mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 09:34:37 +00:00
temp merge, not working
This commit is contained in:
commit
0951ad9f58
21 changed files with 2802 additions and 1308 deletions
|
@ -455,8 +455,12 @@ class ModelBase:
|
||||||
|
|
||||||
|
|
||||||
class TextModel(ModelBase):
|
class TextModel(ModelBase):
|
||||||
|
model_type = ModelType.TEXT
|
||||||
|
hf_arch: str
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
|
self.hf_arch = get_model_architecture(self.hparams, self.model_type)
|
||||||
|
|
||||||
if "text_config" in self.hparams:
|
if "text_config" in self.hparams:
|
||||||
# move the text_config to the root level
|
# move the text_config to the root level
|
||||||
|
@ -506,7 +510,7 @@ class TextModel(ModelBase):
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
self.gguf_writer.add_block_count(self.block_count)
|
self.gguf_writer.add_block_count(self.block_count)
|
||||||
|
|
||||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
|
||||||
self.gguf_writer.add_context_length(n_ctx)
|
self.gguf_writer.add_context_length(n_ctx)
|
||||||
logger.info(f"gguf: context length = {n_ctx}")
|
logger.info(f"gguf: context length = {n_ctx}")
|
||||||
|
|
||||||
|
@ -1075,10 +1079,36 @@ class TextModel(ModelBase):
|
||||||
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
|
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
|
||||||
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
|
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
|
||||||
|
|
||||||
|
def _try_set_pooling_type(self) -> None:
|
||||||
|
# get pooling path
|
||||||
|
pooling_path = None
|
||||||
|
module_path = self.dir_model / "modules.json"
|
||||||
|
if module_path.is_file():
|
||||||
|
with open(module_path, encoding="utf-8") as f:
|
||||||
|
modules = json.load(f)
|
||||||
|
for mod in modules:
|
||||||
|
if mod["type"] == "sentence_transformers.models.Pooling":
|
||||||
|
pooling_path = mod["path"]
|
||||||
|
break
|
||||||
|
|
||||||
|
# get pooling type
|
||||||
|
if pooling_path is not None:
|
||||||
|
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||||||
|
pooling = json.load(f)
|
||||||
|
if pooling["pooling_mode_mean_tokens"]:
|
||||||
|
pooling_type = gguf.PoolingType.MEAN
|
||||||
|
elif pooling["pooling_mode_cls_token"]:
|
||||||
|
pooling_type = gguf.PoolingType.CLS
|
||||||
|
elif pooling["pooling_mode_lasttoken"]:
|
||||||
|
pooling_type = gguf.PoolingType.LAST
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
|
||||||
|
self.gguf_writer.add_pooling_type(pooling_type)
|
||||||
|
|
||||||
|
|
||||||
class VisionModel(ModelBase):
|
class VisionModel(ModelBase):
|
||||||
|
model_type = ModelType.VISION
|
||||||
model_arch = gguf.MODEL_ARCH.CLIP_VISION
|
model_arch = gguf.MODEL_ARCH.CLIP_VISION
|
||||||
n_text_embd = 0
|
|
||||||
preprocessor_config: dict[str, Any]
|
preprocessor_config: dict[str, Any]
|
||||||
global_config: dict[str, Any]
|
global_config: dict[str, Any]
|
||||||
|
|
||||||
|
@ -1089,6 +1119,8 @@ class VisionModel(ModelBase):
|
||||||
raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
|
raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
|
||||||
|
|
||||||
# get n_embd of the text model
|
# get n_embd of the text model
|
||||||
|
if "text_config" not in self.hparams:
|
||||||
|
self.hparams["text_config"] = {}
|
||||||
text_config = {**self.hparams, **self.hparams["text_config"]}
|
text_config = {**self.hparams, **self.hparams["text_config"]}
|
||||||
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
|
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
|
||||||
assert self.n_embd_text > 0, "n_embd not found in hparams"
|
assert self.n_embd_text > 0, "n_embd not found in hparams"
|
||||||
|
@ -2540,7 +2572,7 @@ class QwenModel(TextModel):
|
||||||
self.gguf_writer.add_file_type(self.ftype)
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
|
|
||||||
@ModelBase.register("Qwen2ForCausalLM")
|
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM")
|
||||||
class Qwen2Model(TextModel):
|
class Qwen2Model(TextModel):
|
||||||
model_arch = gguf.MODEL_ARCH.QWEN2
|
model_arch = gguf.MODEL_ARCH.QWEN2
|
||||||
|
|
||||||
|
@ -2552,12 +2584,18 @@ class Qwen2Model(TextModel):
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
super().set_gguf_parameters()
|
super().set_gguf_parameters()
|
||||||
|
self._try_set_pooling_type()
|
||||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||||
if self.hparams["rope_scaling"].get("type") == "yarn":
|
if self.hparams["rope_scaling"].get("type") == "yarn":
|
||||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
|
||||||
|
|
||||||
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
if self.hf_arch == "Qwen2Model":
|
||||||
|
name = f"model.{name}" # map to Qwen2ForCausalLM tensors
|
||||||
|
yield from super().modify_tensors(data_torch, name, bid)
|
||||||
|
|
||||||
|
|
||||||
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||||
class Qwen2VLModel(TextModel):
|
class Qwen2VLModel(TextModel):
|
||||||
|
@ -2583,6 +2621,82 @@ class Qwen2VLModel(TextModel):
|
||||||
return [(self.map_tensor_name(name), data_torch)]
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
|
|
||||||
|
@ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
|
||||||
|
class Qwen2VLVisionModel(VisionModel):
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.hparams["image_size"] = self.hparams.get("image_size", 560)
|
||||||
|
# rename config.json values
|
||||||
|
self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
|
||||||
|
self.hparams["num_hidden_layers"] = self.hparams.get("depth")
|
||||||
|
if "embed_dim" in self.hparams: # qwen2vl
|
||||||
|
self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
|
||||||
|
self.hparams["hidden_size"] = self.hparams.get("embed_dim")
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
super().set_gguf_parameters()
|
||||||
|
hparams = self.hparams
|
||||||
|
if self.global_config['model_type'] == 'qwen2_vl':
|
||||||
|
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
|
||||||
|
elif self.global_config['model_type'] == 'qwen2_5_vl':
|
||||||
|
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
|
||||||
|
self.gguf_writer.add_vision_use_silu(True)
|
||||||
|
# find n_wa_pattern (window attention pattern)
|
||||||
|
fullatt_block_indexes = hparams.get("fullatt_block_indexes")
|
||||||
|
assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
|
||||||
|
n_wa_pattern = fullatt_block_indexes[0] + 1
|
||||||
|
# validate n_wa_pattern
|
||||||
|
for i in range(1, len(fullatt_block_indexes)):
|
||||||
|
if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
|
||||||
|
raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
|
||||||
|
self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
|
||||||
|
# default values below are taken from HF tranformers code
|
||||||
|
self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
|
||||||
|
|
||||||
|
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||||
|
del bid, name, n_dims # unused
|
||||||
|
if ".patch_embd." in new_name:
|
||||||
|
return gguf.GGMLQuantizationType.F16
|
||||||
|
if ".position_embd." in new_name:
|
||||||
|
return gguf.GGMLQuantizationType.F32
|
||||||
|
return False
|
||||||
|
|
||||||
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
del bid # unused
|
||||||
|
if name.startswith("visual."):
|
||||||
|
# process visual tensors
|
||||||
|
# split QKV tensors if needed
|
||||||
|
if ".qkv." in name:
|
||||||
|
if data_torch.ndim == 2: # weight
|
||||||
|
c3, _ = data_torch.shape
|
||||||
|
else: # bias
|
||||||
|
c3 = data_torch.shape[0]
|
||||||
|
assert c3 % 3 == 0
|
||||||
|
c = c3 // 3
|
||||||
|
wq = data_torch[:c]
|
||||||
|
wk = data_torch[c: c * 2]
|
||||||
|
wv = data_torch[c * 2:]
|
||||||
|
return [
|
||||||
|
(self.map_tensor_name(name.replace("qkv", "q")), wq),
|
||||||
|
(self.map_tensor_name(name.replace("qkv", "k")), wk),
|
||||||
|
(self.map_tensor_name(name.replace("qkv", "v")), wv),
|
||||||
|
]
|
||||||
|
elif 'patch_embed.proj.weight' in name:
|
||||||
|
# split Conv3D into Conv2Ds
|
||||||
|
c1, c2, kt, kh, kw = data_torch.shape
|
||||||
|
del c1, c2, kh, kw # unused
|
||||||
|
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
|
||||||
|
return [
|
||||||
|
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
|
||||||
|
(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
return [] # skip other tensors
|
||||||
|
|
||||||
|
|
||||||
@ModelBase.register("WavTokenizerDec")
|
@ModelBase.register("WavTokenizerDec")
|
||||||
class WavTokenizerDecModel(TextModel):
|
class WavTokenizerDecModel(TextModel):
|
||||||
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
|
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
|
||||||
|
@ -3318,29 +3432,7 @@ class BertModel(TextModel):
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
super().set_gguf_parameters()
|
super().set_gguf_parameters()
|
||||||
self.gguf_writer.add_causal_attention(False)
|
self.gguf_writer.add_causal_attention(False)
|
||||||
|
self._try_set_pooling_type()
|
||||||
# get pooling path
|
|
||||||
pooling_path = None
|
|
||||||
module_path = self.dir_model / "modules.json"
|
|
||||||
if module_path.is_file():
|
|
||||||
with open(module_path, encoding="utf-8") as f:
|
|
||||||
modules = json.load(f)
|
|
||||||
for mod in modules:
|
|
||||||
if mod["type"] == "sentence_transformers.models.Pooling":
|
|
||||||
pooling_path = mod["path"]
|
|
||||||
break
|
|
||||||
|
|
||||||
# get pooling type
|
|
||||||
if pooling_path is not None:
|
|
||||||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
|
||||||
pooling = json.load(f)
|
|
||||||
if pooling["pooling_mode_mean_tokens"]:
|
|
||||||
pooling_type = gguf.PoolingType.MEAN
|
|
||||||
elif pooling["pooling_mode_cls_token"]:
|
|
||||||
pooling_type = gguf.PoolingType.CLS
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("Only MEAN and CLS pooling types supported")
|
|
||||||
self.gguf_writer.add_pooling_type(pooling_type)
|
|
||||||
|
|
||||||
def set_vocab(self):
|
def set_vocab(self):
|
||||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||||
|
@ -3549,8 +3641,13 @@ class NomicBertModel(BertModel):
|
||||||
if self._tokenizer_is_xlmroberta:
|
if self._tokenizer_is_xlmroberta:
|
||||||
self._xlmroberta_tokenizer_init()
|
self._xlmroberta_tokenizer_init()
|
||||||
|
|
||||||
# the HF config claims n_ctx=8192, but it uses RoPE scaling
|
npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
|
||||||
self.hparams["n_ctx"] = 2048
|
if npos == 8192 and mtp == 2048:
|
||||||
|
self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
|
||||||
|
elif npos == 2048 and mtp == 2048:
|
||||||
|
self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
|
||||||
|
else:
|
||||||
|
raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
|
||||||
|
|
||||||
assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
|
assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
|
||||||
|
|
||||||
|
@ -5879,8 +5976,7 @@ def split_str_to_n_bytes(split_str: str) -> int:
|
||||||
return n
|
return n
|
||||||
|
|
||||||
|
|
||||||
def get_model_architecture(dir_model: Path, model_type: ModelType, hparams: Any = None) -> str:
|
def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
|
||||||
hparams = ModelBase.load_hparams(dir_model) if hparams is None else hparams
|
|
||||||
text_config = hparams.get("text_config", {})
|
text_config = hparams.get("text_config", {})
|
||||||
vision_config = hparams.get("vision_config", {})
|
vision_config = hparams.get("vision_config", {})
|
||||||
arch = hparams["architectures"][0]
|
arch = hparams["architectures"][0]
|
||||||
|
@ -5951,7 +6047,8 @@ def main() -> None:
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
output_type = ftype_map[args.outtype]
|
output_type = ftype_map[args.outtype]
|
||||||
model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
|
model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
|
||||||
model_architecture = get_model_architecture(dir_model, model_type)
|
hparams = ModelBase.load_hparams(dir_model)
|
||||||
|
model_architecture = get_model_architecture(hparams, model_type)
|
||||||
logger.info(f"Model architecture: {model_architecture}")
|
logger.info(f"Model architecture: {model_architecture}")
|
||||||
try:
|
try:
|
||||||
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
|
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
|
||||||
|
|
|
@ -1,217 +0,0 @@
|
||||||
import argparse
|
|
||||||
from typing import Dict, List, Optional
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import numpy as np
|
|
||||||
from gguf import *
|
|
||||||
from transformers import (
|
|
||||||
AutoProcessor,
|
|
||||||
Qwen2VLConfig,
|
|
||||||
Qwen2VLProcessor,
|
|
||||||
Qwen2VLForConditionalGeneration,
|
|
||||||
Qwen2_5_VLConfig, # type: ignore[reportAttributeAccessIssue]
|
|
||||||
Qwen2_5_VLForConditionalGeneration, # type: ignore[reportAttributeAccessIssue]
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
VISION = "clip.vision"
|
|
||||||
|
|
||||||
|
|
||||||
def k(raw_key: str, arch: str) -> str:
|
|
||||||
return raw_key.format(arch=arch)
|
|
||||||
|
|
||||||
|
|
||||||
def get_n_wa_pattern(fullatt_block_indexes: Optional[List[int]]):
|
|
||||||
if fullatt_block_indexes is None:
|
|
||||||
return 0
|
|
||||||
n_wa = fullatt_block_indexes[0]
|
|
||||||
for a, b in zip(fullatt_block_indexes, fullatt_block_indexes[1:]):
|
|
||||||
if b - a - 1 != n_wa:
|
|
||||||
raise ValueError(
|
|
||||||
f"window/full attention layer should have fix pattern of "
|
|
||||||
f"for each full-attention layer followed by {n_wa} window-attention layers"
|
|
||||||
)
|
|
||||||
return n_wa + 1
|
|
||||||
|
|
||||||
|
|
||||||
class VL2:
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def to_gguf_name(name: str) -> str:
|
|
||||||
og = name
|
|
||||||
name = name.replace("text_model", "t").replace("vision_model", "v")
|
|
||||||
name = name.replace("blocks", "blk").replace("embeddings.", "")
|
|
||||||
name = name.replace("attn.", "attn_")
|
|
||||||
name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
|
|
||||||
# name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
|
|
||||||
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
|
|
||||||
name = name.replace("merger.mlp", 'mm')
|
|
||||||
print(f"[to_gguf_name] {og} --> {name}")
|
|
||||||
return name
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def find_vision_tensors(cls, qwen2vl, dtype) -> Dict[str, np.ndarray]:
|
|
||||||
vision_model = qwen2vl.visual
|
|
||||||
tensor_map = {}
|
|
||||||
for name, ten in vision_model.state_dict().items():
|
|
||||||
ten = ten.numpy()
|
|
||||||
if 'qkv' in name:
|
|
||||||
if ten.ndim == 2: # weight
|
|
||||||
c3, _ = ten.shape
|
|
||||||
else: # bias
|
|
||||||
c3 = ten.shape[0]
|
|
||||||
assert c3 % 3 == 0
|
|
||||||
c = c3 // 3
|
|
||||||
wq = ten[:c]
|
|
||||||
wk = ten[c: c * 2]
|
|
||||||
wv = ten[c * 2:]
|
|
||||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
|
|
||||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
|
|
||||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
|
|
||||||
elif 'merger' in name:
|
|
||||||
if name.endswith("ln_q.weight"):
|
|
||||||
tensor_map['v.post_ln.weight'] = ten
|
|
||||||
elif name.endswith("ln_q.bias"):
|
|
||||||
tensor_map['v.post_ln.bias'] = ten
|
|
||||||
else:
|
|
||||||
# "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
|
|
||||||
tensor_map[cls.to_gguf_name(name)] = ten
|
|
||||||
elif 'patch_embed.proj.weight' in name:
|
|
||||||
# NOTE: split Conv3D into Conv2Ds
|
|
||||||
c1, c2, kt, kh, kw = ten.shape
|
|
||||||
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
|
|
||||||
tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
|
|
||||||
tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
|
|
||||||
else:
|
|
||||||
tensor_map[cls.to_gguf_name(f"vision_model.{name}")] = ten
|
|
||||||
|
|
||||||
for new_name, ten in tensor_map.items():
|
|
||||||
if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
|
|
||||||
tensor_map[new_name] = ten.astype(np.float32)
|
|
||||||
else:
|
|
||||||
tensor_map[new_name] = ten.astype(dtype)
|
|
||||||
tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder
|
|
||||||
return tensor_map
|
|
||||||
|
|
||||||
|
|
||||||
class VL25(VL2):
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def to_gguf_name(name: str) -> str:
|
|
||||||
og = name
|
|
||||||
name = name.replace("text_model", "t").replace("vision_model", "v")
|
|
||||||
name = name.replace("blocks", "blk").replace("embeddings.", "")
|
|
||||||
name = name.replace("attn.", "attn_")
|
|
||||||
name = name.replace("mlp.down_proj", "ffn_down").replace("mlp.up_proj", "ffn_up")
|
|
||||||
name = name.replace("mlp.gate_proj", "ffn_gate").replace("proj.", "out.")
