
||||
|
||||
class tts_generation_inputs(ctypes.Structure):
|
||||
_fields_ = [("prompt", ctypes.c_char_p),
|
||||
("speaker_seed", ctypes.c_int),
|
||||
("audio_seed", ctypes.c_int),
|
||||
("quiet", ctypes.c_bool),
|
||||
("nocache", ctypes.c_bool)]
|
||||
|
||||
class tts_generation_outputs(ctypes.Structure):
|
||||
|
@ -513,6 +513,12 @@ def set_backend_props(inputs):
|
|||
inputs.vulkan_info = s.encode("UTF-8")
|
||||
else:
|
||||
inputs.vulkan_info = "".encode("UTF-8")
|
||||
|
||||
# set universal flags
|
||||
inputs.quiet = args.quiet
|
||||
inputs.debugmode = args.debugmode
|
||||
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
|
||||
|
||||
return inputs
|
||||
|
||||
def end_trim_to_sentence(input_text):
|
||||
|
@ -1077,13 +1083,10 @@ def load_model(model_filename):
|
|||
|
||||
inputs.moe_experts = args.moeexperts
|
||||
inputs = set_backend_props(inputs)
|
||||
|
||||
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
|
||||
inputs.debugmode = args.debugmode
|
||||
ret = handle.load_model(inputs)
|
||||
return ret
|
||||
|
||||
def generate(genparams, is_quiet=False, stream_flag=False):
|
||||
def generate(genparams, stream_flag=False):
|
||||
global maxctx, args, currentusergenkey, totalgens, pendingabortkey
|
||||
|
||||
prompt = genparams.get('prompt', "")
|
||||
|
@ -1121,7 +1124,6 @@ def generate(genparams, is_quiet=False, stream_flag=False):
|
|||
grammar_retain_state = genparams.get('grammar_retain_state', False)
|
||||
genkey = genparams.get('genkey', '')
|
||||
trimstop = genparams.get('trim_stop', True)
|
||||
quiet = is_quiet
|
||||
dynatemp_range = genparams.get('dynatemp_range', 0.0)
|
||||
dynatemp_exponent = genparams.get('dynatemp_exponent', 1.0)
|
||||
smoothing_factor = genparams.get('smoothing_factor', 0.0)
|
||||
|
@ -1170,7 +1172,6 @@ def generate(genparams, is_quiet=False, stream_flag=False):
|
|||
inputs.rep_pen_slope = rep_pen_slope
|
||||
inputs.presence_penalty = presence_penalty
|
||||
inputs.stream_sse = stream_sse
|
||||
inputs.quiet = quiet
|
||||
inputs.dynatemp_range = dynatemp_range
|
||||
inputs.dynatemp_exponent = dynatemp_exponent
|
||||
inputs.smoothing_factor = smoothing_factor
|
||||
|
@ -1289,8 +1290,6 @@ def generate(genparams, is_quiet=False, stream_flag=False):
|
|||
def sd_load_model(model_filename,vae_filename,lora_filename,t5xxl_filename,clipl_filename,clipg_filename):
|
||||
global args
|
||||
inputs = sd_load_model_inputs()
|
||||
inputs.debugmode = args.debugmode
|
||||
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
|
||||
inputs.model_filename = model_filename.encode("UTF-8")
|
||||
thds = args.threads
|
||||
quant = 0
|
||||
|
@ -1368,7 +1367,6 @@ def sd_generate(genparams):
|
|||
height = tryparseint(genparams.get("height", 512))
|
||||
seed = tryparseint(genparams.get("seed", -1))
|
||||
sample_method = genparams.get("sampler_name", "k_euler_a")
|
||||
is_quiet = True if (args.quiet or args.debugmode == -1) else False
|
||||
clip_skip = tryparseint(genparams.get("clip_skip", -1))
|
||||
|
||||
#clean vars
|
||||
|
@ -1405,7 +1403,6 @@ def sd_generate(genparams):
|
|||
inputs.height = height
|
||||
inputs.seed = seed
|
||||
inputs.sample_method = sample_method.lower().encode("UTF-8")
|
||||
inputs.quiet = is_quiet
|
||||
inputs.clip_skip = clip_skip
|
||||
ret = handle.sd_generate(inputs)
|
||||
outstr = ""
|
||||
|
@ -1417,8 +1414,6 @@ def sd_generate(genparams):
|
|||
def whisper_load_model(model_filename):
|
||||
global args
|
||||
