quiet flags now set at load time

This commit is contained in:
Concedo 2025-01-25 16:46:56 +08:00
parent bec231422a
commit 0e45d3bb7a
7 changed files with 100 additions and 94 deletions

View file

@ -106,7 +106,7 @@ static kcpp_params * kcpp_data = nullptr;
static int max_context_limit_at_load = 0;
static int n_past = 0;
static int debugmode = 0; //-1 = hide all, 0 = normal, 1 = showall
static bool quiet = false;
static bool is_quiet = false;
static std::vector<gpt_vocab::id> last_n_tokens;
static std::vector<gpt_vocab::id> current_context_tokens;
static size_t mem_per_token = 0;
@ -939,12 +939,12 @@ void sample_xtc(llama_token_data_array * candidates, float xtc_threshold, float
if(last_idx>1) //if there are 2 or more viable candidates
{
if (debugmode==1 && !quiet) {
if (debugmode==1 && !is_quiet) {
printf("XTC penalties [");
}
// then remove all other tokens above threshold EXCEPT the least likely one
for (size_t i = 0; i < last_idx - 1; ++i) {
if (debugmode==1 && !quiet)
if (debugmode==1 && !is_quiet)
{
gpt_vocab::id token = candidates->data[i].id;
std::string tokenizedstr = FileFormatTokenizeID(token, file_format);
@ -953,7 +953,7 @@ void sample_xtc(llama_token_data_array * candidates, float xtc_threshold, float
}
candidates->data[i].logit -= 999.0f; //infinity gets wonky results downstream, this hack works well enough
}
if (debugmode==1 && !quiet) {
if (debugmode==1 && !is_quiet) {
printf("]\n");
}
candidates->sorted = false;
@ -1142,7 +1142,7 @@ void sample_dry(int n_ctx, int penalty_range, float penalty_multiplier, float pe
max_exponent = FLOAT_MAX_LOG / std::log(penalty_base);
}
if (debugmode==1 && !quiet && !dry_max_token_repeat.empty()) {
if (debugmode==1 && !is_quiet && !dry_max_token_repeat.empty()) {
printf("DRY penalties [");
}
size_t count = 0;
@ -1153,7 +1153,7 @@ void sample_dry(int n_ctx, int penalty_range, float penalty_multiplier, float pe
repeat_exp = max_exponent;
}
float penalty = penalty_multiplier * pow(penalty_base, repeat_exp);
if (debugmode==1 && !quiet)
if (debugmode==1 && !is_quiet)
{
std::string tokenizedstr = FileFormatTokenizeID(token, file_format);
::utreplace(tokenizedstr, "\n", "\\n");
@ -1166,7 +1166,7 @@ void sample_dry(int n_ctx, int penalty_range, float penalty_multiplier, float pe
{
candidates->sorted = false;
}
if (debugmode==1 && !quiet && !dry_max_token_repeat.empty()) {
if (debugmode==1 && !is_quiet && !dry_max_token_repeat.empty()) {
printf("]\n");
}
}
@ -1697,7 +1697,7 @@ static void load_grammar(const std::string & gammarstr)
printf("\nIgnored invalid grammar sampler.");
return;
}
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
parsed_grammar.print(stderr);
}
@ -1840,7 +1840,7 @@ static float CalcGradientAIRopeFreqBase(float original_rope_base, int n_ctx_trai
float chi_ctx_value = (n_ctx_desired * ctx_multiplier) / 6.28318;
float gradient_ai_rope_freq_base_value = powf(original_rope_base, log10f(chi_ctx_value) / log10f(chi_ctx_train_value));
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
printf("Trained max context length (value:%.d).\n", n_ctx_train);
printf("Desired context length (value:%.d).\n", n_ctx_desired);
@ -1857,7 +1857,7 @@ static float CalcGradientAIRopeFreqBase(float original_rope_base, int n_ctx_trai
{
float extended_rope_positive_offset_value = 1 + ((log10f(chi_ctx_value) - log10f(chi_ctx_train_value)) / ((log10f(chi_ctx_value) * log10f(chi_ctx_train_value)) - (log10f(chi_ctx_value) + log10f(chi_ctx_train_value))));
float rope_freq_base_with_positive_offset = gradient_ai_rope_freq_base_value * extended_rope_positive_offset_value;
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
printf("Extended RoPE Positive Offset (multiplicator) for Solar based models. (value:%.3f).\n", extended_rope_positive_offset_value);
printf("RoPE base calculated via Gradient AI formula for Solar based models. (value:%.1f).\n", rope_freq_base_with_positive_offset);
@ -1873,6 +1873,7 @@ static float CalcGradientAIRopeFreqBase(float original_rope_base, int n_ctx_trai
ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format, FileFormatExtraMeta in_file_format_meta)
{
is_quiet = inputs.quiet;
ggml_time_init();
kcpp_data = new kcpp_params(); //allocate on heap to avoid linux segfault. yes this leaks memory.
@ -2688,13 +2689,13 @@ std::vector<int> gpttype_get_token_arr(const std::string & input, bool addbos)
printf("\nWarning: KCPP text generation not initialized!\n");
return toks;
}
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
printf("\nFileFormat: %d, Tokenizing: %s",file_format ,input.c_str());
}
TokenizeString(input, toks, file_format,addbos);
int tokcount = toks.size();
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
printf("\nTokens Counted: %d\n",tokcount);
}
@ -2779,7 +2780,6 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
llama_perf_context_reset(llama_ctx_v4);
}
quiet = inputs.quiet;
generation_finished = false; // Set current generation status
generated_tokens.clear(); // New Generation, new tokens
delayed_generated_tokens.clear();
@ -2858,7 +2858,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
banned_token_ids.clear();
if(banned_tokens.size()>0)
{
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
printf("\nBanning %zu single character sequences...",banned_tokens.size());
}
@ -2875,13 +2875,13 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
}
}
}
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
printf("\nBanned a total of %zu individual tokens.\n",banned_token_ids.size());
}
}
if(debugmode==1 && !quiet && banned_phrases.size()>0)
if(debugmode==1 && !is_quiet && banned_phrases.size()>0)
{
printf("\nBanned a total of %zu phrases, with max token count of %d.\n",banned_phrases.size(),delayed_generated_tokens_limit);
}
@ -2926,7 +2926,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
//images have changed. swap identifiers to force reprocessing
current_llava_identifier = (current_llava_identifier==LLAVA_TOKEN_IDENTIFIER_A?LLAVA_TOKEN_IDENTIFIER_B:LLAVA_TOKEN_IDENTIFIER_A);
llava_composite_image_signature = new_llava_composite;
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
printf("\nLLAVA images changed, existing cache invalidated");
}
@ -2982,7 +2982,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
const int MAX_CHAR_LEN = 40;
const int MAX_SEQ_LEN = 20;
if (debugmode == 1 && !quiet)
if (debugmode == 1 && !is_quiet)
{
printf("\nProcessing %zu dry break strings...", kcpp_data->dry_sequence_breakers.size());
}
@ -2994,7 +2994,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
}
GetOverlappingTokenSequences(sequence_break, dry_sequence_breakers, MAX_SEQ_LEN);
}
if (debugmode == 1 && !quiet)
if (debugmode == 1 && !is_quiet)
{
int trivial = 0, non_trivial = 0;
for (const auto &seq : dry_sequence_breakers)
@ -3014,7 +3014,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
}
bool stream_sse = inputs.stream_sse;
bool allow_regular_prints = (!quiet && debugmode!=-1);
bool allow_regular_prints = (!is_quiet && debugmode!=-1);
std::string grammarstr = inputs.grammar;
bool grammar_retain_state = inputs.grammar_retain_state;
@ -3047,7 +3047,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
if (kcpp_data->seed <= 0 || kcpp_data->seed==0xFFFFFFFF)
{
kcpp_data->seed = (((uint32_t)time(NULL)) % 1000000u);
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
printf("\nUsing Seed: %d",kcpp_data->seed);
}
@ -3079,7 +3079,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
}
else
{
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
printf("\nCreating clip image embed...");
}
@ -3087,7 +3087,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
if (!llava_image_embed_make_with_clip_img(clp_ctx, kcpp_data->n_threads, clp_img_data, &llava_images[i].clp_img_embd, &llava_images[i].clp_image_tokens)) {
printf("\nError: Clip image %d failed to create embd!",i);
}
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
printf("\nLLAVA Clip Embed %i used Tokens: %d",i,llava_images[i].clp_image_tokens);
}
@ -3210,7 +3210,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
n_past = 0;
if (debugmode==1 && !quiet)
if (debugmode==1 && !is_quiet)
{
std::string outstr = "";
printf("\n\n[Debug: Dump Raw Input Tokens, format: %d]\n", file_format);
@ -3355,7 +3355,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
printf("\n");
}
if (debugmode==1 && !quiet)
if (debugmode==1 && !is_quiet)
{
std::string outstr = "";
printf("\n[Debug: Dump Forwarded Input Tokens, format: %d]\n", file_format);
@ -3404,7 +3404,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
draft_used = true;
draft_results = speculative_decoding_eval_chunk(draft_ctx, llama_ctx_v4, embd, n_vocab, n_past);
evalres = draft_results.draft_success;
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
std::string draftedtoks = get_tok_vec_str(draft_results.draftids);
printf("\nDrafted %d Tokens: [%s]\n",speculative_chunk_amt,draftedtoks.c_str());
@ -3607,7 +3607,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
if(draft_used)
{
int32_t draftedid = draft_results.draftids[logits_sampled];
if(debugmode==1 && !quiet)
if(debugmode==1 && !is_quiet)
{
std::string drafttok = FileFormatTokenizeID(draftedid, file_format, true);
std::string realtok = FileFormatTokenizeID(id, file_format, true);
@ -3660,7 +3660,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
{
printf("\rGenerating (%d / %d tokens)", (kcpp_data->n_predict - remaining_tokens), kcpp_data->n_predict);
}
if(debugmode==1 && !quiet && top_picks_history.size()>0)
if(debugmode==1 && !is_quiet && top_picks_history.size()>0)
{
printf(" [");
bool firstloop = true;
@ -3912,7 +3912,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
delayed_generated_tokens.pop_front();
}
if(debugmode==1 && !quiet && file_format == FileFormat::GGUF_GENERIC)
if(debugmode==1 && !is_quiet && file_format == FileFormat::GGUF_GENERIC)
{
printf("\n");
llama_perf_context_print(llama_ctx_v4);