|
|
||||||
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
|
|
||||||
name = name.replace("merger.mlp", 'mm')
|
|
||||||
print(f"[vl25][to_gguf_name] {og} --> {name}")
|
|
||||||
return name
|
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
|
||||||
if args.data_type == 'fp32':
|
|
||||||
dtype = torch.float32
|
|
||||||
np_dtype = np.float32
|
|
||||||
ftype = 0
|
|
||||||
elif args.data_type == 'fp16':
|
|
||||||
dtype = torch.float16
|
|
||||||
np_dtype = np.float16
|
|
||||||
ftype = 1
|
|
||||||
else:
|
|
||||||
raise ValueError()
|
|
||||||
|
|
||||||
local_model = False
|
|
||||||
model_path = ""
|
|
||||||
model_name = args.model_name
|
|
||||||
print("model_name: ", model_name)
|
|
||||||
if args.model_type == "qwen2vl":
|
|
||||||
qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
||||||
model_name, torch_dtype=dtype, device_map="cpu"
|
|
||||||
)
|
|
||||||
cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
|
|
||||||
vcfg = cfg.vision_config
|
|
||||||
else:
|
|
||||||
qwen2vl = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
||||||
model_name, torch_dtype=dtype, device_map="cpu"
|
|
||||||
)
|
|
||||||
cfg: Qwen2_5_VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
|
|
||||||
vcfg = cfg.vision_config
|
|
||||||
|
|
||||||
if os.path.isdir(model_name):
|
|
||||||
local_model = True
|
|
||||||
if model_name.endswith(os.sep):
|
|
||||||
model_name = model_name[:-1]
|
|
||||||
model_path = model_name
|
|
||||||
model_name = os.path.basename(model_name)
|
|
||||||
fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf"
|
|
||||||
|
|
||||||
fout = GGUFWriter(path=fname_out, arch="clip")
|
|
||||||
fout.add_description("image encoder for Qwen2VL")
|
|
||||||
|
|
||||||
fout.add_file_type(ftype)
|
|
||||||
fout.add_bool("clip.has_text_encoder", False)
|
|
||||||
fout.add_bool("clip.has_vision_encoder", True)
|
|
||||||
fout.add_bool("clip.has_qwen2vl_merger", True)
|
|
||||||
|
|
||||||
print(cfg.vision_config)
|
|
||||||
if 'silu' in cfg.vision_config.hidden_act.lower():
|
|
||||||
fout.add_bool("clip.use_silu", True)
|
|
||||||
fout.add_bool("clip.use_gelu", False)
|
|
||||||
elif 'gelu' in cfg.vision_config.hidden_act.lower():
|
|
||||||
fout.add_bool("clip.use_silu", False)
|
|
||||||
fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
|
|
||||||
else:
|
|
||||||
raise ValueError()
|
|
||||||
|
|
||||||
if args.model_type == "qwen2.5vl":
|
|
||||||
fout.add_uint32("clip.vision.n_wa_pattern", get_n_wa_pattern(vcfg.fullatt_block_indexes))
|
|
||||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size)
|
|
||||||
fout.add_uint32("clip.vision.projection_dim", vcfg.out_hidden_size)
|
|
||||||
fout.add_string("clip.projector_type", "qwen2.5vl_merger")
|
|
||||||
else:
|
|
||||||
fout.add_string("clip.projector_type", "qwen2vl_merger")
|
|
||||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
|
|
||||||
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
|
|
||||||
|
|
||||||
if args.model_type == "qwen2.5vl":
|
|
||||||
tensor_map = VL25.find_vision_tensors(qwen2vl, np_dtype)
|
|
||||||
else:
|
|
||||||
tensor_map = VL2.find_vision_tensors(qwen2vl, np_dtype)
|
|
||||||
for name, data in tensor_map.items():
|
|
||||||
fout.add_tensor(name, data)
|
|
||||||
|
|
||||||
fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
|
|
||||||
fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2)
|
|
||||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
|
|
||||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
|
||||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
|
|
||||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder
|
|
||||||
fout.add_name(model_name)
|
|
||||||
"""
|
|
||||||
HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig,
|
|
||||||
it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`.
|
|
||||||
"""
|
|
||||||
|
|
||||||
if local_model:
|
|
||||||
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path)
|
|
||||||
else:
|
|
||||||
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name)
|
|
||||||
fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue]
|
|
||||||
fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue]
|
|
||||||
|
|
||||||
fout.write_header_to_file()
|
|
||||||
fout.write_kv_data_to_file()
|
|
||||||
fout.write_tensors_to_file()
|
|
||||||
fout.close()
|
|
||||||
print("save model as: ", fname_out)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
|
|
||||||
parser.add_argument("--model_type", nargs='?', choices=['qwen2vl', 'qwen2.5vl'], default="qwen2vl")
|
|
||||||
parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
|
|
||||||
args = parser.parse_args()
|
|
||||||
main(args)
|
|
|
@ -36,12 +36,6 @@ add_test() {
|
||||||
arr_tmpl+=("$tmpl")
|
arr_tmpl+=("$tmpl")
|
||||||
}
|
}
|
||||||
|
|
||||||
add_test_big() {
|
|
||||||
if [ "$RUN_BIG_TESTS" = true ]; then
|
|
||||||
add_test "$@"
|
|
||||||
fi
|
|
||||||
}
|
|
||||||
|
|
||||||
add_test "llama-mtmd-cli" "ggml-org/SmolVLM-500M-Instruct-GGUF:Q8_0"
|
add_test "llama-mtmd-cli" "ggml-org/SmolVLM-500M-Instruct-GGUF:Q8_0"
|
||||||
add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-2.2B-Instruct-GGUF:Q4_K_M"
|
add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-2.2B-Instruct-GGUF:Q4_K_M"
|
||||||
add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF:Q8_0"
|
add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF:Q8_0"
|
||||||
|
@ -58,8 +52,16 @@ add_test "llama-mtmd-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
|
||||||
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M"
|
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M"
|
||||||
|
|
||||||
# to test the big models, run: ./tests.sh big
|
# to test the big models, run: ./tests.sh big
|
||||||
add_test_big "llama-mtmd-cli" "ggml-org/pixtral-12b-GGUF:Q4_K_M"
|
if [ "$RUN_BIG_TESTS" = true ]; then
|
||||||
add_test_big "llama-mtmd-cli" "ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF" "mistral-v7"
|
add_test "llama-mtmd-cli" "ggml-org/pixtral-12b-GGUF:Q4_K_M"
|
||||||
|
add_test "llama-mtmd-cli" "ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF" "mistral-v7"
|
||||||
|
add_test "llama-mtmd-cli" "ggml-org/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
|
||||||
|
add_test "llama-mtmd-cli" "ggml-org/Qwen2-VL-7B-Instruct-GGUF:Q4_K_M"
|
||||||
|
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M"
|
||||||
|
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-7B-Instruct-GGUF:Q4_K_M"
|
||||||
|
# add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-32B-Instruct-GGUF:Q4_K_M" # does not work on my mac M3 Ultra
|
||||||
|
# add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-72B-Instruct-GGUF:Q4_K_M" # too big
|
||||||
|
fi
|
||||||
|
|
||||||
# these models always give the wrong answer, not sure why
|
# these models always give the wrong answer, not sure why
|
||||||
# add_test "llama-mtmd-cli" "ggml-org/SmolVLM-Instruct-GGUF:Q4_K_M"
|
# add_test "llama-mtmd-cli" "ggml-org/SmolVLM-Instruct-GGUF:Q4_K_M"
|
||||||
|
|
|
@ -1054,6 +1054,493 @@ class tinyBLAS_Q0_AVX {
|
||||||
} \
|
} \
|
||||||
} \
|
} \
|
||||||
|
|
||||||
|
template <typename TA, typename TB, typename TC>
|
||||||
|
class tinyBLAS_BF16_PPC {
|
||||||
|
public:
|
||||||
|
tinyBLAS_BF16_PPC(int64_t k,
|
||||||
|
const TA *A, int64_t lda,
|
||||||
|
const TB *B, int64_t ldb,
|
||||||
|
TC *C, int64_t ldc,
|
||||||
|
int ith, int nth)
|
||||||
|
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||||
|
}
|
||||||
|
|
||||||
|
void matmul(int64_t m, int64_t n) {
|
||||||
|
mnpack(0, m, 0, n);
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
void vector_permute_store(vec_t *c, int numVec, unsigned char *vecOffset) {
|
||||||
|
vec_t t[8], s[8];
|
||||||
|
vec_t swiz1 = {0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23};
|
||||||
|
vec_t swiz2 = {8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31};
|
||||||
|
vec_t swiz3 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
|
||||||
|
vec_t swiz4 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
|
||||||
|
|
||||||
|
if (numVec == 2) {
|
||||||
|
t[0] = vec_perm(c[0], c[1], swiz1);
|
||||||
|
t[1] = vec_perm(c[2], c[3], swiz1);
|
||||||
|
s[0] = vec_perm(t[0], t[1], swiz3);
|
||||||
|
s[1] = vec_perm(t[0], t[1], swiz4);
|
||||||
|
vec_xst(s[0], 0, (vec_t*)vecOffset);
|
||||||
|
vec_xst(s[1], 0, (vec_t*)(vecOffset + 16));
|
||||||
|
} else if (numVec == 4) {
|
||||||
|
t[0] = vec_perm(c[0], c[1], swiz1);
|
||||||
|
t[1] = vec_perm(c[0], c[1], swiz2);
|
||||||
|
t[2] = vec_perm(c[2], c[3], swiz1);
|
||||||
|
t[3] = vec_perm(c[2], c[3], swiz2);
|
||||||
|
s[0] = vec_perm(t[0], t[2], swiz3);
|
||||||
|
s[1] = vec_perm(t[0], t[2], swiz4);
|
||||||
|
s[2] = vec_perm(t[1], t[3], swiz3);
|
||||||
|
s[3] = vec_perm(t[1], t[3], swiz4);
|
||||||
|
for (int i = 0; i < 4; ++i)
|
||||||
|
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
|
||||||
|
} else if (numVec == 8) {
|
||||||
|
for (int i = 0; i < 4; i += 2) {
|
||||||
|
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
|
||||||
|
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
|
||||||
|
}
|
||||||
|
for (int i = 4; i < 8; i += 2) {
|
||||||
|
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
|
||||||
|
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
|
||||||
|
}
|
||||||
|
s[0] = vec_perm(t[0], t[2], swiz3);
|
||||||
|
s[1] = vec_perm(t[0], t[2], swiz4);
|
||||||
|
s[2] = vec_perm(t[1], t[3], swiz3);
|
||||||
|
s[3] = vec_perm(t[1], t[3], swiz4);
|
||||||
|
s[4] = vec_perm(t[4], t[6], swiz3);
|
||||||
|
s[5] = vec_perm(t[4], t[6], swiz4);
|
||||||
|
s[6] = vec_perm(t[5], t[7], swiz3);
|
||||||
|
s[7] = vec_perm(t[5], t[7], swiz4);
|
||||||
|
for (int i = 0; i < 8; ++i)
|
||||||
|
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void packNormal(const TA* a, int64_t lda, int rows, int cols, unsigned char* vec) {
|
||||||
|
int64_t i, j;
|
||||||
|
TA *aoffset = NULL;
|
||||||
|
unsigned char *vecOffset = NULL;
|
||||||
|
TA * aoffsets[8];
|
||||||
|
vector unsigned char c_arr[8];
|
||||||
|
aoffset = const_cast<TA*>(a);
|
||||||
|
vecOffset = vec;
|
||||||
|
j = (rows >> 3);
|
||||||
|
if (j > 0) {
|
||||||
|
do {
|
||||||
|
if (cols == 4) {
|
||||||
|
aoffsets[0] = aoffset;
|
||||||
|
for (int it = 1; it < 4; ++it)
|
||||||
|
aoffsets[it] = aoffsets[it-1] + lda;
|
||||||
|
aoffset += 4 * lda;
|
||||||
|
for (int i = 0; i < 4; ++i)
|
||||||
|
c_arr[i] = vec_xl(0, (vector unsigned char*)aoffsets[i]);
|
||||||
|
vector_permute_store(c_arr, 4, vecOffset);
|
||||||
|
for (int i = 0; i<4; i++)
|
||||||
|
aoffsets[i] = aoffsets[i]+lda;
|
||||||
|
vecOffset +=64;
|
||||||
|
}
|
||||||
|
i = (cols >> 3);
|
||||||
|
if (i > 0) {
|
||||||
|
aoffsets[0] = aoffset;
|
||||||
|
for (int it = 1; it < 8; ++it) {
|
||||||
|
aoffsets[it] = aoffsets[it-1] + lda;
|
||||||
|
}
|
||||||
|
aoffset += 8 * lda;
|
||||||
|
do {
|
||||||
|
for (int it = 0; it < 8; ++it)
|
||||||
|
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||||
|
vector_permute_store(c_arr, 8, vecOffset);
|
||||||
|
for (int it = 0; it < 8; ++it)
|
||||||
|
aoffsets[it] = aoffsets[it] + 8*lda;
|
||||||
|
vecOffset += 128;
|
||||||
|
i--;
|
||||||
|
} while(i > 0);
|
||||||
|
}
|
||||||
|
j--;
|
||||||
|
} while(j > 0);
|
||||||
|
}
|
||||||
|
if (rows & 4) {
|
||||||
|
aoffsets[0] = aoffset;
|
||||||
|
for (int it = 1; it < 4; ++it)
|
||||||
|
aoffsets[it] = aoffsets[it-1] + lda;
|
||||||
|
aoffset += 4 * lda;
|
||||||
|
if (cols == 4) {
|
||||||
|
for (int it = 0; it < 4; ++it)
|
||||||
|
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||||
|
vector_permute_store(c_arr, 2, vecOffset);
|
||||||
|
for (int it = 0; it< 4; it++)
|
||||||
|
aoffsets[it] = aoffsets[it] + lda;
|
||||||
|
vecOffset += 32;
|
||||||
|
}
|
||||||
|
i = (cols >> 3);
|
||||||
|
if (i > 0) {
|
||||||
|
do {
|
||||||
|
for (int it = 0; it < 4; ++it)
|
||||||
|
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
|
||||||
|
vector_permute_store(c_arr, 4, vecOffset);
|
||||||
|
for (int it = 0; it< 4; it++)
|
||||||
|
aoffsets[it] = aoffsets[it] + 8*lda;
|
||||||
|
vecOffset += 64;
|
||||||
|
i--;
|
||||||
|
} while(i > 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (rows & 3) {
|
||||||
|
aoffsets[0] = aoffset;
|
||||||
|
for (int it = 1; it < 4; ++it)
|
||||||
|
aoffsets[it] = aoffsets[it-1] + lda;
|
||||||
|
if (cols == 4) {
|
||||||
|
switch(rows) {
|
||||||
|
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
|
||||||
|
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
|
||||||
|
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
vector_permute_store(c_arr, 2, vecOffset);
|
||||||
|
for (int it = 0; it< 4; it++)
|
||||||
|
aoffsets[it] = aoffsets[it] + lda;
|
||||||
|
vecOffset += 32;
|
||||||
|
}
|
||||||
|
i = (cols >> 3);
|
||||||
|
if (i > 0) {
|
||||||
|
do {
|
||||||
|
switch(rows) {
|
||||||
|
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
|
||||||
|
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
|
||||||
|
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
vector_permute_store(c_arr, 4, vecOffset);
|
||||||
|
for (int it = 0; it <4; it++)
|
||||||
|
aoffsets[it] = aoffsets[it] + 8* lda;
|
||||||
|
vecOffset += 64;
|
||||||
|
i--;
|
||||||
|
} while(i > 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||||
|
int64_t mc, nc, mp, np;
|
||||||
|
int m_rem = MIN(m - m0, 8);
|
||||||
|
int n_rem = MIN(n - n0, 8);
|
||||||
|
|
||||||
|
if (m_rem >= 8 && n_rem >= 8) {
|
||||||
|
mc = 8;
|
||||||
|
nc = 8;
|
||||||
|
gemm<8,8>(m0, m, n0, n);
|
||||||
|
} else if (m_rem >= 4 && n_rem >= 8) {
|
||||||
|
mc = 4;
|
||||||
|
nc = 8;
|
||||||
|
gemm<4,8>(m0, m, n0, n);
|
||||||
|
} else if (m_rem >=8 && n_rem >=4){
|
||||||
|
mc = 8;
|
||||||
|
nc = 4;
|
||||||
|
gemm<8,4>(m0, m, n0, n);
|
||||||
|
} else if ((m_rem < 4) && (n_rem >= 8)) {
|
||||||
|
nc = 8;
|
||||||
|
switch(m_rem) {
|
||||||
|
case 1:
|
||||||
|
mc = 1;
|
||||||
|
gemm_Mx8<1>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
mc = 2;
|
||||||
|
gemm_Mx8<2>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
mc = 3;
|
||||||
|
gemm_Mx8<3>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
} else if (m_rem >= 4 && n_rem >= 4) {
|
||||||
|
mc = 4;
|
||||||
|
nc = 4;
|
||||||
|
gemm_small<4, 4>(m0, m, n0, n);
|
||||||
|
} else if ((m_rem > 4) && (n_rem < 4)) {
|
||||||
|
mc = 4;
|
||||||
|
switch(n_rem) {
|
||||||
|
case 1:
|
||||||
|
nc = 1;
|
||||||
|
gemm_small<4, 1>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
nc = 2;
|
||||||
|
gemm_small<4, 2>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
nc = 3;
|
||||||
|
gemm_small<4, 3>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
|
||||||
|
default:
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
switch((m_rem << 4) | n_rem) {
|
||||||
|
case 0x43:
|
||||||
|
mc = 4;
|
||||||
|
nc = 3;
|
||||||
|
gemm_small<4, 3>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x42:
|
||||||
|
mc = 4;
|
||||||
|
nc = 2;
|
||||||
|
gemm_small<4, 2>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x41:
|
||||||
|
mc = 4;
|
||||||
|
nc = 1;
|
||||||
|
gemm_small<4, 1>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x34:
|
||||||
|
mc = 3;
|
||||||
|
nc = 4;
|
||||||
|
gemm_small<3, 4>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x33:
|
||||||
|
mc = 3;
|
||||||
|
nc = 3;
|
||||||
|
gemm_small<3, 3>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x32:
|
||||||
|