inputs = whisper_load_model_inputs()
|
||||
inputs.debugmode = args.debugmode
|
||||
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
|
||||
inputs.model_filename = model_filename.encode("UTF-8")
|
||||
inputs = set_backend_props(inputs)
|
||||
ret = handle.whisper_load_model(inputs)
|
||||
|
@ -1426,7 +1421,6 @@ def whisper_load_model(model_filename):
|
|||
|
||||
def whisper_generate(genparams):
|
||||
global args
|
||||
is_quiet = True if (args.quiet or args.debugmode == -1) else False
|
||||
prompt = genparams.get("prompt", "")
|
||||
audio_data = genparams.get("audio_data", "")
|
||||
if audio_data.startswith("data:audio"):
|
||||
|
@ -1434,7 +1428,6 @@ def whisper_generate(genparams):
|
|||
inputs = whisper_generation_inputs()
|
||||
inputs.prompt = prompt.encode("UTF-8")
|
||||
inputs.audio_data = audio_data.encode("UTF-8")
|
||||
inputs.quiet = is_quiet
|
||||
lc = genparams.get("langcode", genparams.get("language", "auto"))
|
||||
lc = lc.strip().lower() if (lc and lc.strip().lower()!="") else "auto"
|
||||
inputs.langcode = lc.encode("UTF-8")
|
||||
|
@ -1448,8 +1441,6 @@ def whisper_generate(genparams):
|
|||
def tts_load_model(ttc_model_filename,cts_model_filename):
|
||||
global args
|
||||
inputs = tts_load_model_inputs()
|
||||
inputs.debugmode = args.debugmode
|
||||
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
|
||||
inputs.ttc_model_filename = ttc_model_filename.encode("UTF-8")
|
||||
inputs.cts_model_filename = cts_model_filename.encode("UTF-8")
|
||||
inputs.gpulayers = (999 if args.ttsgpu else 0)
|
||||
|
@ -1466,7 +1457,6 @@ def tts_load_model(ttc_model_filename,cts_model_filename):
|
|||
|
||||
def tts_generate(genparams):
|
||||
global args
|
||||
is_quiet = True if (args.quiet or args.debugmode == -1) else False
|
||||
prompt = genparams.get("input", genparams.get("text", ""))
|
||||
prompt = prompt.strip()
|
||||
voice = 1
|
||||
|
@ -1486,7 +1476,6 @@ def tts_generate(genparams):
|
|||
except Exception:
|
||||
aseed = -1
|
||||
inputs.audio_seed = aseed
|
||||
inputs.quiet = is_quiet
|
||||
inputs.nocache = genparams.get("nocache", False)
|
||||
ret = handle.tts_generate(inputs)
|
||||
outstr = ""
|
||||
|
@ -2044,7 +2033,6 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
|
|||
|
||||
async def generate_text(self, genparams, api_format, stream_flag):
|
||||
global friendlymodelname, chatcompl_adapter, currfinishreason
|
||||
is_quiet = args.quiet
|
||||
currfinishreason = "null"
|
||||
|
||||
def run_blocking(): # api format 1=basic,2=kai,3=oai,4=oai-chat
|
||||
|
@ -2054,7 +2042,7 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
|
|||
global last_non_horde_req_time
|
||||
last_non_horde_req_time = time.time()
|
||||
|
||||
return generate(genparams=genparams,is_quiet=is_quiet,stream_flag=stream_flag)
|
||||
return generate(genparams=genparams,stream_flag=stream_flag)
|
||||
|
||||
genout = {"text": "", "status": -1, "stopreason": -1, "prompt_tokens":0, "completion_tokens": 0, "total_tokens": 0}
|
||||
if stream_flag:
|
||||
|
|
|
@ -114,8 +114,11 @@ static std::string recent_data = "";
|
|||
|
||||
static std::string sdplatformenv, sddeviceenv, sdvulkandeviceenv;
|
||||
static bool notiling = false;
|
||||
bool sdtype_load_model(const sd_load_model_inputs inputs) {
|
||||
static bool sd_is_quiet = false;
|
||||
|
||||
bool sdtype_load_model(const sd_load_model_inputs inputs) {
|
||||
sd_is_quiet = inputs.quiet;
|
||||
set_sd_quiet(sd_is_quiet);
|
||||
executable_path = inputs.executable_path;
|
||||
std::string taesdpath = "";
|
||||
std::string lorafilename = inputs.lora_filename;
|
||||
|
@ -290,9 +293,6 @@ sd_generation_outputs sdtype_generate(const sd_generation_inputs inputs)
|
|||
sd_image_t * results;
|
||||
sd_image_t* control_image = NULL;
|
||||
|
||||
bool is_quiet = inputs.quiet;
|
||||
set_sd_quiet(is_quiet);
|
||||
|
||||
//sanitize prompts, remove quotes and limit lengths
|
||||
std::string cleanprompt = clean_input_prompt(inputs.prompt);
|
||||
std::string cleannegprompt = clean_input_prompt(inputs.negative_prompt);
|
||||
|
@ -345,7 +345,7 @@ sd_generation_outputs sdtype_generate(const sd_generation_inputs inputs)
|
|||
std::vector<uint8_t> resized_image_buf(img2imgW * img2imgH * img2imgC);
|
||||
|
||||
std::string ts = get_timestamp_str();
|
||||
if(!is_quiet)
|
||||
if(!sd_is_quiet)
|
||||
{
|
||||
printf("\n[%s] Generating Image (%d steps)\n",ts.c_str(),inputs.sample_steps);
|
||||
}else{
|
||||
|
@ -385,7 +385,7 @@ sd_generation_outputs sdtype_generate(const sd_generation_inputs inputs)
|
|||
|
||||
if (sd_params->mode == TXT2IMG) {
|
||||
|
||||
if(!is_quiet && sddebugmode==1)
|
||||
if(!sd_is_quiet && sddebugmode==1)
|
||||
{
|
||||
printf("\nTXT2IMG PROMPT:%s\nNPROMPT:%s\nCLPSKP:%d\nCFGSCLE:%f\nW:%d\nH:%d\nSM:%d\nSTEP:%d\nSEED:%d\nBATCH:%d\nCIMG:%p\nCSTR:%f\n\n",
|
||||
sd_params->prompt.c_str(),
|
||||
|
@ -471,7 +471,7 @@ sd_generation_outputs sdtype_generate(const sd_generation_inputs inputs)
|
|||
input_image.channel = img2imgC;
|
||||
input_image.data = resized_image_buf.data();
|
||||
|
||||
if(!is_quiet && sddebugmode==1)
|
||||
if(!sd_is_quiet && sddebugmode==1)
|
||||
{
|
||||
printf("\nIMG2IMG PROMPT:%s\nNPROMPT:%s\nCLPSKP:%d\nCFGSCLE:%f\nW:%d\nH:%d\nSM:%d\nSTEP:%d\nSEED:%d\nBATCH:%d\nCIMG:%p\nSTR:%f\n\n",
|
||||
sd_params->prompt.c_str(),
|
||||
|
|
|
@ -466,6 +466,7 @@ static llama_context * cts_ctx = nullptr; //codes to speech
|
|||
|
||||
static TTS_VER ttsver = TTS_VER_2;
|
||||
static int ttsdebugmode = 0;
|
||||
static bool tts_is_quiet = false;
|
||||
static std::string ttsplatformenv, ttsdeviceenv, ttsvulkandeviceenv;
|
||||
static std::string last_generated_audio = "";
|
||||
static std::string last_generation_settings_prompt = ""; //for caching purposes to fix ST bug
|
||||
|
@ -480,6 +481,8 @@ static int nthreads = 4;
|
|||
|
||||
bool ttstype_load_model(const tts_load_model_inputs inputs)
|
||||
{
|
||||
tts_is_quiet = inputs.quiet;
|
||||
|
||||
//duplicated from expose.cpp
|
||||
int cl_parseinfo = inputs.clblast_info; //first digit is whether configured, second is platform, third is devices
|
||||
std::string usingclblast = "GGML_OPENCL_CONFIGURED="+std::to_string(cl_parseinfo>0?1:0);
|
||||
|
@ -623,7 +626,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
{
|
||||
audio_seed = (((uint32_t)time(NULL)) % 1000000u);
|
||||
}
|
||||
if(ttsdebugmode==1 && !inputs.quiet)
|
||||
if(ttsdebugmode==1 && !tts_is_quiet)
|
||||
{
|
||||
printf("\nUsing Speaker Seed: %d", speaker_seed);
|
||||
printf("\nUsing Audio Seed: %d", audio_seed);
|
||||
|
@ -639,7 +642,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
&& last_generated_audio!=""
|
||||
&& last_generation_settings_prompt == std::string(inputs.prompt))
|
||||
{
|
||||
if (ttsdebugmode == 1 && !inputs.quiet) {
|
||||
if (ttsdebugmode == 1 && !tts_is_quiet) {
|
||||
printf("\nReusing Cached Audio.\n");
|
||||
}
|
||||
output.data = last_generated_audio.c_str();
|
||||
|
@ -662,7 +665,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
if(empty_check)
|
||||
{
|
||||
//no input
|
||||
if(!inputs.quiet)
|
||||
if(!tts_is_quiet)
|
||||
{
|
||||
printf("\nTTS sent empty input.\n");
|
||||
last_generated_audio = "";
|
||||
|
@ -676,7 +679,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
timer_start();
|
||||
|
||||
|
||||
if(!inputs.quiet && ttsdebugmode==1)
|
||||
if(!tts_is_quiet && ttsdebugmode==1)
|
||||
{
|
||||
printf("\nInput: %s\n", prompt_clean.c_str());
|
||||
}
|
||||
|
@ -691,7 +694,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
if(last_speaker_seed==speaker_seed && !last_speaker_codes.empty())
|
||||
{
|
||||
//able to proceed, do nothing
|
||||
if(!inputs.quiet && ttsdebugmode==1)
|
||||
if(!tts_is_quiet && ttsdebugmode==1)
|
||||
{
|
||||
printf("\nReuse speaker ID=%d (%d tokens)...", last_speaker_seed, last_speaker_codes.size());
|
||||
}
|
||||
|
@ -717,7 +720,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
}
|
||||
last_speaker_codes = common_tokenize(ttcvocab, speaker, false, true);
|
||||
last_speaker_seed = speaker_seed;
|
||||
if(!inputs.quiet && ttsdebugmode==1)
|
||||
if(!tts_is_quiet && ttsdebugmode==1)
|
||||
{
|
||||
printf("\nSpecial ID=%d (%d tokens)...", last_speaker_seed, last_speaker_codes.size());
|
||||
}
|
||||
|
@ -725,7 +728,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
//generate the voice texture of our new speaker
|
||||
last_speaker_codes.clear();
|
||||
guide_tokens = prepare_guide_tokens(ttcvocab,sampletext,ttsver);
|
||||
if(!inputs.quiet && ttsdebugmode==1)
|
||||
if(!tts_is_quiet && ttsdebugmode==1)
|
||||
{
|
||||
printf("\nGuide Tokens (%d tokens):\n", guide_tokens.size());
|
||||
const std::string inp_txt = common_detokenize(ttc_ctx, guide_tokens, true);
|
||||
|
@ -734,7 +737,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
}
|
||||
prompt_add(prompt_inp, ttcvocab, sampletext, false, true);
|
||||
prompt_add(prompt_inp, ttcvocab, "<|text_end|>\n<|audio_start|>\n", false, true);
|
||||
if(!inputs.quiet && ttsdebugmode==1)
|
||||
if(!tts_is_quiet && ttsdebugmode==1)
|
||||
{
|
||||
printf("\nPrepare new speaker (%d input tokens)...\n", prompt_inp.size());
|
||||
print_tok_vec(prompt_inp);
|
||||
|
@ -806,7 +809,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
}
|
||||
}
|
||||
last_speaker_seed = speaker_seed;
|
||||
if(!inputs.quiet && ttsdebugmode==1)
|
||||
if(!tts_is_quiet && ttsdebugmode==1)
|
||||
{
|
||||
printf("\nNew speaker ID=%d created (%d tokens)...", last_speaker_seed, last_speaker_codes.size());
|
||||
const std::string inp_txt = common_detokenize(ttc_ctx, last_speaker_codes, true);
|
||||
|
@ -821,7 +824,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
|
||||
//second pass: add the speaker before the actual prompt
|
||||
guide_tokens = prepare_guide_tokens(ttcvocab,prompt_clean,ttsver);
|
||||
if(!inputs.quiet && ttsdebugmode==1)
|
||||
if(!tts_is_quiet && ttsdebugmode==1)
|
||||
{
|
||||
printf("\nGuide Tokens (%d tokens):\n", guide_tokens.size());
|
||||
const std::string inp_txt = common_detokenize(ttc_ctx, guide_tokens, true);
|
||||
|
@ -834,7 +837,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
}
|
||||
prompt_add(prompt_inp, ttcvocab, prompt_clean, false, true);
|
||||
|
||||
if(!inputs.quiet)
|
||||
if(!tts_is_quiet)
|
||||
{
|
||||
printf("\nTTS Processing (%d input tokens)...\n", prompt_inp.size());
|
||||
}
|
||||
|
@ -847,7 +850,7 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
prompt_add(prompt_inp, ttcvocab, "\n", false, true);
|
||||
}
|
||||
|
||||
if(!inputs.quiet && ttsdebugmode==1)
|
||||
if(!tts_is_quiet && ttsdebugmode==1)
|
||||
{
|
||||
printf("\nDUMP TTS PROMPT (%d tokens):\n", prompt_inp.size());
|
||||
print_tok_vec(prompt_inp);
|
||||
|
@ -913,13 +916,13 @@ tts_generation_outputs ttstype_generate(const tts_generation_inputs inputs)
|
|||
output.status = 0;
|
||||
return output;
|
||||
}
|
||||
if(!inputs.quiet)
|
||||
if(!tts_is_quiet)
|
||||
{
|
||||
printf("\rTTS Generating (%d outputs)", n_decode);
|
||||
}
|
||||
}
|
||||
|
||||
if(!inputs.quiet && ttsdebugmode==1)
|
||||
if(!tts_is_quiet && ttsdebugmode==1)
|
||||
{
|
||||
const std::string inp_txt = common_detokenize(ttc_ctx, codes, true);
|
||||
printf("\nGenerated %d Codes: '%s'\n",codes.size(), inp_txt.c_str());
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
#endif
|
||||
|
||||
static int whisperdebugmode = 0;
|
||||
static bool whisperquiet = false;
|
||||
static bool whisper_is_quiet = false;
|
||||
static whisper_context * whisper_ctx = nullptr;
|
||||
static std::string whisper_output_text = "";
|
||||
|
||||
|
@ -90,7 +90,7 @@ static bool read_wav(const std::string & b64data, std::vector<float>& pcmf32, st
|
|||
std::vector<float> raw_pcm;
|
||||
raw_pcm.resize(n);
|
||||
|
||||
if(whisperdebugmode==1 && !whisperquiet)
|
||||
if(whisperdebugmode==1 && !whisper_is_quiet)
|
||||
{
|
||||
printf("\nwav_data_size: %d, n:%d",wav_data.size(),n);
|
||||
}
|
||||
|
@ -107,7 +107,7 @@ static bool read_wav(const std::string & b64data, std::vector<float>& pcmf32, st
|
|||
}
|
||||
|
||||
if (wav.sampleRate != COMMON_SAMPLE_RATE) {
|
||||
if(whisperdebugmode==1 && !whisperquiet)
|
||||
if(whisperdebugmode==1 && !whisper_is_quiet)
|
||||
{
|
||||
printf("\nResample wav from %" PRIu32 " to %" PRIu32 " (in size: %zu)",
|
||||
wav.sampleRate, COMMON_SAMPLE_RATE, raw_pcm.size());
|
||||
|
@ -140,6 +140,8 @@ void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
|
|||
static std::string whisperplatformenv, whisperdeviceenv, whispervulkandeviceenv;
|
||||
bool whispertype_load_model(const whisper_load_model_inputs inputs)
|
||||
{
|
||||
whisper_is_quiet = inputs.quiet;
|
||||
|
||||
//duplicated from expose.cpp
|
||||
int cl_parseinfo = inputs.clblast_info; //first digit is whether configured, second is platform, third is devices
|
||||
std::string usingclblast = "GGML_OPENCL_CONFIGURED="+std::to_string(cl_parseinfo>0?1:0);
|
||||
|
@ -203,8 +205,7 @@ whisper_generation_outputs whispertype_generate(const whisper_generation_inputs
|
|||
return output;
|
||||
}
|
||||
|
||||
whisperquiet = inputs.quiet;
|
||||
if(!whisperquiet)
|
||||
if(!whisper_is_quiet)
|
||||
{
|
||||
printf("\nWhisper Transcribe Generating...");
|
||||
}
|
||||
|
@ -263,14 +264,14 @@ whisper_generation_outputs whispertype_generate(const whisper_generation_inputs
|
|||
return output;
|
||||
}
|
||||
|
||||
if (!whisperquiet && whisperdebugmode==1) {
|
||||
if (!whisper_is_quiet && whisperdebugmode==1) {
|
||||
whisper_print_timings(whisper_ctx);
|
||||
}
|
||||
|
||||
// output text transcription
|
||||
whisper_output_text = output_txt(whisper_ctx, pcmf32s);
|
||||
std::string ts = get_timestamp_str();
|
||||
if(!whisperquiet)
|
||||
if(!whisper_is_quiet)
|
||||
{
|
||||
printf("\n[%s] Whisper Transcribe Output: %s",ts.c_str(),whisper_output_text.c_str());
|
||||
} else {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue