vulkan : support ggml_mean (#15393)

* vulkan : support ggml_mean

* vulkan : support sum, sum_rows and mean with non-contiguous tensors

* vulkan : fix subbuffer size not accounting for misalign offset

* tests : add backend-op tests for non-contiguous sum_rows

* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support

* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
This commit is contained in:
Acly 2025-08-23 08:35:21 +02:00 committed by GitHub
parent 330c3d2d21
commit 0a9b43e507
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 135 additions and 18 deletions

View file

@ -3485,11 +3485,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_CONV_TRANSPOSE_2D: case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_POOL_2D: case GGML_OP_POOL_2D:
case GGML_OP_SUM: case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
case GGML_OP_ACC: case GGML_OP_ACC:
return true; return true;
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_GROUP_NORM: case GGML_OP_GROUP_NORM:
return ggml_is_contiguous(op->src[0]); return ggml_is_contiguous(op->src[0]);
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:

View file

@ -4391,10 +4391,11 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
return true; return true;
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST; return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_POOL_2D:
case GGML_OP_SUM: case GGML_OP_SUM:
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_POOL_2D:
case GGML_OP_ACC: case GGML_OP_ACC:
case GGML_OP_PAD: case GGML_OP_PAD:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:

View file

@ -1015,6 +1015,39 @@ struct vk_op_upscale_push_constants {
float sf0; float sf1; float sf2; float sf3; float sf0; float sf1; float sf2; float sf3;
}; };
struct vk_op_sum_rows_push_constants
{
uint32_t n_cols;
uint32_t ne01, ne02;
uint32_t nb01, nb02, nb03;
uint32_t nb11, nb12, nb13;
float weight;
uint32_t misalign_offsets;
uint32_t ne0_12mp, ne0_12L;
uint32_t ne0_1mp, ne0_1L;
};
vk_op_sum_rows_push_constants vk_op_sum_rows_push_constants_init(const ggml_tensor * src, const ggml_tensor * dst, int64_t n_cols) {
uint32_t type_size = (uint32_t)ggml_type_size(src->type);
vk_op_sum_rows_push_constants p = {};
p.n_cols = (uint32_t)n_cols;
p.ne01 = (uint32_t)src->ne[1];
p.ne02 = (uint32_t)src->ne[2];
p.nb01 = (uint32_t)src->nb[1] / type_size;
p.nb02 = (uint32_t)src->nb[2] / type_size;
p.nb03 = (uint32_t)src->nb[3] / type_size;
p.nb11 = (uint32_t)dst->nb[1] / type_size;
p.nb12 = (uint32_t)dst->nb[2] / type_size;
p.nb13 = (uint32_t)dst->nb[3] / type_size;
p.weight = 1.0f;
return p;
}
template <> void init_pushconst_fastdiv(vk_op_sum_rows_push_constants &p) {
init_fastdiv_values(p.ne01*p.ne02, p.ne0_12mp, p.ne0_12L);
init_fastdiv_values(p.ne01, p.ne0_1mp, p.ne0_1L);
}
// Allow pre-recording command buffers // Allow pre-recording command buffers
struct vk_staging_memcpy { struct vk_staging_memcpy {
vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {} vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
@ -3128,7 +3161,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_argmax_f32, "argmax_f32", argmax_f32_len, argmax_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1); ggml_vk_create_pipeline(device, device->pipeline_argmax_f32, "argmax_f32", argmax_f32_len, argmax_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1); ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_count_equal_i32, "count_equal_i32", count_equal_i32_len, count_equal_i32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, { device->subgroup_size }, 1); ggml_vk_create_pipeline(device, device->pipeline_count_equal_i32, "count_equal_i32", count_equal_i32_len, count_equal_i32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, { device->subgroup_size }, 1);
@ -7249,6 +7282,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return nullptr; return nullptr;
case GGML_OP_SUM: case GGML_OP_SUM:
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_sum_rows_f32; return ctx->device->pipeline_sum_rows_f32;
} }
@ -7387,6 +7421,9 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
case GGML_OP_CONV_2D_DW: case GGML_OP_CONV_2D_DW:
case GGML_OP_IM2COL: case GGML_OP_IM2COL:
case GGML_OP_SET_ROWS: case GGML_OP_SET_ROWS:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
return true; return true;
default: default:
return false; return false;
@ -7421,6 +7458,16 @@ template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk
GGML_UNUSED(src2); GGML_UNUSED(src2);
} }
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_sum_rows_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
p.misalign_offsets = (a_offset << 16) | d_offset;
GGML_UNUSED(src1);
GGML_UNUSED(src2);
}
template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_binary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_binary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type); const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
const uint32_t b_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type); const uint32_t b_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type);
@ -7571,10 +7618,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
d_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1); d_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
if (op_supports_incontiguous) { if (op_supports_incontiguous) {
x_sz = ggml_nbytes(src0); x_sz = ggml_nbytes(src0) + get_misalign_bytes(ctx, src0);
y_sz = use_src1 ? ggml_nbytes(src1) : 0; y_sz = use_src1 ? ggml_nbytes(src1) + get_misalign_bytes(ctx, src1) : 0;
z_sz = use_src2 ? ggml_nbytes(src2) : 0; z_sz = use_src2 ? ggml_nbytes(src2) + get_misalign_bytes(ctx, src2) : 0;
d_sz = ggml_nbytes(dst); d_sz = ggml_nbytes(dst) + get_misalign_bytes(ctx, dst);
if (x_buf_offset + x_sz >= d_X->size) { if (x_buf_offset + x_sz >= d_X->size) {
x_sz = VK_WHOLE_SIZE; x_sz = VK_WHOLE_SIZE;
@ -7602,6 +7649,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK: case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX: case GGML_OP_ARGMAX:
{ {
const uint32_t nr = ggml_nrows(src0); const uint32_t nr = ggml_nrows(src0);
@ -8588,11 +8636,19 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, c
} }
static void ggml_vk_sum(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { static void ggml_vk_sum(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun); vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, ggml_nelements(src0));
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM, p, dryrun);
} }
static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, { (uint32_t)src0->ne[0], 0, 0.0f, 0.0f }, dryrun); vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, p, dryrun);
}
static void ggml_vk_mean(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
p.weight = 1.0f / (float)src0->ne[0];
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_MEAN, p, dryrun);
} }
static void ggml_vk_argmax(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { static void ggml_vk_argmax(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
@ -9815,6 +9871,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
case GGML_OP_SUM: case GGML_OP_SUM:
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX: case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL: case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL: case GGML_OP_IM2COL:
@ -9884,6 +9941,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
case GGML_OP_SUM: case GGML_OP_SUM:
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX: case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL: case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL: case GGML_OP_IM2COL:
@ -10087,6 +10145,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
ggml_vk_sum_rows(ctx, compute_ctx, src0, node, dryrun); ggml_vk_sum_rows(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_MEAN:
ggml_vk_mean(ctx, compute_ctx, src0, node, dryrun);
break; break;
case GGML_OP_ARGMAX: case GGML_OP_ARGMAX:
ggml_vk_argmax(ctx, compute_ctx, src0, node, dryrun); ggml_vk_argmax(ctx, compute_ctx, src0, node, dryrun);
@ -10246,6 +10308,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
case GGML_OP_SUM: case GGML_OP_SUM:
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX: case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL: case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL: case GGML_OP_IM2COL:
@ -11483,8 +11546,11 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK: case GGML_OP_SOFT_MAX_BACK:
return true;
case GGML_OP_SUM: case GGML_OP_SUM:
case GGML_OP_SUM_ROWS: case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_ARGMAX: case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL: case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL: case GGML_OP_IM2COL:
@ -12043,6 +12109,8 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
tensor_clone = ggml_sum(ggml_ctx, src_clone[0]); tensor_clone = ggml_sum(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_SUM_ROWS) { } else if (tensor->op == GGML_OP_SUM_ROWS) {
tensor_clone = ggml_sum_rows(ggml_ctx, src_clone[0]); tensor_clone = ggml_sum_rows(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_MEAN) {
tensor_clone = ggml_mean(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_ARGMAX) { } else if (tensor->op == GGML_OP_ARGMAX) {
tensor_clone = ggml_argmax(ggml_ctx, src_clone[0]); tensor_clone = ggml_argmax(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_COUNT_EQUAL) { } else if (tensor->op == GGML_OP_COUNT_EQUAL) {

View file

@ -1,9 +1,9 @@
#version 450 #version 450
#include "generic_head.comp"
#include "types.comp" #include "types.comp"
#extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_control_flow_attributes : enable
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
@ -11,16 +11,49 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (push_constant) uniform parameter
{
uint n_cols;
uint ne01, ne02;
uint nb01, nb02, nb03;
uint nb11, nb12, nb13;
float weight;
uint misalign_offsets;
uint ne0_12mp, ne0_12L;
uint ne0_1mp, ne0_1L;
} p;
uint get_aoffset() { return p.misalign_offsets >> 16; }
uint get_doffset() { return p.misalign_offsets & 0xFFFF; }
// see init_fastdiv_values in ggml-vulkan.cpp
uint fastdiv(uint n, uint mp, uint L) {
uint msbs, lsbs;
// msbs = mulhi(n, mp)
umulExtended(n, mp, msbs, lsbs);
return (msbs + n) >> L;
}
shared FLOAT_TYPE tmp[BLOCK_SIZE]; shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() { void main() {
const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x; const uint row = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
const uint col = gl_LocalInvocationID.x; const uint col = gl_LocalInvocationID.x;
const float weight = p.weight;
tmp[col] = FLOAT_TYPE(0.0f); const uint i03 = fastdiv(row, p.ne0_12mp, p.ne0_12L);
const uint i03_offset = i03 * p.ne01*p.ne02;
const uint i02 = fastdiv(row - i03_offset, p.ne0_1mp, p.ne0_1L);
const uint i01 = row - i03_offset - i02*p.ne01;
for (uint i = col; i < p.KX; i += BLOCK_SIZE) { const uint src_idx = get_aoffset() + i01 * p.nb01 + i02 * p.nb02 + i03 * p.nb03;
tmp[col] += FLOAT_TYPE(data_a[row*p.KX + i]); const uint dst_idx = get_doffset() + i01 * p.nb11 + i02 * p.nb12 + i03 * p.nb13;
tmp[col] = FLOAT_TYPE(0.0);
for (uint i = col; i < p.n_cols; i += BLOCK_SIZE) {
tmp[col] += FLOAT_TYPE(data_a[src_idx + i]);
} }
barrier(); barrier();
@ -32,6 +65,6 @@ void main() {
} }
if (col == 0) { if (col == 0) {
data_d[row] = D_TYPE(tmp[0]); data_d[dst_idx] = D_TYPE(tmp[0] * weight);
} }
} }

View file

@ -4300,20 +4300,32 @@ struct test_sum : public test_case {
struct test_sum_rows : public test_case { struct test_sum_rows : public test_case {
const ggml_type type; const ggml_type type;
const std::array<int64_t, 4> ne; const std::array<int64_t, 4> ne;
const bool permute;
const bool slice;
std::string vars() override { std::string vars() override {
return VARS_TO_STR2(type, ne); return VARS_TO_STR4(type, ne, permute, slice);
} }
test_sum_rows(ggml_type type = GGML_TYPE_F32, test_sum_rows(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3}) std::array<int64_t, 4> ne = {10, 5, 4, 3},
: type(type), ne(ne) {} bool permute = false, bool slice = false)
: type(type), ne(ne), permute(permute), slice(slice) {}
ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(a); ggml_set_param(a);
ggml_set_name(a, "a"); ggml_set_name(a, "a");
if (slice) {
a = ggml_view_4d(ctx, a,
ne[0], ne[1], ne[2] / 2, ne[3] - 1,
a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
}
if (permute) {
a = ggml_permute(ctx, a, 0, 2, 3, 1);
}
ggml_tensor * out = ggml_sum_rows(ctx, a); ggml_tensor * out = ggml_sum_rows(ctx, a);
ggml_set_name(out, "out"); ggml_set_name(out, "out");
@ -6195,6 +6207,9 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_sum()); test_cases.emplace_back(new test_sum());
test_cases.emplace_back(new test_sum_rows()); test_cases.emplace_back(new test_sum_rows());
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
test_cases.emplace_back(new test_mean()); test_cases.emplace_back(new test_mean());
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 })); test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 })); test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));