mc = 3;
|
||||||
|
nc = 2;
|
||||||
|
gemm_small<3, 2>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x31:
|
||||||
|
mc = 3;
|
||||||
|
nc = 1;
|
||||||
|
gemm_small<3, 1>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x24:
|
||||||
|
mc = 2;
|
||||||
|
nc = 4;
|
||||||
|
gemm_small<2,4>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x23:
|
||||||
|
mc = 2;
|
||||||
|
nc = 3;
|
||||||
|
gemm_small<2, 3>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x22:
|
||||||
|
mc = 2;
|
||||||
|
nc = 2;
|
||||||
|
gemm_small<2, 2>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x21:
|
||||||
|
mc = 2;
|
||||||
|
nc = 1;
|
||||||
|
gemm_small<2, 1>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x14:
|
||||||
|
mc = 1;
|
||||||
|
nc = 4;
|
||||||
|
gemm_small<1, 4>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x13:
|
||||||
|
mc = 1;
|
||||||
|
nc = 3;
|
||||||
|
gemm_small<1, 3>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x12:
|
||||||
|
mc = 1;
|
||||||
|
nc = 2;
|
||||||
|
gemm_small<1, 2>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
case 0x11:
|
||||||
|
mc = 1;
|
||||||
|
nc = 1;
|
||||||
|
gemm_small<1, 1>(m0, m, n0, n);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
mp = m0 + (m - m0) / mc * mc;
|
||||||
|
np = n0 + (n - n0) / nc * nc;
|
||||||
|
mnpack(mp, m, n0, np);
|
||||||
|
mnpack(m0, m, np, n);
|
||||||
|
}
|
||||||
|
|
||||||
|
void KERNEL_4x8(int64_t ii, int64_t jj) {
|
||||||
|
vec_t vec_A[4], vec_B[8] , vec_C[4];
|
||||||
|
acc_t acc_0, acc_1;
|
||||||
|
__builtin_mma_xxsetaccz(&acc_0);
|
||||||
|
__builtin_mma_xxsetaccz(&acc_1);
|
||||||
|
for (int l = 0; l < k; l+=8) {
|
||||||
|
packNormal((A+(ii*lda)+l), lda, 4, 8, (uint8_t*)vec_A);
|
||||||
|
packNormal((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B);
|
||||||
|
for (int x = 0; x < 4; x++) {
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
SAVE_ACC(&acc_0, ii, jj);
|
||||||
|
SAVE_ACC(&acc_1, ii, jj+4);
|
||||||
|
}
|
||||||
|
|
||||||
|
void KERNEL_8x4(int64_t ii, int64_t jj) {
|
||||||
|
vec_t vec_A[8], vec_B[4] , vec_C[4];
|
||||||
|
acc_t acc_0, acc_1;
|
||||||
|
__builtin_mma_xxsetaccz(&acc_0);
|
||||||
|
__builtin_mma_xxsetaccz(&acc_1);
|
||||||
|
for (int l = 0; l < k; l+=8) {
|
||||||
|
packNormal((A+(ii*lda)+l), lda, 8, 8, (uint8_t*)vec_A);
|
||||||
|
packNormal((B+(jj*ldb)+l), ldb, 8, 4, (uint8_t*)vec_B);
|
||||||
|
for (int x = 0; x < 4; x++) {
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x+4], vec_B[x]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
SAVE_ACC(&acc_0, ii, jj);
|
||||||
|
SAVE_ACC(&acc_1, ii+4, jj);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void KERNEL_8x8(int64_t ii, int64_t jj) {
|
||||||
|
vec_t vec_A[8], vec_B[8], vec_C[4];
|
||||||
|
acc_t acc_0, acc_1, acc_2, acc_3;
|
||||||
|
__builtin_mma_xxsetaccz(&acc_0);
|
||||||
|
__builtin_mma_xxsetaccz(&acc_1);
|
||||||
|
__builtin_mma_xxsetaccz(&acc_2);
|
||||||
|
__builtin_mma_xxsetaccz(&acc_3);
|
||||||
|
for (int l = 0; l < k; l+=8) {
|
||||||
|
packNormal(A+(ii*lda)+l, lda, 8, 8, (uint8_t*)vec_A);
|
||||||
|
packNormal(B+(jj*ldb)+l, ldb, 8, 8, (uint8_t*)vec_B);
|
||||||
|
for (int x = 0; x < 4; x++) {
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_1, (vec_t)vec_A[x], (vec_t)vec_B[x+4]);
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_2, (vec_t)vec_A[x+4], (vec_t)vec_B[x]);
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_3, (vec_t)vec_A[x+4], (vec_t)vec_B[x+4]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
SAVE_ACC(&acc_0, ii, jj);
|
||||||
|
SAVE_ACC(&acc_1, ii, jj+4);
|
||||||
|
SAVE_ACC(&acc_2, ii+4, jj);
|
||||||
|
SAVE_ACC(&acc_3, ii+4, jj+4);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<int RM, int RN>
|
||||||
|
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||||
|
int64_t ytiles = (m - m0) / RM;
|
||||||
|
int64_t xtiles = (n - n0) / RN;
|
||||||
|
int64_t tiles = xtiles * ytiles;
|
||||||
|
int64_t duty = (tiles + nth - 1) / nth;
|
||||||
|
int64_t start = duty * ith;
|
||||||
|
int64_t end = start + duty;
|
||||||
|
if (end > tiles)
|
||||||
|
end = tiles;
|
||||||
|
for (int64_t job = start; job < end; ++job) {
|
||||||
|
int64_t ii = m0 + job / xtiles * RM;
|
||||||
|
int64_t jj = n0 + job % xtiles * RN;
|
||||||
|
vec_t vec_C[4];
|
||||||
|
acc_t acc_0;
|
||||||
|
__builtin_mma_xxsetaccz(&acc_0);
|
||||||
|
vec_t vec_A[2], vec_B[2];
|
||||||
|
for (int l=0; l<k; l+=4) {
|
||||||
|
packNormal(A+(ii*lda)+l, lda, RM, 4, (uint8_t*)vec_A);
|
||||||
|
packNormal(B+(jj*ldb)+l, ldb, RN, 4, (uint8_t*)vec_B);
|
||||||
|
for (int x = 0; x<2; x++) {
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__builtin_mma_disassemble_acc(vec_C, &acc_0);
|
||||||
|
for (int I = 0; I < RM; I++) {
|
||||||
|
for (int J = 0; J < RN; J++) {
|
||||||
|
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<int RM>
|
||||||
|
void gemm_Mx8(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||||
|
int RN = 8;
|
||||||
|
int64_t ytiles = (m - m0) / RM;
|
||||||
|
int64_t xtiles = (n - n0) / RN;
|
||||||
|
int64_t tiles = xtiles * ytiles;
|
||||||
|
int64_t duty = (tiles + nth - 1) / nth;
|
||||||
|
int64_t start = duty * ith;
|
||||||
|
int64_t end = start + duty;
|
||||||
|
if (end > tiles)
|
||||||
|
end = tiles;
|
||||||
|
for (int64_t job = start; job < end; ++job) {
|
||||||
|
int64_t ii = m0 + job / xtiles * RM;
|
||||||
|
int64_t jj = n0 + job % xtiles * RN;
|
||||||
|
vec_t vec_C[4];
|
||||||
|
acc_t acc_0, acc_1;
|
||||||
|
__builtin_mma_xxsetaccz(&acc_0);
|
||||||
|
__builtin_mma_xxsetaccz(&acc_1);
|
||||||
|
vec_t vec_A[4], vec_B[8];
|
||||||
|
for (int l=0; l<k; l+=8) {
|
||||||
|
packNormal(A+(ii*lda)+l, lda, RM, 8, (uint8_t*)vec_A);
|
||||||
|
packNormal(B+(jj*ldb)+l, ldb, RN, 8, (uint8_t*)vec_B);
|
||||||
|
for (int x = 0; x<4; x++) {
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
|
||||||
|
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__builtin_mma_disassemble_acc(vec_C, &acc_0);
|
||||||
|
for (int I = 0; I < RM; I++) {
|
||||||
|
for (int J = 0; J < 4; J++) {
|
||||||
|
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
__builtin_mma_disassemble_acc(vec_C, &acc_1);
|
||||||
|
for (int I = 0; I < RM; I++) {
|
||||||
|
for (int J = 0; J < 4; J++) {
|
||||||
|
*((TC*)(C+ii+((jj+4+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<int RM, int RN>
|
||||||
|
inline void kernel(int64_t ii, int64_t jj) {
|
||||||
|
if constexpr(RM == 4 && RN == 8) {
|
||||||
|
KERNEL_4x8(ii,jj);
|
||||||
|
} else if constexpr(RM == 8 && RN == 8) {
|
||||||
|
KERNEL_8x8(ii,jj);
|
||||||
|
} else if constexpr(RM == 8 && RN == 4) {
|
||||||
|
KERNEL_8x4(ii,jj);
|
||||||
|
} else {
|
||||||
|
static_assert(false, "RN/RM values not supported");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int RM, int RN>
|
||||||
|
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||||
|
int64_t ytiles = (m - m0) / RM;
|
||||||
|
int64_t xtiles = (n - n0) / RN;
|
||||||
|
int64_t tiles = xtiles * ytiles;
|
||||||
|
int64_t duty = (tiles + nth - 1) / nth;
|
||||||
|
int64_t start = duty * ith;
|
||||||
|
int64_t end = start + duty;
|
||||||
|
if (end > tiles)
|
||||||
|
end = tiles;
|
||||||
|
for (int64_t job = start; job < end; ++job) {
|
||||||
|
int64_t ii = m0 + job / xtiles * RM;
|
||||||
|
int64_t jj = n0 + job % xtiles * RN;
|
||||||
|
kernel<RM, RN>(ii, jj);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const TA *const A;
|
||||||
|
const TB *const B;
|
||||||
|
TC *C;
|
||||||
|
const int64_t k;
|
||||||
|
const int64_t lda;
|
||||||
|
const int64_t ldb;
|
||||||
|
const int64_t ldc;
|
||||||
|
const int ith;
|
||||||
|
const int nth;
|
||||||
|
};
|
||||||
|
|
||||||
template <typename TA, typename TB, typename TC>
|
template <typename TA, typename TB, typename TC>
|
||||||
class tinyBLAS_Q0_PPC {
|
class tinyBLAS_Q0_PPC {
|
||||||
public:
|
public:
|
||||||
|
@ -2202,6 +2689,7 @@ class tinyBLAS_PPC {
|
||||||
boffset = vec;
|
boffset = vec;
|
||||||
j = (rows >> 3);
|
j = (rows >> 3);
|
||||||
if (j > 0) {
|
if (j > 0) {
|
||||||
|
|
||||||
do {
|
do {
|
||||||
aoffset1 = aoffset;
|
aoffset1 = aoffset;
|
||||||
aoffset2 = aoffset1 + lda;
|
aoffset2 = aoffset1 + lda;
|
||||||
|
@ -2875,9 +3363,22 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
|
||||||
(float *)C, ldc};
|
(float *)C, ldc};
|
||||||
return tb.matmul(m, n);
|
return tb.matmul(m, n);
|
||||||
}
|
}
|
||||||
|
#elif defined(__MMA__)
|
||||||
|
if ((k % 8))
|
||||||
|
return false;
|
||||||
|
if(Btype == GGML_TYPE_BF16) {
|
||||||
|
tinyBLAS_BF16_PPC<ggml_bf16_t, ggml_bf16_t, float> tb{ k,
|
||||||
|
(const ggml_bf16_t *)A, lda,
|
||||||
|
(const ggml_bf16_t *)B, ldb,
|
||||||
|
(float *)C, ldc,
|
||||||
|
params->ith, params->nth};
|
||||||
|
tb.matmul(m, n);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
case GGML_TYPE_F16: {
|
case GGML_TYPE_F16: {
|
||||||
#if defined(__AVX512F__)
|
#if defined(__AVX512F__)
|
||||||
if (Btype == GGML_TYPE_F16) {
|
if (Btype == GGML_TYPE_F16) {
|
||||||
|
|
|
@ -405,6 +405,8 @@ struct vk_device_struct {
|
||||||
vk_pipeline pipeline_rwkv_wkv6_f32;
|
vk_pipeline pipeline_rwkv_wkv6_f32;
|
||||||
vk_pipeline pipeline_rwkv_wkv7_f32;
|
vk_pipeline pipeline_rwkv_wkv7_f32;
|
||||||
vk_pipeline pipeline_opt_step_adamw_f32;
|
vk_pipeline pipeline_opt_step_adamw_f32;
|
||||||
|
vk_pipeline pipeline_conv2d_dw_whcn_f32;
|
||||||
|
vk_pipeline pipeline_conv2d_dw_cwhn_f32;
|
||||||
|
|
||||||
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
|
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
|
||||||
vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2];
|
vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2];
|
||||||
|
@ -717,6 +719,24 @@ struct vk_op_rwkv_wkv7_push_constants {
|
||||||
uint32_t H;
|
uint32_t H;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct vk_op_conv2d_dw_push_constants {
|
||||||
|
uint32_t ne;
|
||||||
|
uint32_t batches;
|
||||||
|
uint32_t channels;
|
||||||
|
uint32_t dst_w;
|
||||||
|
uint32_t dst_h;
|
||||||
|
uint32_t src_w;
|
||||||
|
uint32_t src_h;
|
||||||
|
uint32_t knl_w;
|
||||||
|
uint32_t knl_h;
|
||||||
|
int32_t stride_x;
|
||||||
|
int32_t stride_y;
|
||||||
|
int32_t pad_x;
|
||||||
|
int32_t pad_y;
|
||||||
|
int32_t dilation_x;
|
||||||
|
int32_t dilation_y;
|
||||||
|
};
|
||||||
|
|
||||||
struct vk_op_upscale_push_constants {
|
struct vk_op_upscale_push_constants {
|
||||||
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
|
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
|
||||||
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
||||||
|
@ -2626,6 +2646,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||||
|
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
||||||
|
|
||||||
|
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
|
||||||
|
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f32, "conv2d_dw_cwhn_f32", conv2d_dw_cwhn_f32_len, conv2d_dw_cwhn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
|
||||||
|
|
||||||
for (auto &c : compiles) {
|
for (auto &c : compiles) {
|
||||||
c.wait();
|
c.wait();
|
||||||
}
|
}
|
||||||
|
@ -6161,6 +6184,15 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
||||||
return ctx->device->pipeline_leaky_relu_f32;
|
return ctx->device->pipeline_leaky_relu_f32;
|
||||||
}
|
}
|
||||||
return nullptr;
|
return nullptr;
|
||||||
|
case GGML_OP_CONV_2D_DW:
|
||||||
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||||
|
if (ggml_is_contiguous(src1)) {
|
||||||
|
return ctx->device->pipeline_conv2d_dw_whcn_f32;
|
||||||
|
} else if (ggml_is_contiguous_channels(src1)) {
|
||||||
|
return ctx->device->pipeline_conv2d_dw_cwhn_f32;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return nullptr;
|
||||||
default:
|
default:
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
@ -6187,6 +6219,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
|
||||||
case GGML_OP_REPEAT_BACK:
|
case GGML_OP_REPEAT_BACK:
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
case GGML_OP_RMS_NORM:
|
case GGML_OP_RMS_NORM:
|
||||||
|
case GGML_OP_CONV_2D_DW:
|
||||||
return true;
|
return true;
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
|
@ -6483,6 +6516,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
||||||
case GGML_OP_CONCAT:
|
case GGML_OP_CONCAT:
|
||||||
case GGML_OP_UPSCALE:
|
case GGML_OP_UPSCALE:
|
||||||
case GGML_OP_UNARY:
|
case GGML_OP_UNARY:
|
||||||
|
case GGML_OP_CONV_2D_DW:
|
||||||
{
|
{
|
||||||
const uint32_t ne = ggml_nelements(dst);
|
const uint32_t ne = ggml_nelements(dst);
|
||||||
if (ne > 262144) {
|
if (ne > 262144) {
|
||||||
|
@ -7269,6 +7303,30 @@ static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, c
|
||||||
}, dryrun);
|
}, dryrun);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
||||||
|
vk_op_conv2d_dw_push_constants p{};
|
||||||
|
p.ne = ggml_nelements(dst);
|
||||||
|
p.channels = dst->ne[2];
|
||||||
|
p.batches = dst->ne[3];
|
||||||
|
p.dst_w = dst->ne[0];
|
||||||
|
p.dst_h = dst->ne[1];
|
||||||
|
p.src_w = src1->ne[0];
|
||||||
|
p.src_h = src1->ne[1];
|
||||||
|
p.knl_w = src0->ne[0];
|
||||||
|
p.knl_h = src0->ne[1];
|
||||||
|
p.stride_x = dst->op_params[0];
|
||||||
|
p.stride_y = dst->op_params[1];
|
||||||
|
p.pad_x = dst->op_params[2];
|
||||||
|
p.pad_y = dst->op_params[3];
|
||||||
|
p.dilation_x = dst->op_params[4];
|
||||||
|
p.dilation_y = dst->op_params[5];
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->ne[3] == p.channels);
|
||||||
|
GGML_ASSERT(src1->ne[3] == p.batches);
|
||||||
|
|
||||||
|
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D_DW, std::move(p), dryrun);
|
||||||
|
}
|
||||||
|
|
||||||
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||||
const float * op_params = (const float *)dst->op_params;
|
const float * op_params = (const float *)dst->op_params;
|
||||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
|
||||||
|
@ -8289,6 +8347,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||||
case GGML_OP_POOL_2D:
|
case GGML_OP_POOL_2D:
|
||||||
|
case GGML_OP_CONV_2D_DW:
|
||||||
case GGML_OP_RWKV_WKV6:
|
case GGML_OP_RWKV_WKV6:
|
||||||
case GGML_OP_RWKV_WKV7:
|
case GGML_OP_RWKV_WKV7:
|
||||||
case GGML_OP_LEAKY_RELU:
|
case GGML_OP_LEAKY_RELU:
|
||||||
|
@ -8352,6 +8411,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||||
case GGML_OP_POOL_2D:
|
case GGML_OP_POOL_2D:
|
||||||
|
case GGML_OP_CONV_2D_DW:
|
||||||
case GGML_OP_LEAKY_RELU:
|
case GGML_OP_LEAKY_RELU:
|
||||||
{
|
{
|
||||||
// These operations all go through ggml_vk_op_f32, so short-circuit and
|
// These operations all go through ggml_vk_op_f32, so short-circuit and
|
||||||
|
@ -8525,6 +8585,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
||||||
case GGML_OP_POOL_2D:
|
case GGML_OP_POOL_2D:
|
||||||
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
|
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
|
||||||
|
|
||||||
|
break;
|
||||||
|
case GGML_OP_CONV_2D_DW:
|
||||||
|
ggml_vk_conv_2d_dw(ctx, compute_ctx, src0, src1, node, dryrun);
|
||||||
|
|
||||||
break;
|
break;
|
||||||
case GGML_OP_LEAKY_RELU:
|
case GGML_OP_LEAKY_RELU:
|
||||||
ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun);
|
ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun);
|
||||||
|
@ -8646,6 +8710,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
|
||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||||
case GGML_OP_POOL_2D:
|
case GGML_OP_POOL_2D:
|
||||||
|
case GGML_OP_CONV_2D_DW:
|
||||||
case GGML_OP_RWKV_WKV6:
|
case GGML_OP_RWKV_WKV6:
|
||||||
case GGML_OP_RWKV_WKV7:
|
case GGML_OP_RWKV_WKV7:
|
||||||
case GGML_OP_LEAKY_RELU:
|
case GGML_OP_LEAKY_RELU:
|
||||||
|
@ -9623,6 +9688,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
|
||||||
case GGML_OP_COUNT_EQUAL:
|
case GGML_OP_COUNT_EQUAL:
|
||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||||
|
case GGML_OP_CONV_2D_DW:
|
||||||
case GGML_OP_POOL_2D:
|
case GGML_OP_POOL_2D:
|
||||||
case GGML_OP_RWKV_WKV6:
|
case GGML_OP_RWKV_WKV6:
|
||||||
case GGML_OP_RWKV_WKV7:
|
case GGML_OP_RWKV_WKV7:
|
||||||
|
|
105
ggml/src/ggml-vulkan/vulkan-shaders/conv2d_dw.comp
Normal file
105
ggml/src/ggml-vulkan/vulkan-shaders/conv2d_dw.comp
Normal file
|
@ -0,0 +1,105 @@
|
||||||
|
#version 450
|
||||||
|
|
||||||
|
#include "types.comp"
|
||||||
|
|
||||||
|
layout (push_constant) uniform parameter
|
||||||
|
{
|
||||||
|
uint ne;
|
||||||
|
uint batches;
|
||||||
|
uint channels;
|
||||||
|
uint dst_w;
|
||||||
|
uint dst_h;
|
||||||
|
uint src_w;
|
||||||
|
uint src_h;
|
||||||
|
uint knl_w;
|
||||||
|
uint knl_h;
|
||||||
|
int stride_x;
|
||||||
|
int stride_y;
|
||||||
|
int pad_x;
|
||||||
|
int pad_y;
|
||||||
|
int dilation_x;
|
||||||
|
int dilation_y;
|
||||||
|
} p;
|
||||||
|
|
||||||
|
layout (binding = 0) readonly buffer A {A_TYPE knl_data[];};
|
||||||
|
layout (binding = 1) readonly buffer B {B_TYPE src_data[];};
|
||||||
|
layout (binding = 2) writeonly buffer D {D_TYPE dst_data[];};
|
||||||
|
|
||||||
|
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||||
|
|
||||||
|
FLOAT_TYPE conv_2d_dw_whcn(uint idx) {
|
||||||
|
uint i0 = idx / p.dst_w;
|
||||||
|
uint dst_x = idx - i0 * p.dst_w;
|
||||||
|
uint i1 = i0 / p.dst_h;
|
||||||
|
uint dst_y = i0 - i1 * p.dst_h;
|
||||||
|
uint n = i1 / p.channels;
|
||||||
|
uint c = i1 - n * p.channels;
|
||||||
|
|
||||||
|
uint src_i = n * p.channels * p.src_h * p.src_w + c * p.src_h * p.src_w;
|
||||||
|
uint knl_i = c * p.knl_h * p.knl_w;
|
||||||
|
|
||||||
|
FLOAT_TYPE sum = 0.0;
|
||||||
|
for (uint knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||||
|
uint src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
|
||||||
|
if (src_y >= p.src_h) { // src_y < 0 will wrap to a large unsigned int
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
for (uint knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||||
|
uint src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
|
||||||
|
if (src_x >= p.src_w) { // src_x < 0 will wrap to a large unsigned int
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
FLOAT_TYPE v = FLOAT_TYPE(src_data[src_i + src_y * p.src_w + src_x]);
|
||||||
|
FLOAT_TYPE k = FLOAT_TYPE(knl_data[knl_i + knl_y * p.knl_w + knl_x]);
|
||||||
|
sum = fma(v, k, sum);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
FLOAT_TYPE conv_2d_dw_cwhn(uint idx) {
|
||||||
|
uint i0 = idx / p.channels;
|
||||||
|
uint c = idx - i0 * p.channels;
|
||||||
|
uint i1 = i0 / p.dst_w;
|
||||||
|
uint dst_x = i0 - i1 * p.dst_w;
|
||||||
|
uint n = i1 / p.dst_h;
|
||||||
|
uint dst_y = i1 - n * p.dst_h;
|
||||||
|
|
||||||
|
uint src_i = n * p.channels * p.src_h * p.src_w;
|
||||||
|
uint src_row = p.src_w * p.channels;
|
||||||
|
uint knl_row = p.knl_w * p.channels;
|
||||||
|
|
||||||
|
FLOAT_TYPE sum = 0.0;
|
||||||
|
for (uint knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||||
|
uint src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
|
||||||
|
if (src_y >= p.src_h) { // src_y < 0 will wrap to a large unsigned int
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
for (uint knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||||
|
uint src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
|
||||||
|
if (src_x >= p.src_w) { // src_x < 0 will wrap to a large unsigned int
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
FLOAT_TYPE v = FLOAT_TYPE(src_data[src_i + src_y * src_row + src_x * p.channels + c]);
|
||||||
|
FLOAT_TYPE k = FLOAT_TYPE(knl_data[ knl_y * knl_row + knl_x * p.channels + c]);
|
||||||
|
sum = fma(v, k, sum);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
void main() {
|
||||||
|
uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
|
||||||
|
if (idx >= p.ne) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
FLOAT_TYPE result =
|
||||||
|
#ifdef WHCN
|
||||||
|
conv_2d_dw_whcn(idx);
|
||||||
|
#else
|
||||||
|
conv_2d_dw_cwhn(idx);
|
||||||
|
#endif
|
||||||
|
dst_data[idx] = D_TYPE(result);
|
||||||
|
}
|
||||||
|
|
|
@ -598,6 +598,9 @@ void process_shaders() {
|
||||||
|
|
||||||
string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
|
string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
|
||||||
|
|
||||||
|
string_to_spv("conv2d_dw_whcn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"WHCN", "1"}}));
|
||||||
|
string_to_spv("conv2d_dw_cwhn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"CWHN", "1"}}));
|
||||||
|
|
||||||
for (auto &c : compiles) {
|
for (auto &c : compiles) {
|
||||||
c.wait();
|
c.wait();
|
||||||
}
|
}
|
||||||
|
|
|
@ -234,6 +234,7 @@ class Keys:
|
||||||
SPATIAL_MERGE_SIZE = "clip.vision.spatial_merge_size"
|
SPATIAL_MERGE_SIZE = "clip.vision.spatial_merge_size"
|
||||||
USE_GELU = "clip.use_gelu"
|
USE_GELU = "clip.use_gelu"
|
||||||
USE_SILU = "clip.use_silu"
|
USE_SILU = "clip.use_silu"
|
||||||
|
N_WA_PATTERN = "clip.vision.n_wa_pattern" # used by qwen2.5vl
|
||||||
|
|
||||||
class Attention:
|
class Attention:
|
||||||
HEAD_COUNT = "clip.vision.attention.head_count"
|
HEAD_COUNT = "clip.vision.attention.head_count"
|
||||||
|
@ -2032,6 +2033,8 @@ class PoolingType(IntEnum):
|
||||||
NONE = 0
|
NONE = 0
|
||||||
MEAN = 1
|
MEAN = 1
|
||||||
CLS = 2
|
CLS = 2
|
||||||
|
LAST = 3
|
||||||
|
RANK = 4
|
||||||
|
|
||||||
|
|
||||||
class GGMLQuantizationType(IntEnum):
|
class GGMLQuantizationType(IntEnum):
|
||||||
|
@ -2162,6 +2165,8 @@ class VisionProjectorType:
|
||||||
GEMMA3 = "gemma3"
|
GEMMA3 = "gemma3"
|
||||||
IDEFICS3 = "idefics3"
|
IDEFICS3 = "idefics3"
|
||||||
PIXTRAL = "pixtral"
|
PIXTRAL = "pixtral"
|
||||||
|
QWEN2VL = "qwen2vl_merger"
|
||||||
|
QWEN25VL = "qwen2.5vl_merger"
|
||||||
|
|
||||||
|
|
||||||
# Items here are (block size, type size)
|
# Items here are (block size, type size)
|
||||||
|
|
|
@ -984,6 +984,9 @@ class GGUFWriter:
|
||||||
def add_vision_projector_scale_factor(self, value: int) -> None:
|
def add_vision_projector_scale_factor(self, value: int) -> None:
|
||||||
self.add_uint32(Keys.ClipVision.Projector.SCALE_FACTOR, value)
|
self.add_uint32(Keys.ClipVision.Projector.SCALE_FACTOR, value)
|
||||||
|
|
||||||
|
def add_vision_n_wa_pattern(self, value: int) -> None:
|
||||||
|
self.add_uint32(Keys.ClipVision.N_WA_PATTERN, value)
|
||||||
|
|
||||||
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
|
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
|
||||||
pack_prefix = ''
|
pack_prefix = ''
|
||||||
if not skip_pack_prefix:
|
if not skip_pack_prefix:
|
||||||
|
|
|
@ -896,6 +896,7 @@ class TensorNameMap:
|
||||||
|
|
||||||
MODEL_TENSOR.V_MMPROJ: (
|
MODEL_TENSOR.V_MMPROJ: (
|
||||||
"multi_modal_projector.linear_{bid}",
|
"multi_modal_projector.linear_{bid}",
|
||||||
|
"visual.merger.mlp.{bid}", # qwen2vl
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_MMPROJ_FC: (
|
MODEL_TENSOR.V_MMPROJ_FC: (
|
||||||
|
@ -919,6 +920,7 @@ class TensorNameMap:
|
||||||
"vpm.embeddings.patch_embedding",
|
"vpm.embeddings.patch_embedding",
|
||||||
"model.vision_model.embeddings.patch_embedding", # SmolVLM
|
"model.vision_model.embeddings.patch_embedding", # SmolVLM
|
||||||
"vision_tower.patch_conv", # pixtral
|
"vision_tower.patch_conv", # pixtral
|
||||||
|
"visual.patch_embed.proj", # qwen2vl
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_ENC_EMBD_POS: (
|
MODEL_TENSOR.V_ENC_EMBD_POS: (
|
||||||
|
@ -932,6 +934,7 @@ class TensorNameMap:
|
||||||
"vpm.encoder.layers.{bid}.self_attn.q_proj",
|
"vpm.encoder.layers.{bid}.self_attn.q_proj",
|
||||||
"model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
|
"model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
|
||||||
"vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
|
"vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
|
||||||
|
"visual.blocks.{bid}.attn.q", # qwen2vl, generated
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_ENC_ATTN_K: (
|
MODEL_TENSOR.V_ENC_ATTN_K: (
|
||||||
|
@ -939,6 +942,7 @@ class TensorNameMap:
|
||||||
"vpm.encoder.layers.{bid}.self_attn.k_proj",
|
"vpm.encoder.layers.{bid}.self_attn.k_proj",
|
||||||
"model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
|
"model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
|
||||||
"vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
|
"vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
|
||||||
|
"visual.blocks.{bid}.attn.k", # qwen2vl, generated
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_ENC_ATTN_V: (
|
MODEL_TENSOR.V_ENC_ATTN_V: (
|
||||||
|
@ -946,6 +950,7 @@ class TensorNameMap:
|
||||||
"vpm.encoder.layers.{bid}.self_attn.v_proj",
|
"vpm.encoder.layers.{bid}.self_attn.v_proj",
|
||||||
"model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
|
"model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
|
||||||
"vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
|
"vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
|
||||||
|
"visual.blocks.{bid}.attn.v", # qwen2vl, generated
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_ENC_INPUT_NORM: (
|
MODEL_TENSOR.V_ENC_INPUT_NORM: (
|
||||||
|
@ -953,6 +958,7 @@ class TensorNameMap:
|
||||||
"vpm.encoder.layers.{bid}.layer_norm1",
|
"vpm.encoder.layers.{bid}.layer_norm1",
|
||||||
"model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
|
"model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
|
||||||
"vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
|
"vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
|
||||||
|
"visual.blocks.{bid}.norm1", # qwen2vl
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_ENC_OUTPUT: (
|
MODEL_TENSOR.V_ENC_OUTPUT: (
|
||||||
|
@ -960,6 +966,7 @@ class TensorNameMap:
|
||||||
"vpm.encoder.layers.{bid}.self_attn.out_proj",
|
"vpm.encoder.layers.{bid}.self_attn.out_proj",
|
||||||
"model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
|
"model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
|
||||||
"vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
|
"vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
|
||||||
|
"visual.blocks.{bid}.attn.proj", # qwen2vl
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_ENC_OUTPUT_NORM: (
|
MODEL_TENSOR.V_ENC_OUTPUT_NORM: (
|
||||||
|
@ -967,17 +974,24 @@ class TensorNameMap:
|
||||||
"vpm.encoder.layers.{bid}.layer_norm2",
|
"vpm.encoder.layers.{bid}.layer_norm2",
|
||||||
"model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
|
"model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
|
||||||
"vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
|
"vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
|
||||||
|
"visual.blocks.{bid}.norm2", # qwen2vl
|
||||||
),
|
),
|
||||||
|
|
||||||
|
# some namings are messed up because the original llava code swapped fc1 and fc2
|
||||||
|
# we have no better way to fix it, just be careful
|
||||||
|
# new models like pixtral use the correct naming
|
||||||
MODEL_TENSOR.V_ENC_FFN_UP: (
|
MODEL_TENSOR.V_ENC_FFN_UP: (
|
||||||
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
|
"vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
|
||||||
"vpm.encoder.layers.{bid}.mlp.fc1",
|
"vpm.encoder.layers.{bid}.mlp.fc1",
|
||||||
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3 (note: name is swapped)
|
"model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3 (note: name is swapped)
|
||||||
"vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
|
"vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
|
||||||
|
"visual.blocks.{bid}.mlp.fc2", # qwen2vl
|
||||||
|
"visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_ENC_FFN_GATE: (
|
MODEL_TENSOR.V_ENC_FFN_GATE: (
|
||||||
"vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
|
"vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
|
||||||
|
"visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_ENC_FFN_DOWN: (
|
MODEL_TENSOR.V_ENC_FFN_DOWN: (
|
||||||
|
@ -985,6 +999,8 @@ class TensorNameMap:
|
||||||
"vpm.encoder.layers.{bid}.mlp.fc2",
|
"vpm.encoder.layers.{bid}.mlp.fc2",
|
||||||
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3 (note: name is swapped)
|
"model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3 (note: name is swapped)
|
||||||
"vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
|
"vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
|
||||||
|
"visual.blocks.{bid}.mlp.fc1", # qwen2vl
|
||||||
|
"visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_PRE_NORM: (
|
MODEL_TENSOR.V_PRE_NORM: (
|
||||||
|
@ -995,6 +1011,7 @@ class TensorNameMap:
|
||||||
MODEL_TENSOR.V_POST_NORM: (
|
MODEL_TENSOR.V_POST_NORM: (
|
||||||
"vision_tower.vision_model.post_layernorm",
|
"vision_tower.vision_model.post_layernorm",
|
||||||
"model.vision_model.post_layernorm", # SmolVLM
|
"model.vision_model.post_layernorm", # SmolVLM
|
||||||
|
"visual.merger.ln_q", # qwen2vl
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.V_MM_INP_PROJ: (
|
MODEL_TENSOR.V_MM_INP_PROJ: (
|
||||||
|
|
|
@ -189,7 +189,7 @@ llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
|
||||||
return ubatch;
|
return ubatch;
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
|
llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
|
||||||
GGML_ASSERT(batch.n_tokens >= 0);
|
GGML_ASSERT(batch.n_tokens >= 0);
|
||||||
this->batch = &batch;
|
this->batch = &batch;
|
||||||
this->n_embd = n_embd;
|
this->n_embd = n_embd;
|
||||||
|
@ -203,6 +203,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
||||||
for (size_t i = 0; i < n_tokens; ++i) {
|
for (size_t i = 0; i < n_tokens; ++i) {
|
||||||
ids[i] = i;
|
ids[i] = i;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (simple_split) {
|
if (simple_split) {
|
||||||
seq.resize(1);
|
seq.resize(1);
|
||||||
llama_sbatch_seq & s = seq[0];
|
llama_sbatch_seq & s = seq[0];
|
||||||
|
@ -212,6 +213,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
||||||
s.length = n_tokens;
|
s.length = n_tokens;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::sort(ids.begin(), ids.end(),
|
std::sort(ids.begin(), ids.end(),
|
||||||
[&batch](size_t a, size_t b) {
|
[&batch](size_t a, size_t b) {
|
||||||
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
|
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
|
||||||
|
@ -239,6 +241,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
||||||
return n_seq_a > n_seq_b;
|
return n_seq_a > n_seq_b;
|
||||||
}
|
}
|
||||||
);
|
);
|
||||||
|
|
||||||
// init seq
|
// init seq
|
||||||
llama_sbatch_seq * last_seq = nullptr;
|
llama_sbatch_seq * last_seq = nullptr;
|
||||||
|
|
||||||
|
@ -262,6 +265,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
||||||
seq.push_back(new_seq);
|
seq.push_back(new_seq);
|
||||||
last_seq = &seq.back();
|
last_seq = &seq.back();
|
||||||
}
|
}
|
||||||
|
|
||||||
// keep shared prompts first at the end, then sort by length descending.
|
// keep shared prompts first at the end, then sort by length descending.
|
||||||
std::sort(seq.begin(), seq.end(),
|
std::sort(seq.begin(), seq.end(),
|
||||||
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
|
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
|
||||||
|
|
|
@ -70,7 +70,8 @@ struct llama_sbatch {
|
||||||
// sequence-wise split
|
// sequence-wise split
|
||||||
llama_ubatch split_seq(size_t n_ubatch);
|
llama_ubatch split_seq(size_t n_ubatch);
|
||||||
|
|
||||||
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
|
llama_sbatch() = default;
|
||||||
|
llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
|
||||||
};
|
};
|
||||||
|
|
||||||
// temporary allocate memory for the input batch if needed
|
// temporary allocate memory for the input batch if needed
|
||||||
|
|
|
@ -6,11 +6,9 @@
|
||||||
#include "llama-model.h"
|
#include "llama-model.h"
|
||||||
#include "llama-kv-cache.h"
|
#include "llama-kv-cache.h"
|
||||||
|
|
||||||
#include <cassert>
|
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
#include <stdexcept>
|
#include <stdexcept>
|
||||||
#include <cinttypes>
|
#include <cinttypes>
|
||||||
#include <cmath>
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// llama_context
|
// llama_context
|
||||||
|
@ -177,44 +175,13 @@ llama_context::llama_context(
|
||||||
}
|
}
|
||||||
|
|
||||||
// init the memory module
|
// init the memory module
|
||||||
// TODO: for now, always create a unified KV cache
|
|
||||||
if (!hparams.vocab_only) {
|
if (!hparams.vocab_only) {
|
||||||
kv_self.reset(static_cast<llama_kv_cache_unified *>(model.create_memory()));
|
llama_memory_params params_mem = {
|
||||||
|
/*.type_k =*/ params.type_k,
|
||||||
|
/*.type_v =*/ params.type_v,
|
||||||
|
};
|
||||||
|
|
||||||
LLAMA_LOG_DEBUG("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
|
memory.reset(model.create_memory(params_mem, cparams));
|
||||||
|
|
||||||
cparams.n_ctx = GGML_PAD(cparams.n_ctx, kv_self->get_padding(cparams));
|
|
||||||
|
|
||||||
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
|
|
||||||
|
|
||||||
uint32_t kv_size = cparams.n_ctx;
|
|
||||||
ggml_type type_k = params.type_k;
|
|
||||||
ggml_type type_v = params.type_v;
|
|
||||||
|
|
||||||
if (llama_model_is_recurrent(&model)) {
|
|
||||||
// Mamba needs at least as many KV cells as there are sequences kept at any time
|
|
||||||
kv_size = std::max((uint32_t) 1, params.n_seq_max);
|
|
||||||
// it's probably best to keep as much precision as possible for the states
|
|
||||||
type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
|
|
||||||
type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
|
|
||||||
}
|
|
||||||
|
|
||||||
GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
|
|
||||||
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
|
|
||||||
|
|
||||||
if (!kv_self->init(model, cparams, type_k, type_v, kv_size, cparams.offload_kqv)) {
|
|
||||||
throw std::runtime_error("failed to initialize self-attention cache");
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
const size_t memory_size_k = kv_self->size_k_bytes();
|
|
||||||
const size_t memory_size_v = kv_self->size_v_bytes();
|
|
||||||
|
|
||||||
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
|
||||||
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
|
||||||
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
|
||||||
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// init backends
|
// init backends
|
||||||
|
@ -305,7 +272,9 @@ llama_context::llama_context(
|
||||||
int n_nodes_tg = -1;
|
int n_nodes_tg = -1;
|
||||||
|
|
||||||
// simulate full KV cache
|
// simulate full KV cache
|
||||||
kv_self->n = kv_self->size;
|
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||||
|
|
||||||
|
kv_self->set_full();
|
||||||
|
|
||||||
cross.v_embd.clear();
|
cross.v_embd.clear();
|
||||||
|
|
||||||
|
@ -427,6 +396,18 @@ const llama_model & llama_context::get_model() const {
|
||||||
return model;
|
return model;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const llama_cparams & llama_context::get_cparams() const {
|
||||||
|
return cparams;
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_sched_t llama_context::get_sched() const {
|
||||||
|
return sched.get();
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_context * llama_context::get_ctx_compute() const {
|
||||||
|
return ctx_compute.get();
|
||||||
|
}
|
||||||
|
|
||||||
uint32_t llama_context::n_ctx() const {
|
uint32_t llama_context::n_ctx() const {
|
||||||
return cparams.n_ctx;
|
return cparams.n_ctx;
|
||||||
}
|
}
|
||||||
|
@ -456,338 +437,21 @@ uint32_t llama_context::n_threads_batch() const {
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_kv_cache * llama_context::get_kv_self() {
|
llama_kv_cache * llama_context::get_kv_self() {
|
||||||
return kv_self.get();
|
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||||
|
return kv_self;
|
||||||
}
|
}
|
||||||
|
|
||||||
const llama_kv_cache * llama_context::get_kv_self() const {
|
const llama_kv_cache * llama_context::get_kv_self() const {
|
||||||
return kv_self.get();
|
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||||
}
|
return kv_self;
|
||||||
|
|
||||||
ggml_tensor * llama_context::build_rope_shift(
|
|
||||||
ggml_context * ctx0,
|
|
||||||
ggml_tensor * cur,
|
|
||||||
ggml_tensor * shift,
|
|
||||||
ggml_tensor * factors,
|
|
||||||
float freq_base,
|
|
||||||
float freq_scale) const {
|
|
||||||
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
|
|
||||||
|
|
||||||
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
|
|
||||||
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
|
|
||||||
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
|
|
||||||
|
|
||||||
const auto & hparams = model.hparams;
|
|
||||||
|
|
||||||
const auto & n_rot = hparams.n_rot;
|
|
||||||
const auto & rope_type = hparams.rope_type;
|
|
||||||
|
|
||||||
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
|
|
||||||
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
|
|
||||||
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
|
|
||||||
|
|
||||||
ggml_tensor * tmp;
|
|
||||||
|
|
||||||
if (ggml_is_quantized(cur->type)) {
|
|
||||||
// dequantize to f32 -> RoPE -> quantize back
|
|
||||||
tmp = ggml_cast(ctx0, cur, GGML_TYPE_F32);
|
|
||||||
|
|
||||||
tmp = ggml_rope_ext(ctx0, tmp,
|
|
||||||
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
||||||
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
|
|
||||||
|
|
||||||
tmp = ggml_cpy(ctx0, tmp, cur);
|
|
||||||
} else {
|
|
||||||
// we rotate only the first n_rot dimensions
|
|
||||||
tmp = ggml_rope_ext_inplace(ctx0, cur,
|
|
||||||
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
||||||
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
|
|
||||||
}
|
|
||||||
|
|
||||||
return tmp;
|
|
||||||
}
|
|
||||||
|
|
||||||
class llm_graph_input_k_shift : public llm_graph_input_i {
|
|
||||||
public:
|
|
||||||
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
|
||||||
virtual ~llm_graph_input_k_shift() = default;
|
|
||||||
|
|
||||||
void set_input(const llama_ubatch * ubatch) override;
|
|
||||||
|
|
||||||
ggml_tensor * k_shift; // I32 [kv_size]
|
|
||||||
|
|
||||||
const llama_kv_cache_unified * kv_self;
|
|
||||||
};
|
|
||||||
|
|
||||||
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
|
|
||||||
GGML_UNUSED(ubatch);
|
|
||||||
|
|
||||||
if (k_shift) {
|
|
||||||
assert(ggml_backend_buffer_is_host(k_shift->buffer));
|
|
||||||
|
|
||||||
int32_t * data = (int32_t *) k_shift->data;
|
|
||||||
|
|
||||||
for (uint32_t i = 0; i < kv_self->size; ++i) {
|
|
||||||
data[i] = kv_self->cells[i].delta;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
llm_graph_result_ptr llama_context::build_kv_self_shift(
|
|
||||||
ggml_context * ctx0,
|
|
||||||
ggml_cgraph * gf) const {
|
|
||||||
auto res = std::make_unique<llm_graph_result>();
|
|
||||||
|
|
||||||
const auto & hparams = model.hparams;
|
|
||||||
|
|
||||||
const auto & n_layer = hparams.n_layer;
|
|
||||||
|
|
||||||
const auto & n_embd_head_k = hparams.n_embd_head_k;
|
|
||||||
//const auto & n_embd_head_v = hparams.n_embd_head_v;
|
|
||||||
|
|
||||||
//GGML_ASSERT(kv_self->size == n_ctx);
|
|
||||||
|
|
||||||
auto inp = std::make_unique<llm_graph_input_k_shift>(kv_self.get());
|
|
||||||
|
|
||||||
inp->k_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_ctx);
|
|
||||||
ggml_set_input(inp->k_shift);
|
|
||||||
|
|
||||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
||||||
const int64_t n_head_kv = hparams.n_head_kv(il);
|
|
||||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
|
||||||
|
|
||||||
const bool is_swa = hparams.is_swa(il);
|
|
||||||
|
|
||||||
// note: the swa rope params could become part of the cparams in the future
|
|
||||||
// if we decide to make them configurable, like the non-sliding ones
|
|
||||||
const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
|
|
||||||
const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
|
|
||||||
|
|
||||||
ggml_tensor * rope_factors = kv_self->cbs.get_rope_factors(n_ctx_per_seq(), il);
|
|
||||||
|
|
||||||
ggml_tensor * k =
|
|
||||||
ggml_view_3d(ctx0, kv_self->k_l[il],
|
|
||||||
n_embd_head_k, n_head_kv, kv_self->size,
|
|
||||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k),
|
|
||||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
|
|
||||||
0);
|
|
||||||
|
|
||||||
ggml_tensor * cur = build_rope_shift(ctx0, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
|
|
||||||
|
|
||||||
ggml_build_forward_expand(gf, cur);
|
|
||||||
}
|
|
||||||
|
|
||||||
res->add_input(std::move(inp));
|
|
||||||
|
|
||||||
return res;
|
|
||||||
}
|
|
||||||
|
|
||||||
llm_graph_result_ptr llama_context::build_kv_self_defrag(
|
|
||||||
ggml_context * ctx0,
|
|
||||||
ggml_cgraph * gf) const {
|
|
||||||
auto res = std::make_unique<llm_graph_result>();
|
|
||||||
|
|
||||||
const auto & hparams = model.hparams;
|
|
||||||
|
|
||||||
const auto & ids = kv_self->defrag_info.ids;
|
|
||||||
|
|
||||||
#if 0
|
|
||||||
// CPU defrag
|
|
||||||
//
|
|
||||||
// TODO: optimizations are possible:
|
|
||||||
// - multiple threads
|
|
||||||
// - avoid copying to the host memory when already there
|
|
||||||
//
|
|
||||||
// likely not worth the effort, as we have ggml_graph based defrag
|
|
||||||
//
|
|
||||||
|
|
||||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
|
||||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
|
||||||
|
|
||||||
const uint32_t kv_size = size;
|
|
||||||
|
|
||||||
std::vector<uint8_t> buf_k;
|
|
||||||
std::vector<uint8_t> buf_v;
|
|
||||||
|
|
||||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
|
||||||
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
|
||||||
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
|
|
||||||
|
|
||||||
const size_t v_size_el = ggml_type_size(v_l[il]->type);
|
|
||||||
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
|
|
||||||
|
|
||||||
buf_k.resize(k_size);
|
|
||||||
buf_v.resize(v_size);
|
|
||||||
|
|
||||||
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
|
|
||||||
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
|
|
||||||
|
|
||||||
// batch move [i, i+nm) to [id, id+nm)
|
|
||||||
// note: cells can move only to a lower index
|
|
||||||
for (uint32_t i = 0; i < n_kv; ++i) {
|
|
||||||
const uint32_t id = ids[i];
|
|
||||||
|
|
||||||
if (i == id || id == n_kv) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
uint32_t nm = 1;
|
|
||||||
|
|
||||||
while (i + nm < n_kv && ids[i + nm] == id + nm) {
|
|
||||||
nm++;
|
|
||||||
}
|
|
||||||
|
|
||||||
// move keys
|
|
||||||
{
|
|
||||||
const int64_t os = i*k_size_row;
|
|
||||||
const int64_t od = id*k_size_row;
|
|
||||||
|
|
||||||
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
|
|
||||||
}
|
|
||||||
|
|
||||||
// move values (note: they are transposed)
|
|
||||||
{
|
|
||||||
const int64_t os = i;
|
|
||||||
const int64_t od = id;
|
|
||||||
|
|
||||||
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
|
||||||
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
i += nm - 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
|
|
||||||
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
for (uint32_t i = 0; i < ids.size(); ++i) {
|
|
||||||
const uint32_t id = ids[i];
|
|
||||||
|
|
||||||
if (i == id || id == ids.size()) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
uint32_t nm = 1;
|
|
||||||
|
|
||||||
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
|
||||||
nm++;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
|
|
||||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
|
||||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
|
||||||
|
|
||||||
ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self->k_l[il],
|
|
||||||
n_embd_k_gqa, nm,
|
|
||||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
|
|
||||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*i));
|
|
||||||
|
|
||||||
ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self->k_l[il],
|
|
||||||
n_embd_k_gqa, nm,
|
|
||||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
|
|
||||||
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*id));
|
|
||||||
|
|
||||||
ggml_tensor * view_v_src;
|
|
||||||
ggml_tensor * view_v_dst;
|
|
||||||
|
|
||||||
if (cparams.flash_attn) {
|
|
||||||
// NOTE: the V cache is not transposed when using flash attention
|
|
||||||
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
|
|
||||||
n_embd_v_gqa, nm,
|
|
||||||
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
|
|
||||||
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*i));
|
|
||||||
|
|
||||||
view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
|
|
||||||
n_embd_v_gqa, nm,
|
|
||||||
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
|
|
||||||
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*id));
|
|
||||||
} else {
|
|
||||||
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
|
|
||||||
nm, n_embd_v_gqa,
|
|
||||||
ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
|
|
||||||
ggml_row_size(kv_self->v_l[il]->type, i));
|
|
||||||
|
|
||||||
view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
|
|
||||||
nm, n_embd_v_gqa,
|
|
||||||
ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
|
|
||||||
ggml_row_size(kv_self->v_l[il]->type, id));
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
|
|
||||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
|
|
||||||
}
|
|
||||||
|
|
||||||
i += nm - 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
return res;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_context::kv_self_update() {
|
void llama_context::kv_self_update() {
|
||||||
auto & kv = kv_self;
|
|
||||||
|
|
||||||
bool need_reserve = false;
|
bool need_reserve = false;
|
||||||
|
|
||||||
if (kv->has_shift) {
|
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||||
if (!kv->get_can_shift()) {
|
|
||||||
printf("\nWARNING: The current context does not support K-shift!\n");
|
|
||||||
} else {
|
|
||||||
|
|
||||||
// LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
|
need_reserve = kv_self->update(*this);
|
||||||
|
|
||||||
// apply K-shift if needed
|
|
||||||
if (model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
|
|
||||||
ggml_backend_sched_reset(sched.get());
|
|
||||||
|
|
||||||
auto * gf = graph_init();
|
|
||||||
|
|
||||||
auto res = build_kv_self_shift(ctx_compute.get(), gf);
|
|
||||||
|
|
||||||
ggml_backend_sched_alloc_graph(sched.get(), gf);
|
|
||||||
|
|
||||||
res->set_inputs(nullptr);
|
|
||||||
|
|
||||||
graph_compute(gf, false);
|
|
||||||
|
|
||||||
need_reserve = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
kv->has_shift = false;
|
|
||||||
|
|
||||||
for (uint32_t i = 0; i < kv->size; ++i) {
|
|
||||||
kv->cells[i].delta = 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// defragment the KV cache if needed
|
|
||||||
if (kv->do_defrag) {
|
|
||||||
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
|
|
||||||
|
|
||||||
if (kv->defrag_prepare(graph_max_nodes())) {
|
|
||||||
ggml_backend_sched_reset(sched.get());
|
|
||||||
|
|
||||||
auto * gf = graph_init();
|
|
||||||
|
|
||||||
auto res = build_kv_self_defrag(ctx_compute.get(), gf);
|
|
||||||
|
|
||||||
ggml_backend_sched_alloc_graph(sched.get(), gf);
|
|
||||||
|
|
||||||
res->set_inputs(nullptr);
|
|
||||||
|
|
||||||
graph_compute(gf, false);
|
|
||||||
|
|
||||||
need_reserve = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
kv->do_defrag = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// reserve a worst case graph if needed
|
// reserve a worst case graph if needed
|
||||||
if (need_reserve) {
|
if (need_reserve) {
|
||||||
|
@ -798,7 +462,7 @@ void llama_context::kv_self_update() {
|
||||||
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||||
|
|
||||||
// simulate full KV cache
|
// simulate full KV cache
|
||||||
kv_self->n = kv_self->size;
|
kv_self->set_full();
|
||||||
|
|
||||||
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||||||
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||||||
|
@ -819,9 +483,6 @@ enum llama_pooling_type llama_context::pooling_type() const {
|
||||||
}
|
}
|
||||||
|
|
||||||
float * llama_context::get_logits() {
|
float * llama_context::get_logits() {
|
||||||
// reorder logits for backward compatibility
|
|
||||||
output_reorder();
|
|
||||||
|
|
||||||
return logits;
|
return logits;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -864,9 +525,6 @@ float * llama_context::get_logits_ith(int32_t i) {
|
||||||
}
|
}
|
||||||
|
|
||||||
float * llama_context::get_embeddings() {
|
float * llama_context::get_embeddings() {
|
||||||
// reorder embeddings for backward compatibility
|
|
||||||
output_reorder();
|
|
||||||
|
|
||||||
return embd;
|
return embd;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1018,8 +676,8 @@ int llama_context::encode(llama_batch & inp_batch) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// temporary allocate memory for the input batch if needed
|
// temporary allocate memory for the input batch if needed
|
||||||
// TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences
|
// note: during encode, we always pass the full sequence starting from pos = 0
|
||||||
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1);
|
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : 0);
|
||||||
|
|
||||||
const llama_batch & batch = batch_allocr.batch;
|
const llama_batch & batch = batch_allocr.batch;
|
||||||
const int32_t n_tokens = batch.n_tokens;
|
const int32_t n_tokens = batch.n_tokens;
|
||||||
|
@ -1048,7 +706,7 @@ int llama_context::encode(llama_batch & inp_batch) {
|
||||||
|
|
||||||
const int64_t n_embd = hparams.n_embd;
|
const int64_t n_embd = hparams.n_embd;
|
||||||
|
|
||||||
sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
llama_sbatch sbatch = llama_sbatch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
||||||
|
|
||||||
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
|
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
|
||||||
|
|
||||||
|
@ -1182,9 +840,11 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||||
|
|
||||||
// temporary allocate memory for the input batch if needed
|
// temporary allocate memory for the input batch if needed
|
||||||
// TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences
|
// TODO: this is incorrect for multiple sequences because get_pos_max() is the maximum across all sequences
|
||||||
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1);
|
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->get_pos_max() + 1);
|
||||||
|
|
||||||
const llama_batch & batch = batch_allocr.batch;
|
const llama_batch & batch = batch_allocr.batch;
|
||||||
|
|
||||||
|
@ -1196,7 +856,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||||
const int64_t n_tokens_all = batch.n_tokens;
|
const int64_t n_tokens_all = batch.n_tokens;
|
||||||
const int64_t n_embd = hparams.n_embd;
|
const int64_t n_embd = hparams.n_embd;
|
||||||
|
|
||||||
llama_kv_cache_guard kv_guard(kv_self.get());
|
llama_kv_cache_guard kv_guard(kv_self);
|
||||||
|
|
||||||
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
||||||
|
|
||||||
|
@ -1237,11 +897,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||||
n_outputs_all = 1;
|
n_outputs_all = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool logits_all = n_outputs_all == n_tokens_all;
|
llama_sbatch sbatch = kv_self->sbatch_init(batch, /* logits_all */ n_outputs_all == n_tokens_all);
|
||||||
|
|
||||||
sbatch.from_batch(batch, n_embd,
|
|
||||||
/* simple_split */ !kv_self->recurrent,
|
|
||||||
/* logits_all */ logits_all);
|
|
||||||
|
|
||||||
// reserve output buffer
|
// reserve output buffer
|
||||||
if (output_reserve(n_outputs_all) < n_outputs_all) {
|
if (output_reserve(n_outputs_all) < n_outputs_all) {
|
||||||
|
@ -1255,22 +911,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||||
int64_t n_outputs_prev = 0;
|
int64_t n_outputs_prev = 0;
|
||||||
|
|
||||||
while (sbatch.n_tokens > 0) {
|
while (sbatch.n_tokens > 0) {
|
||||||
llama_ubatch ubatch = llama_ubatch();
|
llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);
|
||||||
|
|
||||||
const auto & n_ubatch = cparams.n_ubatch;
|
|
||||||
|
|
||||||
if (kv_self->recurrent) {
|
|
||||||
if (embd_pooled) {
|
|
||||||
// Pooled embeddings cannot be split across ubatches (yet)
|
|
||||||
ubatch = sbatch.split_seq(cparams.n_ubatch);
|
|
||||||
} else {
|
|
||||||
// recurrent model architectures are easier to implement
|
|
||||||
// with equal-length sequences
|
|
||||||
ubatch = sbatch.split_equal(cparams.n_ubatch);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
ubatch = sbatch.split_simple(n_ubatch);
|
|
||||||
}
|
|
||||||
|
|
||||||
// count the outputs in this u_batch
|
// count the outputs in this u_batch
|
||||||
{
|
{
|
||||||
|
@ -1290,24 +931,12 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// find KV slot
|
// find KV slot
|
||||||
{
|
if (!kv_self->find_slot(ubatch)) {
|
||||||
if (!kv_self->find_slot(ubatch)) {
|
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
||||||
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
|
||||||
|
|
||||||
return 1;
|
return 1;
|
||||||
}
|
|
||||||
|
|
||||||
if (!kv_self->recurrent) {
|
|
||||||
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
|
||||||
// after enough generations, the benefit from this heuristic disappears
|
|
||||||
// if we start defragmenting the cache, the benefit from this will be more important
|
|
||||||
const uint32_t pad = kv_self->get_padding(cparams);
|
|
||||||
kv_self->n = std::min(kv_self->size, std::max(pad, GGML_PAD(kv_self->cell_max(), pad)));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self->n, kv_self->used, kv_self->head);
|
|
||||||
|
|
||||||
ggml_backend_sched_reset(sched.get());
|
ggml_backend_sched_reset(sched.get());
|
||||||
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
||||||
|
|
||||||
|
@ -1421,43 +1050,68 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||||
// finalize the batch processing
|
// finalize the batch processing
|
||||||
kv_guard.commit();
|
kv_guard.commit();
|
||||||
|
|
||||||
|
// set to total number of outputs in the batch, for use in llama_get_logits_ith
|
||||||
|
n_outputs = n_outputs_all;
|
||||||
|
|
||||||
// set output mappings
|
// set output mappings
|
||||||
{
|
{
|
||||||
bool sorted_output = true;
|
bool sorted_output = true;
|
||||||
|
|
||||||
GGML_ASSERT(sbatch.out_ids.size() == (size_t) n_outputs_all);
|
auto & out_ids = sbatch.out_ids;
|
||||||
|
|
||||||
|
GGML_ASSERT(out_ids.size() == (size_t) n_outputs_all);
|
||||||
|
|
||||||
for (int64_t i = 0; i < n_outputs_all; ++i) {
|
for (int64_t i = 0; i < n_outputs_all; ++i) {
|
||||||
int64_t out_id = sbatch.out_ids[i];
|
int64_t out_id = out_ids[i];
|
||||||
output_ids[out_id] = i;
|
output_ids[out_id] = i;
|
||||||
if (out_id != i) {
|
if (out_id != i) {
|
||||||
sorted_output = false;
|
sorted_output = false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (sorted_output) {
|
// make the outputs have the same order they had in the user-provided batch
|
||||||
sbatch.out_ids.clear();
|
// note: this is mostly relevant for recurrent models atm
|
||||||
|
if (!sorted_output) {
|
||||||
|
const uint32_t n_vocab = model.vocab.n_tokens();
|
||||||
|
const uint32_t n_embd = model.hparams.n_embd;
|
||||||
|
|
||||||
|
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
||||||
|
|
||||||
|
// TODO: is there something more efficient which also minimizes swaps?
|
||||||
|
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
|
||||||
|
for (int32_t i = 0; i < n_outputs - 1; ++i) {
|
||||||
|
int32_t j_min = i;
|
||||||
|
for (int32_t j = i + 1; j < n_outputs; ++j) {
|
||||||
|
if (out_ids[j] < out_ids[j_min]) {
|
||||||
|
j_min = j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (j_min == i) { continue; }
|
||||||
|
std::swap(out_ids[i], out_ids[j_min]);
|
||||||
|
if (logits_size > 0) {
|
||||||
|
for (uint32_t k = 0; k < n_vocab; k++) {
|
||||||
|
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (embd_size > 0) {
|
||||||
|
for (uint32_t k = 0; k < n_embd; k++) {
|
||||||
|
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::fill(output_ids.begin(), output_ids.end(), -1);
|
||||||
|
for (int32_t i = 0; i < n_outputs; ++i) {
|
||||||
|
output_ids[out_ids[i]] = i;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// set to total number of outputs in the batch, for use in llama_get_logits_ith
|
|
||||||
n_outputs = n_outputs_all;
|
|
||||||
|
|
||||||
// wait for the computation to finish (automatically done when obtaining the model output)
|
// wait for the computation to finish (automatically done when obtaining the model output)
|
||||||
//synchronize();
|
//synchronize();
|
||||||
|
|
||||||
// decide if we need to defrag the kv cache
|
// decide if we need to defrag the kv cache
|
||||||
if (cparams.causal_attn && cparams.defrag_thold > 0.0f) {
|
if (cparams.defrag_thold > 0.0f) {
|
||||||
// - do not defrag small contexts (i.e. < 2048 tokens)
|
kv_self->defrag_sched(cparams.defrag_thold);
|
||||||
// - count the padding towards the number of used tokens
|
|
||||||
const float fragmentation = kv_self->n >= 2048 ? std::max(0.0f, 1.0f - float(kv_self->used + kv_self->get_padding(cparams))/float(kv_self->n)) : 0.0f;
|
|
||||||
|
|
||||||
// queue defragmentation for next llama_kv_cache_update
|
|
||||||
if (fragmentation > cparams.defrag_thold) {
|
|
||||||
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
|
|
||||||
|
|
||||||
kv_self->defrag();
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
|
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
|
||||||
|
@ -1543,44 +1197,6 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
|
||||||
return n_outputs_max;
|
return n_outputs_max;
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_context::output_reorder() {
|
|
||||||
auto & out_ids = sbatch.out_ids;
|
|
||||||
if (!out_ids.empty()) {
|
|
||||||
const uint32_t n_vocab = model.vocab.n_tokens();
|
|
||||||
const uint32_t n_embd = model.hparams.n_embd;
|
|
||||||
|
|
||||||
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
|
||||||
|
|
||||||
// TODO: is there something more efficient which also minimizes swaps?
|
|
||||||
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
|
|
||||||
for (int32_t i = 0; i < n_outputs - 1; ++i) {
|
|
||||||
int32_t j_min = i;
|
|
||||||
for (int32_t j = i + 1; j < n_outputs; ++j) {
|
|
||||||
if (out_ids[j] < out_ids[j_min]) {
|
|
||||||
j_min = j;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (j_min == i) { continue; }
|
|
||||||
std::swap(out_ids[i], out_ids[j_min]);
|
|
||||||
if (logits_size > 0) {
|
|
||||||
for (uint32_t k = 0; k < n_vocab; k++) {
|
|
||||||
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (embd_size > 0) {
|
|
||||||
for (uint32_t k = 0; k < n_embd; k++) {
|
|
||||||
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
std::fill(output_ids.begin(), output_ids.end(), -1);
|
|
||||||
for (int32_t i = 0; i < n_outputs; ++i) {
|
|
||||||
output_ids[out_ids[i]] = i;
|
|
||||||
}
|
|
||||||
out_ids.clear();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// graph
|
// graph
|
||||||
//
|
//
|
||||||
|
@ -1617,7 +1233,7 @@ llm_graph_result_ptr llama_context::graph_build(
|
||||||
/*.backend_cpu =*/ backend_cpu,
|
/*.backend_cpu =*/ backend_cpu,
|
||||||
/*.cvec =*/ &cvec,
|
/*.cvec =*/ &cvec,
|
||||||
/*.loras =*/ &loras,
|
/*.loras =*/ &loras,
|
||||||
/*.memory =*/ kv_self.get(),
|
/*.memory =*/ memory.get(),
|
||||||
/*.cross =*/ &cross,
|
/*.cross =*/ &cross,
|
||||||
/*.n_outputs =*/ n_outputs,
|
/*.n_outputs =*/ n_outputs,
|
||||||
/*.cb =*/ graph_get_cb(),
|
/*.cb =*/ graph_get_cb(),
|
||||||
|
@ -2021,8 +1637,6 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
|
||||||
{
|
{
|
||||||
LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__);
|
LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__);
|
||||||
|
|
||||||
output_reorder();
|
|
||||||
|
|
||||||
const auto n_outputs = this->n_outputs;
|
const auto n_outputs = this->n_outputs;
|
||||||
const auto & output_ids = this->output_ids;
|
const auto & output_ids = this->output_ids;
|
||||||
|
|
||||||
|
@ -2076,6 +1690,8 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
|
||||||
}
|
}
|
||||||
|
|
||||||
LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
|
LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
|
||||||
|
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||||
|
|
||||||
kv_self->state_write(io);
|
kv_self->state_write(io);
|
||||||
|
|
||||||
return io.n_bytes();
|
return io.n_bytes();
|
||||||
|
@ -2160,6 +1776,8 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
|
||||||
}
|
}
|
||||||
|
|
||||||
LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__);
|
LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__);
|
||||||
|
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||||
|
|
||||||
kv_self->state_read(io);
|
kv_self->state_read(io);
|
||||||
|
|
||||||
return io.n_bytes();
|
return io.n_bytes();
|
||||||
|
@ -2168,6 +1786,8 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
|
||||||
size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) {
|
size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) {
|
||||||
GGML_UNUSED(seq_id);
|
GGML_UNUSED(seq_id);
|
||||||
|
|
||||||
|
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||||
|
|
||||||
kv_self->state_write(io, seq_id);
|
kv_self->state_write(io, seq_id);
|
||||||
|
|
||||||
return io.n_bytes();
|
return io.n_bytes();
|
||||||
|
@ -2176,6 +1796,8 @@ size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id s
|
||||||
size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) {
|
size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) {
|
||||||
GGML_UNUSED(seq_id);
|
GGML_UNUSED(seq_id);
|
||||||
|
|
||||||
|
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||||
|
|
||||||
kv_self->state_read(io, seq_id);
|
kv_self->state_read(io, seq_id);
|
||||||
|
|
||||||
return io.n_bytes();
|
return io.n_bytes();
|
||||||
|
@ -2531,7 +2153,7 @@ void llama_kv_cache_seq_cp(
|
||||||
llama_seq_id seq_id_dst,
|
llama_seq_id seq_id_dst,
|
||||||
llama_pos p0,
|
llama_pos p0,
|
||||||
llama_pos p1) {
|
llama_pos p1) {
|
||||||
return llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1);
|
llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1);
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_kv_self_seq_cp(
|
void llama_kv_self_seq_cp(
|
||||||
|
@ -2545,14 +2167,14 @@ void llama_kv_self_seq_cp(
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
return kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
||||||
}
|
}
|
||||||
|
|
||||||
// deprecated
|
// deprecated
|
||||||
void llama_kv_cache_seq_keep(
|
void llama_kv_cache_seq_keep(
|
||||||
llama_context * ctx,
|
llama_context * ctx,
|
||||||
llama_seq_id seq_id) {
|
llama_seq_id seq_id) {
|
||||||
return llama_kv_self_seq_keep(ctx, seq_id);
|
llama_kv_self_seq_keep(ctx, seq_id);
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
|
void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
|
||||||
|
@ -2561,7 +2183,7 @@ void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
return kv->seq_keep(seq_id);
|
kv->seq_keep(seq_id);
|
||||||
}
|
}
|
||||||
|
|
||||||
// deprecated
|
// deprecated
|
||||||
|
@ -2571,7 +2193,7 @@ void llama_kv_cache_seq_add(
|
||||||
llama_pos p0,
|
llama_pos p0,
|
||||||
llama_pos p1,
|
llama_pos p1,
|
||||||
llama_pos delta) {
|
llama_pos delta) {
|
||||||
return llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta);
|
llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta);
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_kv_self_seq_add(
|
void llama_kv_self_seq_add(
|
||||||
|
@ -2585,7 +2207,7 @@ void llama_kv_self_seq_add(
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
return kv->seq_add(seq_id, p0, p1, delta);
|
kv->seq_add(seq_id, p0, p1, delta);
|
||||||
}
|
}
|
||||||
|
|
||||||
// deprecated
|
// deprecated
|
||||||
|
@ -2595,7 +2217,7 @@ void llama_kv_cache_seq_div(
|
||||||
llama_pos p0,
|
llama_pos p0,
|
||||||
llama_pos p1,
|
llama_pos p1,
|
||||||
int d) {
|
int d) {
|
||||||
return llama_kv_self_seq_div(ctx, seq_id, p0, p1, d);
|
llama_kv_self_seq_div(ctx, seq_id, p0, p1, d);
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_kv_self_seq_div(
|
void llama_kv_self_seq_div(
|
||||||
|
@ -2609,7 +2231,7 @@ void llama_kv_self_seq_div(
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
return kv->seq_div(seq_id, p0, p1, d);
|
kv->seq_div(seq_id, p0, p1, d);
|
||||||
}
|
}
|
||||||
|
|
||||||
// deprecated
|
// deprecated
|
||||||
|
@ -2628,7 +2250,7 @@ llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) {
|
||||||
|
|
||||||
// deprecated
|
// deprecated
|
||||||
void llama_kv_cache_defrag(llama_context * ctx) {
|
void llama_kv_cache_defrag(llama_context * ctx) {
|
||||||
return llama_kv_self_defrag(ctx);
|
llama_kv_self_defrag(ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_kv_self_defrag(llama_context * ctx) {
|
void llama_kv_self_defrag(llama_context * ctx) {
|
||||||
|
@ -2637,7 +2259,8 @@ void llama_kv_self_defrag(llama_context * ctx) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
return kv->defrag();
|
// force defrag
|
||||||
|
kv->defrag_sched(-1.0f);
|
||||||
}
|
}
|
||||||
|
|
||||||
// deprecated
|
// deprecated
|
||||||
|
|
|
@ -27,7 +27,12 @@ struct llama_context {
|
||||||
|
|
||||||
void synchronize();
|
void synchronize();
|
||||||
|
|
||||||
const llama_model & get_model() const;
|
const llama_model & get_model() const;
|
||||||
|
const llama_cparams & get_cparams() const;
|
||||||
|
|
||||||
|
ggml_backend_sched_t get_sched() const;
|
||||||
|
|
||||||
|
ggml_context * get_ctx_compute() const;
|
||||||
|
|
||||||
uint32_t n_ctx() const;
|
uint32_t n_ctx() const;
|
||||||
uint32_t n_ctx_per_seq() const;
|
uint32_t n_ctx_per_seq() const;
|
||||||
|
@ -137,49 +142,30 @@ private:
|
||||||
// Returns max number of outputs for which space was reserved.
|
// Returns max number of outputs for which space was reserved.
|
||||||
int32_t output_reserve(int32_t n_outputs);
|
int32_t output_reserve(int32_t n_outputs);
|
||||||
|
|
||||||
// make the outputs have the same order they had in the user-provided batch
|
|
||||||
// TODO: maybe remove this
|
|
||||||
void output_reorder();
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// graph
|
// graph
|
||||||
//
|
//
|
||||||
|
|
||||||
|
public:
|
||||||
int32_t graph_max_nodes() const;
|
int32_t graph_max_nodes() const;
|
||||||
|
|
||||||
// zero-out inputs and create the ctx_compute for the compute graph
|
// zero-out inputs and create the ctx_compute for the compute graph
|
||||||
ggml_cgraph * graph_init();
|
ggml_cgraph * graph_init();
|
||||||
|
|
||||||
llm_graph_result_ptr graph_build(
|
|
||||||
ggml_context * ctx,
|
|
||||||
ggml_cgraph * gf,
|
|
||||||
const llama_ubatch & ubatch,
|
|
||||||
llm_graph_type gtype);
|
|
||||||
|
|
||||||
// returns the result of ggml_backend_sched_graph_compute_async execution
|
// returns the result of ggml_backend_sched_graph_compute_async execution
|
||||||
ggml_status graph_compute(
|
ggml_status graph_compute(
|
||||||
ggml_cgraph * gf,
|
ggml_cgraph * gf,
|
||||||
bool batched);
|
bool batched);
|
||||||
|
|
||||||
|
private:
|
||||||
|
llm_graph_result_ptr graph_build(
|
||||||
|
ggml_context * ctx,
|
||||||
|
ggml_cgraph * gf,
|
||||||
|
const llama_ubatch & ubatch,
|
||||||
|
llm_graph_type gtype);
|
||||||
|
|
||||||
llm_graph_cb graph_get_cb() const;
|
llm_graph_cb graph_get_cb() const;
|
||||||
|
|
||||||
// used by kv_self_update()
|
|
||||||
ggml_tensor * build_rope_shift(
|
|
||||||
ggml_context * ctx0,
|
|
||||||
ggml_tensor * cur,
|
|
||||||
ggml_tensor * shift,
|
|
||||||
ggml_tensor * factors,
|
|
||||||
float freq_base,
|
|
||||||
float freq_scale) const;
|
|
||||||
|
|
||||||
llm_graph_result_ptr build_kv_self_shift(
|
|
||||||
ggml_context * ctx0,
|
|
||||||
ggml_cgraph * gf) const;
|
|
||||||
|
|
||||||
llm_graph_result_ptr build_kv_self_defrag(
|
|
||||||
ggml_context * ctx0,
|
|
||||||
ggml_cgraph * gf) const;
|
|
||||||
|
|
||||||
// TODO: read/write lora adapters and cvec
|
// TODO: read/write lora adapters and cvec
|
||||||
size_t state_write_data(llama_io_write_i & io);
|
size_t state_write_data(llama_io_write_i & io);
|
||||||
size_t state_read_data (llama_io_read_i & io);
|
size_t state_read_data (llama_io_read_i & io);
|
||||||
|
@ -196,11 +182,10 @@ private:
|
||||||
llama_cparams cparams;
|
llama_cparams cparams;
|
||||||
llama_adapter_cvec cvec;
|
llama_adapter_cvec cvec;
|
||||||
llama_adapter_loras loras;
|
llama_adapter_loras loras;
|
||||||
llama_sbatch sbatch;
|
|
||||||
|
|
||||||
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
|
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
|
||||||
|
|
||||||
std::unique_ptr<llama_kv_cache_unified> kv_self;
|
std::unique_ptr<llama_memory_i> memory;
|
||||||
|
|
||||||
// TODO: remove
|
// TODO: remove
|
||||||
bool logits_all = false;
|
bool logits_all = false;
|
||||||
|
|
|
@ -284,24 +284,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
|
||||||
|
|
||||||
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
||||||
for (uint32_t i = 0; i < n_kv; ++i) {
|
for (uint32_t i = 0; i < n_kv; ++i) {
|
||||||
const uint32_t cell_id = i + kv_self->head;
|
data[i] = kv_self->s_copy(i);
|
||||||
|
|
||||||
//////////////////////////////////////////////
|
|
||||||
// TODO: this should not mutate the KV cache !
|
|
||||||
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
|
|
||||||
|
|
||||||
// prevent out-of-bound sources
|
|
||||||
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
|
|
||||||
kv_cell.src = cell_id;
|
|
||||||
}
|
|
||||||
|
|
||||||
data[i] = kv_cell.src;
|
|
||||||
|
|
||||||
// TODO: do not mutate the KV cache
|
|
||||||
// ensure copy only happens once
|
|
||||||
if (kv_cell.src != (int32_t) cell_id) {
|
|
||||||
kv_cell.src = cell_id;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -317,18 +300,7 @@ void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
|
||||||
|
|
||||||
// clear unused states
|
// clear unused states
|
||||||
for (int i = 0; i < n_kv; ++i) {
|
for (int i = 0; i < n_kv; ++i) {
|
||||||
const uint32_t cell_id = i + kv_self->head;
|
data[i] = kv_self->s_mask(i);
|
||||||
|
|
||||||
//////////////////////////////////////////////
|
|
||||||
// TODO: this should not mutate the KV cache !
|
|
||||||
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
|
|
||||||
|
|
||||||
data[i] = (float) (kv_cell.src >= 0);
|
|
||||||
|
|
||||||
// only clear once
|
|
||||||
if (kv_cell.src < 0) {
|
|
||||||
kv_cell.src = cell_id;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1105,7 +1077,7 @@ ggml_tensor * llm_graph_context::build_inp_cls() const {
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
||||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||||
|
|
||||||
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
|
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
|
||||||
|
|
||||||
|
@ -1122,7 +1094,7 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
|
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
|
||||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||||
|
|
||||||
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
|
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
|
||||||
|
|
||||||
|
@ -1436,8 +1408,6 @@ ggml_tensor * llm_graph_context::build_attn(
|
||||||
|
|
||||||
// store to KV cache
|
// store to KV cache
|
||||||
{
|
{
|
||||||
GGML_ASSERT(!kv_self->recurrent);
|
|
||||||
|
|
||||||
const auto kv_head = kv_self->head;
|
const auto kv_head = kv_self->head;
|
||||||
|
|
||||||
GGML_ASSERT(kv_self->size == n_ctx);
|
GGML_ASSERT(kv_self->size == n_ctx);
|
||||||
|
@ -1587,7 +1557,7 @@ ggml_tensor * llm_graph_context::build_copy_mask_state(
|
||||||
ggml_tensor * state_mask,
|
ggml_tensor * state_mask,
|
||||||
int32_t n_state,
|
int32_t n_state,
|
||||||
int32_t n_seqs) const {
|
int32_t n_seqs) const {
|
||||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||||
|
|
||||||
const auto n_kv = kv_self->n;
|
const auto n_kv = kv_self->n;
|
||||||
const auto kv_head = kv_self->head;
|
const auto kv_head = kv_self->head;
|
||||||
|
@ -1619,7 +1589,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
|
||||||
ggml_tensor * state_mask,
|
ggml_tensor * state_mask,
|
||||||
const llama_ubatch & ubatch,
|
const llama_ubatch & ubatch,
|
||||||
int il) const {
|
int il) const {
|
||||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||||
|
|
||||||
const auto token_shift_count = hparams.token_shift_count;
|
const auto token_shift_count = hparams.token_shift_count;
|
||||||
|
|
||||||
|
@ -1640,7 +1610,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
|
||||||
ggml_tensor * token_shift,
|
ggml_tensor * token_shift,
|
||||||
const llama_ubatch & ubatch,
|
const llama_ubatch & ubatch,
|
||||||
int il) const {
|
int il) const {
|
||||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||||
|
|
||||||
const auto token_shift_count = hparams.token_shift_count;
|
const auto token_shift_count = hparams.token_shift_count;
|
||||||
const auto n_embd = hparams.n_embd;
|
const auto n_embd = hparams.n_embd;
|
||||||
|
|
|
@ -19,6 +19,7 @@ struct llama_cparams;
|
||||||
|
|
||||||
class llama_memory_i;
|
class llama_memory_i;
|
||||||
class llama_kv_cache_unified;
|
class llama_kv_cache_unified;
|
||||||
|
class llama_kv_cache_recurrent;
|
||||||
|
|
||||||
// certain models (typically multi-modal) can produce different types of graphs
|
// certain models (typically multi-modal) can produce different types of graphs
|
||||||
enum llm_graph_type {
|
enum llm_graph_type {
|
||||||
|
@ -186,26 +187,26 @@ public:
|
||||||
|
|
||||||
class llm_graph_input_s_copy : public llm_graph_input_i {
|
class llm_graph_input_s_copy : public llm_graph_input_i {
|
||||||
public:
|
public:
|
||||||
llm_graph_input_s_copy(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
llm_graph_input_s_copy(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
||||||
virtual ~llm_graph_input_s_copy() = default;
|
virtual ~llm_graph_input_s_copy() = default;
|
||||||
|
|
||||||
void set_input(const llama_ubatch * ubatch) override;
|
void set_input(const llama_ubatch * ubatch) override;
|
||||||
|
|
||||||
ggml_tensor * s_copy; // I32 [kv_size]
|
ggml_tensor * s_copy; // I32 [kv_size]
|
||||||
|
|
||||||
const llama_kv_cache_unified * kv_self;
|
const llama_kv_cache_recurrent * kv_self;
|
||||||
};
|
};
|
||||||
|
|
||||||
class llm_graph_input_s_mask : public llm_graph_input_i {
|
class llm_graph_input_s_mask : public llm_graph_input_i {
|
||||||
public:
|
public:
|
||||||
llm_graph_input_s_mask(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
||||||
virtual ~llm_graph_input_s_mask() = default;
|
virtual ~llm_graph_input_s_mask() = default;
|
||||||
|
|
||||||
void set_input(const llama_ubatch * ubatch) override;
|
void set_input(const llama_ubatch * ubatch) override;
|
||||||
|
|
||||||
ggml_tensor * s_mask; // F32 [1, n_kv]
|
ggml_tensor * s_mask; // F32 [1, n_kv]
|
||||||
|
|
||||||
const llama_kv_cache_unified * kv_self;
|
const llama_kv_cache_recurrent * kv_self;
|
||||||
};
|
};
|
||||||
|
|
||||||
class llm_graph_input_cross_embd : public llm_graph_input_i {
|
class llm_graph_input_cross_embd : public llm_graph_input_i {
|
||||||
|
@ -350,8 +351,8 @@ struct llm_graph_params {
|
||||||
const llama_cparams & cparams;
|
const llama_cparams & cparams;
|
||||||
const llama_ubatch & ubatch;
|
const llama_ubatch & ubatch;
|
||||||
|
|
||||||
ggml_backend_sched * sched;
|
ggml_backend_sched_t sched;
|
||||||
ggml_backend * backend_cpu;
|
ggml_backend_t backend_cpu;
|
||||||
|
|
||||||
const llama_adapter_cvec * cvec;
|
const llama_adapter_cvec * cvec;
|
||||||
const llama_adapter_loras * loras;
|
const llama_adapter_loras * loras;
|
||||||
|
@ -402,9 +403,9 @@ struct llm_graph_context {
|
||||||
|
|
||||||
ggml_context * ctx0 = nullptr;
|
ggml_context * ctx0 = nullptr;
|
||||||
|
|
||||||
ggml_backend_sched * sched;
|
ggml_backend_sched_t sched;
|
||||||
|
|
||||||
ggml_backend * backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
|
ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
|
||||||
|
|
||||||
const llama_adapter_cvec * cvec;
|
const llama_adapter_cvec * cvec;
|
||||||
const llama_adapter_loras * loras;
|
const llama_adapter_loras * loras;
|
||||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -2,32 +2,72 @@
|
||||||
|
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "llama-io.h"
|
#include "llama-io.h"
|
||||||
|
#include "llama-graph.h"
|
||||||
#include "llama-memory.h"
|
#include "llama-memory.h"
|
||||||
|
|
||||||
#include "ggml-cpp.h"
|
#include "ggml-cpp.h"
|
||||||
|
|
||||||
#include <functional>
|
|
||||||
#include <set>
|
#include <set>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
struct llama_cparams;
|
struct llama_cparams;
|
||||||
struct llama_hparams;
|
struct llama_hparams;
|
||||||
struct llama_ubatch;
|
struct llama_ubatch;
|
||||||
|
struct llama_sbatch;
|
||||||
|
struct llama_model;
|
||||||
|
struct llama_context;
|
||||||
|
|
||||||
struct llama_kv_cache : public llama_memory_i {
|
struct llama_kv_cache : public llama_memory_i {
|
||||||
using llama_memory_i::llama_memory_i;
|
virtual ~llama_kv_cache() = default;
|
||||||
|
|
||||||
virtual void restore() = 0; // call if batch processing fails - restores the cache state
|
// call if batch processing fails - restores the cache state
|
||||||
virtual void commit() = 0; // call after successful batch processing - clears any pending state
|
virtual void restore() = 0;
|
||||||
|
|
||||||
virtual int32_t get_n_tokens() const = 0;
|
// call after successful batch processing - clears any pending state
|
||||||
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
|
virtual void commit() = 0;
|
||||||
|
|
||||||
virtual bool get_can_shift() const = 0;
|
// process any pending defrag/shift/etc. operations
|
||||||
|
// optionally call once before processing a new batch
|
||||||
|
virtual bool update(llama_context & lctx) = 0;
|
||||||
|
|
||||||
|
// schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing
|
||||||
|
virtual void defrag_sched(float thold) = 0;
|
||||||
|
|
||||||
|
// simulate full cache, used for allocating worst-case compute buffers
|
||||||
|
virtual void set_full() = 0;
|
||||||
|
|
||||||
|
//
|
||||||
|
// batch processing
|
||||||
|
//
|
||||||
|
|
||||||
|
virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0;
|
||||||
|
|
||||||
|
// different KV caches require different batch splitting strategies
|
||||||
|
virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0;
|
||||||
|
|
||||||
|
// find an empty slot of size "n_tokens" in the cache
|
||||||
|
virtual bool find_slot(const llama_ubatch & batch) = 0;
|
||||||
|
|
||||||
|
// getters
|
||||||
|
virtual int32_t get_n_tokens() const = 0;
|
||||||
|
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
|
||||||
|
virtual llama_pos get_pos_max() const = 0;
|
||||||
|
virtual bool get_can_shift() const = 0;
|
||||||
|
|
||||||
bool get_can_edit() const override { return get_can_shift(); }
|
bool get_can_edit() const override { return get_can_shift(); }
|
||||||
|
|
||||||
|
//
|
||||||
|
// state write/read
|
||||||
|
//
|
||||||
|
|
||||||
|
virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0;
|
||||||
|
virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
//
|
||||||
|
// llama_kv_cache_guard
|
||||||
|
//
|
||||||
|
|
||||||
struct llama_kv_cache_guard {
|
struct llama_kv_cache_guard {
|
||||||
llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {}
|
llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {}
|
||||||
|
|
||||||
|
@ -43,65 +83,50 @@ private:
|
||||||
llama_kv_cache * kv;
|
llama_kv_cache * kv;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct llama_kv_cell {
|
//
|
||||||
llama_pos pos = -1;
|
// llama_kv_cache_unified
|
||||||
llama_pos delta = 0;
|
//
|
||||||
int32_t src = -1; // used by recurrent state models to copy states
|
|
||||||
int32_t tail = -1;
|
|
||||||
|
|
||||||
std::set<llama_seq_id> seq_id;
|
|
||||||
|
|
||||||
bool has_seq_id(const llama_seq_id & id) const {
|
|
||||||
return seq_id.find(id) != seq_id.end();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool is_empty() const {
|
|
||||||
return seq_id.empty();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool is_same_seq(const llama_kv_cell & other) const {
|
|
||||||
return seq_id == other.seq_id;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// ring-buffer of cached KV data
|
|
||||||
// TODO: pimpl
|
|
||||||
// TODO: add notion of max sequences
|
// TODO: add notion of max sequences
|
||||||
class llama_kv_cache_unified : public llama_kv_cache {
|
class llama_kv_cache_unified : public llama_kv_cache {
|
||||||
public:
|
public:
|
||||||
// can be used to query data from the model if needed
|
struct kv_cell {
|
||||||
struct callbacks {
|
llama_pos pos = -1;
|
||||||
std::function<ggml_tensor * (uint32_t n_ctx_per_seq, int il)> get_rope_factors;
|
llama_pos delta = 0;
|
||||||
|
|
||||||
|
std::set<llama_seq_id> seq_id;
|
||||||
|
|
||||||
|
bool has_seq_id(const llama_seq_id & id) const {
|
||||||
|
return seq_id.find(id) != seq_id.end();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool is_empty() const {
|
||||||
|
return seq_id.empty();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool is_same_seq(const kv_cell & other) const {
|
||||||
|
return seq_id == other.seq_id;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
static uint32_t get_padding(const llama_cparams & cparams);
|
||||||
|
|
||||||
llama_kv_cache_unified(
|
llama_kv_cache_unified(
|
||||||
const llama_hparams & hparams,
|
const llama_model & model,
|
||||||
callbacks cbs);
|
|
||||||
|
|
||||||
virtual ~llama_kv_cache_unified() = default;
|
|
||||||
|
|
||||||
// TODO: become constructor
|
|
||||||
bool init(
|
|
||||||
const llama_model & model, // TODO: do not reference the model
|
|
||||||
const llama_cparams & cparams,
|
|
||||||
ggml_type type_k,
|
ggml_type type_k,
|
||||||
ggml_type type_v,
|
ggml_type type_v,
|
||||||
|
bool v_trans,
|
||||||
|
bool offload,
|
||||||
uint32_t kv_size,
|
uint32_t kv_size,
|
||||||
bool offload);
|
uint32_t padding);
|
||||||
|
|
||||||
int32_t get_n_tokens() const override;
|
~llama_kv_cache_unified() = default;
|
||||||
int32_t get_used_cells() const override;
|
|
||||||
|
|
||||||
size_t total_size() const;
|
//
|
||||||
|
// llama_memory_i
|
||||||
// TODO: better data structures to reduce the cost of this operation
|
//
|
||||||
llama_pos pos_max() const;
|
|
||||||
|
|
||||||
void clear() override;
|
void clear() override;
|
||||||
void defrag() override;
|
|
||||||
|
|
||||||
virtual void restore() override;
|
|
||||||
virtual void commit() override;
|
|
||||||
|
|
||||||
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
||||||
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
||||||
|
@ -111,63 +136,40 @@ public:
|
||||||
|
|
||||||
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
||||||
|
|
||||||
bool get_can_shift() const override;
|
//
|
||||||
|
// llama_kv_cache
|
||||||
|
//
|
||||||
|
|
||||||
|
void restore() override;
|
||||||
|
void commit() override;
|
||||||
|
|
||||||
|
bool update(llama_context & ctx) override;
|
||||||
|
|
||||||
|
void defrag_sched(float thold) override;
|
||||||
|
|
||||||
|
void set_full() override;
|
||||||
|
|
||||||
|
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
|
||||||
|
|
||||||
|
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
|
||||||
|
|
||||||
// find an empty slot of size "n_tokens" in the cache
|
|
||||||
// updates the cache head
|
// updates the cache head
|
||||||
// Note: On success, it's important that cache.head points
|
// Note: On success, it's important that cache.head points
|
||||||
// to the first cell of the slot.
|
// to the first cell of the slot.
|
||||||
bool find_slot(const llama_ubatch & batch);
|
bool find_slot(const llama_ubatch & batch) override;
|
||||||
|
|
||||||
// TODO: maybe not needed
|
int32_t get_n_tokens() const override;
|
||||||
uint32_t get_padding(const llama_cparams & cparams) const;
|
int32_t get_used_cells() const override;
|
||||||
|
|
||||||
// find how many cells are currently in use
|
// TODO: better data structures to reduce the cost of this operation
|
||||||
uint32_t cell_max() const;
|
llama_pos get_pos_max() const override;
|
||||||
|
|
||||||
size_t size_k_bytes() const;
|
bool get_can_shift() const override;
|
||||||
size_t size_v_bytes() const;
|
|
||||||
|
|
||||||
// defrag
|
|
||||||
|
|
||||||
struct {
|
|
||||||
std::vector<uint32_t> ids;
|
|
||||||
} defrag_info;
|
|
||||||
|
|
||||||
// return true if cells have been moved
|
|
||||||
bool defrag_prepare(int32_t n_max_nodes);
|
|
||||||
|
|
||||||
// commit/restore cache
|
|
||||||
|
|
||||||
struct slot_range {
|
|
||||||
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
|
|
||||||
uint32_t c1 = 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
// pending cell updates that are not yet committed
|
|
||||||
struct {
|
|
||||||
std::vector<slot_range> ranges;
|
|
||||||
} pending;
|
|
||||||
|
|
||||||
// state write/load
|
// state write/load
|
||||||
|
|
||||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const;
|
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
||||||
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1);
|
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
|
||||||
|
|
||||||
// members
|
|
||||||
|
|
||||||
const llama_hparams & hparams;
|
|
||||||
|
|
||||||
callbacks cbs;
|
|
||||||
|
|
||||||
bool has_shift = false;
|
|
||||||
bool do_defrag = false;
|
|
||||||
|
|
||||||
// TODO: remove this and implement llama_kv_cache_recurrent instead
|
|
||||||
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
|
|
||||||
|
|
||||||
bool v_trans = true; // the value tensor is transposed
|
|
||||||
bool can_shift = false;
|
|
||||||
|
|
||||||
// Note: The value of head isn't only used to optimize searching
|
// Note: The value of head isn't only used to optimize searching
|
||||||
// for a free KV slot. llama_decode_impl also uses it, so it
|
// for a free KV slot. llama_decode_impl also uses it, so it
|
||||||
|
@ -179,18 +181,213 @@ public:
|
||||||
// computed before each graph build
|
// computed before each graph build
|
||||||
uint32_t n = 0;
|
uint32_t n = 0;
|
||||||
|
|
||||||
std::vector<llama_kv_cell> cells;
|
std::vector<kv_cell> cells;
|
||||||
|
|
||||||
std::vector<ggml_tensor *> k_l; // per layer
|
std::vector<ggml_tensor *> k_l; // per layer
|
||||||
std::vector<ggml_tensor *> v_l;
|
std::vector<ggml_tensor *> v_l;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
const llama_model & model;
|
||||||
|
const llama_hparams & hparams;
|
||||||
|
|
||||||
|
bool has_shift = false;
|
||||||
|
bool do_defrag = false;
|
||||||
|
|
||||||
|
bool v_trans = true; // the value tensor is transposed
|
||||||
|
bool can_shift = false;
|
||||||
|
|
||||||
|
// required padding
|
||||||
|
uint32_t padding = 1;
|
||||||
|
|
||||||
ggml_type type_k = GGML_TYPE_F16;
|
ggml_type type_k = GGML_TYPE_F16;
|
||||||
ggml_type type_v = GGML_TYPE_F16;
|
ggml_type type_v = GGML_TYPE_F16;
|
||||||
|
|
||||||
std::vector<ggml_context_ptr> ctxs;
|
std::vector<ggml_context_ptr> ctxs;
|
||||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||||
|
|
||||||
|
// defrag
|
||||||
|
struct {
|
||||||
|
std::vector<uint32_t> ids;
|
||||||
|
} defrag_info;
|
||||||
|
|
||||||
|
// return true if cells have been moved
|
||||||
|
bool defrag_prepare(int32_t n_max_nodes);
|
||||||
|
|
||||||
|
// commit/restore cache
|
||||||
|
struct slot_range {
|
||||||
|
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
|
||||||
|
uint32_t c1 = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
// pending cell updates that are not yet committed
|
||||||
|
struct {
|
||||||
|
std::vector<slot_range> ranges;
|
||||||
|
} pending;
|
||||||
|
|
||||||
|
// find how many cells are currently in use
|
||||||
|
uint32_t cell_max() const;
|
||||||
|
|
||||||
|
size_t total_size() const;
|
||||||
|
|
||||||
|
size_t size_k_bytes() const;
|
||||||
|
size_t size_v_bytes() const;
|
||||||
|
|
||||||
|
ggml_tensor * build_rope_shift(
|
||||||
|
const llama_cparams & cparams,
|
||||||
|
ggml_context * ctx,
|
||||||
|
ggml_tensor * cur,
|
||||||
|
ggml_tensor * shift,
|
||||||
|
ggml_tensor * factors,
|
||||||
|
float freq_base,
|
||||||
|
float freq_scale) const;
|
||||||
|
|
||||||
|
llm_graph_result_ptr build_graph_shift(
|
||||||
|
const llama_cparams & cparams,
|
||||||
|
ggml_context * ctx,
|
||||||
|
ggml_cgraph * gf) const;
|
||||||
|
|
||||||
|
llm_graph_result_ptr build_graph_defrag(
|
||||||
|
const llama_cparams & cparams,
|
||||||
|
ggml_context * ctx,
|
||||||
|
ggml_cgraph * gf) const;
|
||||||
|
|
||||||
|
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
||||||
|
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
||||||
|
|
||||||
|
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
|
||||||
|
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
||||||
|
};
|
||||||
|
|
||||||
|
//
|
||||||
|
// llama_kv_cache_recurrent
|
||||||
|
//
|
||||||
|
|
||||||
|
class llama_kv_cache_recurrent : public llama_kv_cache {
|
||||||
|
public:
|
||||||
|
struct kv_cell {
|
||||||
|
llama_pos pos = -1;
|
||||||
|
int32_t src = -1; // used to copy states
|
||||||
|
int32_t tail = -1;
|
||||||
|
|
||||||
|
std::set<llama_seq_id> seq_id;
|
||||||
|
|
||||||
|
bool has_seq_id(const llama_seq_id & id) const {
|
||||||
|
return seq_id.find(id) != seq_id.end();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool is_empty() const {
|
||||||
|
return seq_id.empty();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool is_same_seq(const kv_cell & other) const {
|
||||||
|
return seq_id == other.seq_id;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
llama_kv_cache_recurrent(
|
||||||
|
const llama_model & model,
|
||||||
|
ggml_type type_k,
|
||||||
|
ggml_type type_v,
|
||||||
|
bool offload,
|
||||||
|
uint32_t kv_size);
|
||||||
|
|
||||||
|
~llama_kv_cache_recurrent() = default;
|
||||||
|
|
||||||
|
//
|
||||||
|
// llama_memory_i
|
||||||
|
//
|
||||||
|
|
||||||
|
void clear() override;
|
||||||
|
|
||||||
|
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
||||||
|
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
||||||
|
void seq_keep(llama_seq_id seq_id) override;
|
||||||
|
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override;
|
||||||
|
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
|
||||||
|
|
||||||
|
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
||||||
|
|
||||||
|
//
|
||||||
|
// llama_kv_cache
|
||||||
|
//
|
||||||
|
|
||||||
|
void restore() override;
|
||||||
|
void commit() override;
|
||||||
|
|
||||||
|
bool update(llama_context & lctx) override;
|
||||||
|
|
||||||
|
void defrag_sched(float thold) override;
|
||||||
|
|
||||||
|
void set_full() override;
|
||||||
|
|
||||||
|
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
|
||||||
|
|
||||||
|
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
|
||||||
|
|
||||||
|
bool find_slot(const llama_ubatch & batch) override;
|
||||||
|
|
||||||
|
int32_t get_n_tokens() const override;
|
||||||
|
int32_t get_used_cells() const override;
|
||||||
|
|
||||||
|
// TODO: better data structures to reduce the cost of this operation
|
||||||
|
llama_pos get_pos_max() const override;
|
||||||
|
|
||||||
|
bool get_can_shift() const override;
|
||||||
|
|
||||||
|
// TODO: temporary methods - they are not really const as they do const_cast<>, fix this
|
||||||
|
int32_t s_copy(int i) const;
|
||||||
|
float s_mask(int i) const;
|
||||||
|
|
||||||
|
// state write/load
|
||||||
|
|
||||||
|
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
||||||
|
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
|
||||||
|
|
||||||
|
// Note: The value of head isn't only used to optimize searching
|
||||||
|
// for a free KV slot. llama_decode_impl also uses it, so it
|
||||||
|
// cannot be freely changed after a slot has been allocated.
|
||||||
|
uint32_t head = 0;
|
||||||
|
uint32_t size = 0;
|
||||||
|
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
||||||
|
|
||||||
|
// computed before each graph build
|
||||||
|
uint32_t n = 0;
|
||||||
|
|
||||||
|
std::vector<kv_cell> cells;
|
||||||
|
|
||||||
|
std::vector<ggml_tensor *> k_l; // per layer
|
||||||
|
std::vector<ggml_tensor *> v_l;
|
||||||
|
|
||||||
|
private:
|
||||||
|
//const llama_model & model;
|
||||||
|
const llama_hparams & hparams;
|
||||||
|
|
||||||
|
// commit/restore cache
|
||||||
|
// TODO: rework for recurrent cache
|
||||||
|
struct slot_range {
|
||||||
|
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
|
||||||
|
uint32_t c1 = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
// pending cell updates that are not yet committed
|
||||||
|
struct {
|
||||||
|
std::vector<slot_range> ranges;
|
||||||
|
} pending;
|
||||||
|
|
||||||
|
ggml_type type_k = GGML_TYPE_F16;
|
||||||
|
ggml_type type_v = GGML_TYPE_F16;
|
||||||
|
|
||||||
|
std::vector<ggml_context_ptr> ctxs;
|
||||||
|
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||||
|
|
||||||
|
// find how many cells are currently in use
|
||||||
|
uint32_t cell_max() const;
|
||||||
|
|
||||||
|
size_t total_size() const;
|
||||||
|
|
||||||
|
size_t size_k_bytes() const;
|
||||||
|
size_t size_v_bytes() const;
|
||||||
|
|
||||||
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
||||||
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
||||||
|
|
||||||
|
@ -198,11 +395,6 @@ private:
|
||||||
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
||||||
};
|
};
|
||||||
|
|
||||||
// TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified
|
|
||||||
//class llama_kv_cache_recurrent : public llama_kv_cache_unified {
|
|
||||||
//public:
|
|
||||||
// using llama_kv_cache_unified::llama_kv_cache_unified;
|
|
||||||
//};
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// kv cache view
|
// kv cache view
|
||||||
|
|
|
@ -2,12 +2,22 @@
|
||||||
|
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
|
||||||
|
struct llama_memory_params {
|
||||||
|
// kv cache
|
||||||
|
ggml_type type_k;
|
||||||
|
ggml_type type_v;
|
||||||
|
|
||||||
|
// parameters for other types of memory
|
||||||
|
// ...
|
||||||
|
};
|
||||||
|
|
||||||
// general concept of LLM memory
|
// general concept of LLM memory
|
||||||
// the KV cache is a type of LLM memory, but there can be other types
|
// the KV cache is a type of LLM memory, but there can be other types
|
||||||
class llama_memory_i {
|
class llama_memory_i {
|
||||||
public:
|
public:
|
||||||
|
virtual ~llama_memory_i() = default;
|
||||||
|
|
||||||
virtual void clear() = 0;
|
virtual void clear() = 0;
|
||||||
virtual void defrag() = 0;
|
|
||||||
|
|
||||||
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
|
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
|
||||||
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;
|
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;
|
||||||
|
|
|
@ -778,6 +778,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||||
// fall through
|
// fall through
|
||||||
case LLM_ARCH_QWEN2:
|
case LLM_ARCH_QWEN2:
|
||||||
{
|
{
|
||||||
|
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
|
||||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
switch (hparams.n_layer) {
|
switch (hparams.n_layer) {
|
||||||
case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
|
case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
|
||||||
|
@ -4544,6 +4545,19 @@ const ggml_tensor * llama_model::get_tensor(const char * name) const {
|
||||||
return it->second;
|
return it->second;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
|
||||||
|
// choose long/short freq factors based on the context size
|
||||||
|
if (layers[il].rope_freqs != nullptr) {
|
||||||
|
return layers[il].rope_freqs;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
|
||||||
|
return layers[il].rope_long;
|
||||||
|
}
|
||||||
|
|
||||||
|
return layers[il].rope_short;
|
||||||
|
}
|
||||||
|
|
||||||
struct llm_build_llama : public llm_graph_context {
|
struct llm_build_llama : public llm_graph_context {
|
||||||
llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
@ -4587,7 +4601,7 @@ struct llm_build_llama : public llm_graph_context {
|
||||||
#if defined(GGML_USE_CLBLAST)
|
#if defined(GGML_USE_CLBLAST)
|
||||||
struct ggml_tensor * rope_factors = nullptr; //clblast does not work with rope_factors
|
struct ggml_tensor * rope_factors = nullptr; //clblast does not work with rope_factors
|
||||||
#else
|
#else
|
||||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// compute Q and K and RoPE them
|
// compute Q and K and RoPE them
|
||||||
|
@ -4813,7 +4827,7 @@ struct llm_build_deci : public llm_graph_context {
|
||||||
} else if (n_head > 0) {
|
} else if (n_head > 0) {
|
||||||
// self-attention
|
// self-attention
|
||||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||||
|
|
||||||
// compute Q and K and RoPE them
|
// compute Q and K and RoPE them
|
||||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||||
|
@ -7295,7 +7309,7 @@ struct llm_build_phi3 : public llm_graph_context {
|
||||||
// self-attention
|
// self-attention
|
||||||
{
|
{
|
||||||
// rope freq factors for 128k context
|
// rope freq factors for 128k context
|
||||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||||
|
|
||||||
ggml_tensor* attn_norm_output = build_norm(inpL,
|
ggml_tensor* attn_norm_output = build_norm(inpL,
|
||||||
model.layers[il].attn_norm,
|
model.layers[il].attn_norm,
|
||||||
|
@ -8047,7 +8061,7 @@ struct llm_build_minicpm3 : public llm_graph_context {
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
ggml_tensor * inpSA = inpL;
|
ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||||
|
|
||||||
// norm
|
// norm
|
||||||
cur = build_norm(inpL,
|
cur = build_norm(inpL,
|
||||||
|
@ -8814,7 +8828,7 @@ struct llm_build_mamba : public llm_graph_context {
|
||||||
ggml_tensor * state_mask,
|
ggml_tensor * state_mask,
|
||||||
const llama_ubatch & ubatch,
|
const llama_ubatch & ubatch,
|
||||||
int il) const {
|
int il) const {
|
||||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||||
|
|
||||||
const auto kv_head = kv_self->head;
|
const auto kv_head = kv_self->head;
|
||||||
|
|
||||||
|
@ -9115,7 +9129,7 @@ struct llm_build_cohere2 : public llm_graph_context {
|
||||||
// self-attention
|
// self-attention
|
||||||
{
|
{
|
||||||
// rope freq factors for 128k context
|
// rope freq factors for 128k context
|
||||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||||
|
|
||||||
// compute Q and K and RoPE them
|
// compute Q and K and RoPE them
|
||||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||||
|
@ -10053,7 +10067,7 @@ struct llm_build_deepseek : public llm_graph_context {
|
||||||
// self-attention
|
// self-attention
|
||||||
{
|
{
|
||||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||||
|
|
||||||
// compute Q and K and RoPE them
|
// compute Q and K and RoPE them
|
||||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||||
|
@ -11417,7 +11431,7 @@ struct llm_build_exaone : public llm_graph_context {
|
||||||
// self-attention
|
// self-attention
|
||||||
{
|
{
|
||||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||||
|
|
||||||
// compute Q and K and RoPE them
|
// compute Q and K and RoPE them
|
||||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||||
|
@ -11562,7 +11576,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
|
||||||
ggml_tensor * state_mask,
|
ggml_tensor * state_mask,
|
||||||
const llama_ubatch & ubatch,
|
const llama_ubatch & ubatch,
|
||||||
int il) const {
|
int il) const {
|
||||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||||
|
|
||||||
const auto n_tokens = ubatch.n_tokens;
|
const auto n_tokens = ubatch.n_tokens;
|
||||||
const auto n_seqs = ubatch.n_seqs;
|
const auto n_seqs = ubatch.n_seqs;
|
||||||
|
@ -11958,7 +11972,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
|
||||||
ggml_tensor *& first_layer_value,
|
ggml_tensor *& first_layer_value,
|
||||||
const llama_ubatch & ubatch,
|
const llama_ubatch & ubatch,
|
||||||
int il) const {
|
int il) const {
|
||||||
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
|
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
||||||
|
|
||||||
const auto n_tokens = ubatch.n_tokens;
|
const auto n_tokens = ubatch.n_tokens;
|
||||||
const auto n_seqs = ubatch.n_seqs;
|
const auto n_seqs = ubatch.n_seqs;
|
||||||
|
@ -12798,7 +12812,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
|
||||||
// self-attention
|
// self-attention
|
||||||
{
|
{
|
||||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||||
ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||||
|
|
||||||
// compute Q and K and RoPE them
|
// compute Q and K and RoPE them
|
||||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||||
|
@ -12918,7 +12932,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
llama_memory_i * llama_model::create_memory() const {
|
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
|
||||||
llama_memory_i * res;
|
llama_memory_i * res;
|
||||||
|
|
||||||
switch (arch) {
|
switch (arch) {
|
||||||
|
@ -12928,26 +12942,29 @@ llama_memory_i * llama_model::create_memory() const {
|
||||||
case LLM_ARCH_RWKV7:
|
case LLM_ARCH_RWKV7:
|
||||||
case LLM_ARCH_ARWKV7:
|
case LLM_ARCH_ARWKV7:
|
||||||
{
|
{
|
||||||
res = new llama_kv_cache_unified(hparams, {
|
res = new llama_kv_cache_recurrent(
|
||||||
/*.get_rope_factors =*/ nullptr
|
*this,
|
||||||
});
|
GGML_TYPE_F32,
|
||||||
|
GGML_TYPE_F32,
|
||||||
|
cparams.offload_kqv,
|
||||||
|
std::max((uint32_t) 1, cparams.n_seq_max));
|
||||||
} break;
|
} break;
|
||||||
default:
|
default:
|
||||||
{
|
{
|
||||||
res = new llama_kv_cache_unified(hparams, {
|
const auto padding = llama_kv_cache_unified::get_padding(cparams);
|
||||||
/*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) {
|
|
||||||
// choose long/short freq factors based on the context size
|
|
||||||
if (layers[il].rope_freqs != nullptr) {
|
|
||||||
return layers[il].rope_freqs;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
|
cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
|
||||||
return layers[il].rope_long;
|
|
||||||
}
|
|
||||||
|
|
||||||
return layers[il].rope_short;
|
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
|
||||||
}
|
|
||||||
});
|
res = new llama_kv_cache_unified(
|
||||||
|
*this,
|
||||||
|
params.type_k,
|
||||||
|
params.type_v,
|
||||||
|
!cparams.flash_attn,
|
||||||
|
cparams.offload_kqv,
|
||||||
|
cparams.n_ctx,
|
||||||
|
padding);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -395,8 +395,11 @@ struct llama_model {
|
||||||
|
|
||||||
const struct ggml_tensor * get_tensor(const char * name) const;
|
const struct ggml_tensor * get_tensor(const char * name) const;
|
||||||
|
|
||||||
|
ggml_tensor * get_rope_factors(uint32_t n_ctx_per_seq, int il) const;
|
||||||
|
|
||||||
|
// note: can mutate `cparams`
|
||||||
// TODO: move this to new llm_arch_model_i interface
|
// TODO: move this to new llm_arch_model_i interface
|
||||||
llama_memory_i * create_memory() const; // TODO: params
|
llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
|
||||||
|
|
||||||
// TODO: move this to new llm_arch_model_i interface
|
// TODO: move this to new llm_arch_model_i interface
|
||||||
llm_graph_result_ptr build_graph(
|
llm_graph_result_ptr build_graph(
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue