mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 17:44:38 +00:00
Merge branch 'upstream' into concedo_experimental
# Conflicts: # .github/workflows/build.yml # Makefile # docs/build.md # examples/rpc/rpc-server.cpp # examples/sycl/build.sh # ggml/CMakeLists.txt # ggml/src/ggml-cann/aclnn_ops.cpp # ggml/src/ggml-cann/ggml-cann.cpp # ggml/src/ggml-hip/CMakeLists.txt # scripts/sync-ggml.last
This commit is contained in:
commit
06159939d9
72 changed files with 6549 additions and 5397 deletions
File diff suppressed because it is too large
Load diff
|
@ -425,6 +425,8 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
|||
}
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
return src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32;
|
||||
case GGML_OP_GET_ROWS_BACK:
|
||||
return src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16;
|
||||
case GGML_OP_OUT_PROD:
|
||||
return (src0->type == GGML_TYPE_F32 || (ggml_is_quantized(src0->type) && src0->ne[2] == src1->ne[2] && src0->ne[3] == src1->ne[3])) &&
|
||||
src1->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
|
||||
|
|
|
@ -98,31 +98,32 @@ int ggml_cuda_get_device() {
|
|||
|
||||
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
|
||||
ggml_cuda_set_device(device);
|
||||
#if defined(GGML_USE_HIP) && defined(GGML_HIP_UMA)
|
||||
auto res = hipMallocManaged(ptr, size);
|
||||
if (res == hipSuccess) {
|
||||
// if error we "need" to know why...
|
||||
CUDA_CHECK(hipMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
|
||||
}
|
||||
return res;
|
||||
#else
|
||||
|
||||
#if !defined(GGML_USE_HIP)
|
||||
cudaError_t err;
|
||||
if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
|
||||
{
|
||||
err = cudaMallocManaged(ptr, size);
|
||||
#if defined(GGML_USE_HIP)
|
||||
if (err == hipSuccess) {
|
||||
CUDA_CHECK(cudaMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
|
||||
}
|
||||
|
||||
// fall back to cudaMalloc if not supported (e.g. on Windows)
|
||||
if (err == hipErrorNotSupported) {
|
||||
static bool warned_unsupported = false;
|
||||
if (!warned_unsupported) {
|
||||
GGML_LOG_WARN("hipMallocManaged unsupported, falling back to hipMalloc.\n");
|
||||
warned_unsupported = true;
|
||||
}
|
||||
|
||||
err = cudaMalloc(ptr, size);
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
}
|
||||
else
|
||||
{
|
||||
err = cudaMalloc(ptr, size);
|
||||
}
|
||||
return err;
|
||||
#else
|
||||
return cudaMalloc(ptr, size);
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
@ -2493,10 +2494,10 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
|
|||
#endif
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_MUL_MAT_ID) {
|
||||
if (node->op == GGML_OP_MUL_MAT_ID || node->op == GGML_OP_CONT || node->op == GGML_OP_DUP) {
|
||||
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported node type\n", __func__);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
2
ggml/src/ggml-cuda/vendors/hip.h
vendored
2
ggml/src/ggml-cuda/vendors/hip.h
vendored
|
@ -71,6 +71,8 @@
|
|||
#define cudaLaunchHostFunc hipLaunchHostFunc
|
||||
#define cudaMalloc hipMalloc
|
||||
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
|
||||
#define cudaMallocManaged hipMallocManaged
|
||||
#define cudaMemAdvise hipMemAdvise
|
||||
#define cudaMemcpy hipMemcpy
|
||||
#define cudaMemcpyAsync hipMemcpyAsync
|
||||
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
|
||||
|
|
|
@ -402,6 +402,13 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H192,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H96,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H96,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H96,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128,
|
||||
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128,
|
||||
|
@ -1059,6 +1066,13 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H192, flash_attn_ext_q8_0_h192, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128, flash_attn_ext_q8_0_hk192_hv128, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, flash_attn_ext_q8_0_h256, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96, flash_attn_ext_vec_f16_h96, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96, flash_attn_ext_vec_bf16_h96, has_simdgroup_reduction && use_bfloat);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96, flash_attn_ext_vec_q4_0_h96, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H96, flash_attn_ext_vec_q4_1_h96, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H96, flash_attn_ext_vec_q5_0_h96, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H96, flash_attn_ext_vec_q5_1_h96, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96, flash_attn_ext_vec_q8_0_h96, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, has_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128, flash_attn_ext_vec_bf16_h128, has_simdgroup_reduction && use_bfloat);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128, flash_attn_ext_vec_q4_0_h128, has_simdgroup_reduction);
|
||||
|
@ -3843,7 +3857,7 @@ static void ggml_metal_encode_node(
|
|||
// TODO: add vec kernels for (ne00%64 == 0) and maybe also for (ne00%32 == 0)
|
||||
// for now avoiding mainly to keep the number of templates/kernels a bit lower
|
||||
// these are now trivial to add after: https://github.com/ggml-org/llama.cpp/pull/12612
|
||||
if (ne01 >= 4 || (ne00%128 != 0 && ne00 != 192)) {
|
||||
if (ne01 >= 4 || (ne00%128 != 0 && ne00 != 96 && ne00 != 192)) {
|
||||
switch (src1->type) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
|
@ -4010,6 +4024,24 @@ static void ggml_metal_encode_node(
|
|||
use_vec_kernel = true;
|
||||
|
||||
switch (ne00) {
|
||||
case 96:
|
||||
{
|
||||
switch (src1->type) {
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96].pipeline; break;
|
||||
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96].pipeline; break;
|
||||
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96].pipeline; break;
|
||||
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H96].pipeline; break;
|
||||
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H96].pipeline; break;
|
||||
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H96].pipeline; break;
|
||||
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96].pipeline; break;
|
||||
default:
|
||||
{
|
||||
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
||||
GGML_LOG_ERROR("add template specialization for this type\n");
|
||||
GGML_ABORT("add template specialization for this type");
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case 128:
|
||||
{
|
||||
switch (src1->type) {
|
||||
|
|
|
@ -3959,6 +3959,16 @@ kernel void kernel_flash_attn_ext_vec(
|
|||
|
||||
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;
|
||||
|
||||
template [[host_name("kernel_flash_attn_ext_vec_f16_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 96, 96, 4>;
|
||||
#if defined(GGML_METAL_USE_BF16)
|
||||
template [[host_name("kernel_flash_attn_ext_vec_bf16_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 96, 96, 4>;
|
||||
#endif
|
||||
template [[host_name("kernel_flash_attn_ext_vec_q4_0_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 96, 96, 4>;
|
||||
template [[host_name("kernel_flash_attn_ext_vec_q4_1_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 96, 96, 4>;
|
||||
template [[host_name("kernel_flash_attn_ext_vec_q5_0_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 96, 96, 4>;
|
||||
template [[host_name("kernel_flash_attn_ext_vec_q5_1_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 96, 96, 4>;
|
||||
template [[host_name("kernel_flash_attn_ext_vec_q8_0_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 96, 96, 4>;
|
||||
|
||||
template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>;
|
||||
#if defined(GGML_METAL_USE_BF16)
|
||||
template [[host_name("kernel_flash_attn_ext_vec_bf16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 128, 128, 4>;
|
||||
|
|
|
@ -54,16 +54,41 @@ function(ggml_opencl_add_kernel KNAME)
|
|||
endfunction()
|
||||
|
||||
set(GGML_OPENCL_KERNELS
|
||||
ggml-opencl
|
||||
ggml-opencl_mm
|
||||
ggml-opencl_cvt
|
||||
ggml-opencl_gemv_noshuffle
|
||||
ggml-opencl_gemv_noshuffle_general
|
||||
ggml-opencl_mul_mat_Ab_Bi_8x4
|
||||
ggml-opencl_transpose_16
|
||||
ggml-opencl_transpose_32
|
||||
ggml-opencl_transpose_32_16
|
||||
ggml-opencl_im2col
|
||||
add
|
||||
clamp
|
||||
cpy
|
||||
cvt
|
||||
diag_mask_inf
|
||||
gelu
|
||||
gemv_noshuffle_general
|
||||
gemv_noshuffle
|
||||
get_rows
|
||||
im2col_f32
|
||||
im2col_f16
|
||||
mul_mat_Ab_Bi_8x4
|
||||
mul_mv_f16_f16
|
||||
mul_mv_f16_f32_1row
|
||||
mul_mv_f16_f32_l4
|
||||
mul_mv_f16_f32
|
||||
mul_mv_f32_f32
|
||||
mul_mv_q4_0_f32
|
||||
mul_mv_q4_0_f32_v
|
||||
mul_mv_q4_0_f32_8x_flat
|
||||
mul_mv_q4_0_f32_1d_8x_flat
|
||||
mul_mv_q4_0_f32_1d_16x_flat
|
||||
mul_mv_q6_k
|
||||
mul
|
||||
norm
|
||||
relu
|
||||
rms_norm
|
||||
rope
|
||||
scale
|
||||
silu
|
||||
softmax_4_f32
|
||||
softmax_4_f16
|
||||
softmax_f32
|
||||
softmax_f16
|
||||
transpose
|
||||
)
|
||||
|
||||
foreach (K ${GGML_OPENCL_KERNELS})
|
||||
|
|
File diff suppressed because it is too large
Load diff
83
ggml/src/ggml-opencl/kernels/add.cl
Normal file
83
ggml/src/ggml-opencl/kernels/add.cl
Normal file
|
@ -0,0 +1,83 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// add
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
// general-purpose kernel for addition of two tensors
|
||||
// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
|
||||
// cons: not very efficient
|
||||
kernel void kernel_add(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global char * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
int ne13,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
src0 = src0 + offset0;
|
||||
src1 = src1 + offset1;
|
||||
dst = dst + offsetd;
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
int i13 = i03 % ne13;
|
||||
int i12 = i02 % ne12;
|
||||
int i11 = i01 % ne11;
|
||||
|
||||
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
||||
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
|
||||
|
||||
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
|
||||
const int i10 = i0 % ne10;
|
||||
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) + *((global float *)(src1_ptr + i10*nb10));
|
||||
}
|
||||
}
|
||||
|
||||
// assumption: src1 is a row
|
||||
// broadcast src1 into src0
|
||||
kernel void kernel_add_row(
|
||||
global float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * src1,
|
||||
ulong offset1,
|
||||
global float4 * dst,
|
||||
ulong offsetd,
|
||||
int ne
|
||||
) {
|
||||
src0 = (global float4*)((global char*)src0 + offset0);
|
||||
src1 = (global float4*)((global char*)src1 + offset1);
|
||||
dst = (global float4*)((global char*)dst + offsetd);
|
||||
|
||||
// This performs better than using %.
|
||||
uint gid = get_global_id(0);
|
||||
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||
dst[gid] = src0[gid] + src1[idx1];
|
||||
}
|
20
ggml/src/ggml-opencl/kernels/clamp.cl
Normal file
20
ggml/src/ggml-opencl/kernels/clamp.cl
Normal file
|
@ -0,0 +1,20 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// clamp
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_clamp(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
float min,
|
||||
float max
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
dst[get_global_id(0)] = src0[get_global_id(0)] < min ?
|
||||
min :
|
||||
(src0[get_global_id(0)] > max ? max : src0[get_global_id(0)]);
|
||||
}
|
184
ggml/src/ggml-opencl/kernels/cpy.cl
Normal file
184
ggml/src/ggml-opencl/kernels/cpy.cl
Normal file
|
@ -0,0 +1,184 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// cpy
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
kernel void kernel_cpy_f16_f16(
|
||||
global half * src0,
|
||||
ulong offset0,
|
||||
global half * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
src0 = (global half*)((global char*)src0 + offset0);
|
||||
dst = (global half*)((global char*)dst + offsetd);
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
int i3 = n / (ne2*ne1*ne0);
|
||||
int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||
int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||
int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
|
||||
|
||||
global half * dst_data = (global half *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
global const half * src = (global half *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||
dst_data[i00] = src[0];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_cpy_f16_f32(
|
||||
global half * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
|
||||
src0 = (global half*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
int i3 = n / (ne2*ne1*ne0);
|
||||
int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||
int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||
int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
|
||||
|
||||
global float * dst_data = (global float *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
global half * src = (global half *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||
dst_data[i00] = src[0];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_cpy_f32_f16(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global half * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
dst = (global half*)((global char*)dst + offsetd);
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
int i3 = n / (ne2*ne1*ne0);
|
||||
int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||
int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||
int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
|
||||
|
||||
global half * dst_data = (global half *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
global const float * src = (global float *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||
|
||||
dst_data[i00] = src[0];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_cpy_f32_f32(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
int n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
int i3 = n / (ne2*ne1*ne0);
|
||||
int i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||
int i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||
int i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
|
||||
|
||||
global float * dst_data = (global float *) ((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
global const float * src = (global float *)((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||
|
||||
dst_data[i00] = src[0];
|
||||
}
|
||||
}
|
|
@ -1,39 +1,20 @@
|
|||
//------------------------------------------------------------------------------
|
||||
// This file is contains additional kernels for data conversion.
|
||||
// This file is contains kernels for data conversion.
|
||||
// These kernels are used when loading the model, so its performance is less
|
||||
// important.
|
||||
//------------------------------------------------------------------------------
|
||||
#ifdef cl_khr_fp16
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#elif defined(cl_amd_fp16)
|
||||
#pragma OPENCL EXTENSION cl_amd_fp16 : enable
|
||||
#else
|
||||
#error "Half precision floating point not supportedby OpenCL implementation on your device."
|
||||
#endif
|
||||
|
||||
#ifdef cl_khr_subgroups
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#elif defined(cl_intel_subgroups)
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#error "Subgroup not supported on your device."
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
// Always use subgroup size of 32 on Intel.
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
// Always use subgroups size of 64 on Adreno.
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#else
|
||||
// TODO: do not know how to choose subgroup size on other GPUs.
|
||||
#error "Selecting subgroup size is not supported on your device."
|
||||
#endif
|
||||
|
||||
#define QK4_0 32
|
||||
|
@ -66,13 +47,44 @@ struct block_q4_0
|
|||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// mul_vec_q_n_f32_flat_noshuffle
|
||||
//
|
||||
// This variation uses flat arrays (struct of arrays, SOA) representation for
|
||||
// quant tensors. It also uses non shuffled bit order for weights.
|
||||
//
|
||||
// The shuffled version is kept in the original file because moving it here
|
||||
// seems to result in worse performance for adreno.
|
||||
// kernel_convert_block_q4_0
|
||||
// Convert the block_q4_0 format to 2 separate arrays (AOS -> SOA).
|
||||
// This kernel does not deshuffle the bits.
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_convert_block_q4_0(
|
||||
global struct block_q4_0 * src0,
|
||||
global uchar * dst_q,
|
||||
global half * dst_d
|
||||
) {
|
||||
global struct block_q4_0 * b = (global struct block_q4_0 *) src0 + get_global_id(0);
|
||||
global uchar * q = (global uchar *) dst_q + QK4_0/2*get_global_id(0);
|
||||
global half * d = (global half *) dst_d + get_global_id(0);
|
||||
|
||||
*d = b->d;
|
||||
|
||||
for (int i = 0; i < QK4_0/2; ++i) {
|
||||
q[i] = b->qs[i];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_restore_block_q4_0(
|
||||
global uchar * src_q,
|
||||
global half * src_d,
|
||||
global struct block_q4_0 * dst
|
||||
) {
|
||||
global struct block_q4_0 * b = (global struct block_q4_0 *) dst + get_global_id(0);
|
||||
global uchar * q = (global uchar *) src_q + QK4_0/2*get_global_id(0);
|
||||
global half * d = (global half *) src_d + get_global_id(0);
|
||||
|
||||
b->d = *d;
|
||||
for (int i = 0; i < QK4_0/2; ++i) {
|
||||
b->qs[i] = q[i];
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// kernel_convert_block_q4_0_noshuffle
|
||||
// Flatten q4_0 weights and unshuffle the bits
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
kernel void kernel_convert_block_q4_0_noshuffle(
|
58
ggml/src/ggml-opencl/kernels/diag_mask_inf.cl
Normal file
58
ggml/src/ggml-opencl/kernels/diag_mask_inf.cl
Normal file
|
@ -0,0 +1,58 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// diag_mask_inf kernels
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_diag_mask_inf(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int n_past
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i02 = get_global_id(2);
|
||||
int i01 = get_global_id(1);
|
||||
int i00 = get_global_id(0);
|
||||
|
||||
if (i00 > n_past + i01) {
|
||||
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
|
||||
} else {
|
||||
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_diag_mask_inf_8(
|
||||
global float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int n_past
|
||||
) {
|
||||
src0 = (global float4*)((global char*)src0 + offset0);
|
||||
dst = (global float4*)((global char*)dst + offsetd);
|
||||
|
||||
int i = 2*get_global_id(0);
|
||||
|
||||
dst[i+0] = src0[i+0];
|
||||
dst[i+1] = src0[i+1];
|
||||
int i4 = 4*i;
|
||||
int i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
|
||||
int i01 = i4/(ne00); i4 -= i01*ne00;
|
||||
int i00 = i4;
|
||||
for (int k = 3; k >= 0; --k) {
|
||||
if (i00 + 4 + k <= n_past + i01) {
|
||||
break;
|
||||
}
|
||||
(&dst[i+1])[k] = -INFINITY;
|
||||
if (i00 + k > n_past + i01) {
|
||||
(&dst[i])[k] = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
62
ggml/src/ggml-opencl/kernels/gelu.cl
Normal file
62
ggml/src/ggml-opencl/kernels/gelu.cl
Normal file
|
@ -0,0 +1,62 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// gelu
|
||||
//------------------------------------------------------------------------------
|
||||
#define GELU_COEF_A 0.044715f
|
||||
#define GELU_QUICK_COEF -1.702f
|
||||
#define SQRT_2_OVER_PI 0.79788456080286535587989211986876f
|
||||
|
||||
kernel void kernel_gelu(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
float x = src0[get_global_id(0)];
|
||||
|
||||
dst[get_global_id(0)] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||||
}
|
||||
|
||||
kernel void kernel_gelu_4(
|
||||
global float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
src0 = (global float4*)((global char*)src0 + offset0);
|
||||
dst = (global float4*)((global char*)dst + offsetd);
|
||||
|
||||
float4 x = src0[get_global_id(0)];
|
||||
|
||||
dst[get_global_id(0)] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||||
}
|
||||
|
||||
kernel void kernel_gelu_quick(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
float x = src0[get_global_id(0)];
|
||||
dst[get_global_id(0)] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
|
||||
}
|
||||
|
||||
kernel void kernel_gelu_quick_4(
|
||||
global float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
src0 = (global float4*)((global char*)src0 + offset0);
|
||||
dst = (global float4*)((global char*)dst + offsetd);
|
||||
|
||||
float4 x = src0[get_global_id(0)];
|
||||
dst[get_global_id(0)] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
|
||||
}
|
163
ggml/src/ggml-opencl/kernels/get_rows.cl
Normal file
163
ggml/src/ggml-opencl/kernels/get_rows.cl
Normal file
|
@ -0,0 +1,163 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
typedef char int8_t;
|
||||
typedef uchar uint8_t;
|
||||
typedef short int16_t;
|
||||
typedef ushort uint16_t;
|
||||
typedef int int32_t;
|
||||
typedef uint uint32_t;
|
||||
|
||||
#define QK4_0 32
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// block_q4_0
|
||||
//------------------------------------------------------------------------------
|
||||
struct block_q4_0
|
||||
{
|
||||
half d;
|
||||
uint8_t qs[QK4_0 / 2];
|
||||
};
|
||||
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// dequantize_q4_0_f32, dequantize_q4_0_f16
|
||||
//------------------------------------------------------------------------------
|
||||
void dequantize_q4_0_f32(global struct block_q4_0 * xb, short il, float16 * reg) {
|
||||
global ushort * qs = ((global ushort *)xb + 1);
|
||||
float d1 = il ? (xb->d / 16.h) : xb->d;
|
||||
float d2 = d1 / 256.f;
|
||||
float md = -8.h * xb->d;
|
||||
ushort mask0 = il ? 0x00F0 : 0x000F;
|
||||
ushort mask1 = mask0 << 8;
|
||||
|
||||
reg->s0 = d1 * (qs[0] & mask0) + md;
|
||||
reg->s1 = d2 * (qs[0] & mask1) + md;
|
||||
|
||||
reg->s2 = d1 * (qs[1] & mask0) + md;
|
||||
reg->s3 = d2 * (qs[1] & mask1) + md;
|
||||
|
||||
reg->s4 = d1 * (qs[2] & mask0) + md;
|
||||
reg->s5 = d2 * (qs[2] & mask1) + md;
|
||||
|
||||
reg->s6 = d1 * (qs[3] & mask0) + md;
|
||||
reg->s7 = d2 * (qs[3] & mask1) + md;
|
||||
|
||||
reg->s8 = d1 * (qs[4] & mask0) + md;
|
||||
reg->s9 = d2 * (qs[4] & mask1) + md;
|
||||
|
||||
reg->sa = d1 * (qs[5] & mask0) + md;
|
||||
reg->sb = d2 * (qs[5] & mask1) + md;
|
||||
|
||||
reg->sc = d1 * (qs[6] & mask0) + md;
|
||||
reg->sd = d2 * (qs[6] & mask1) + md;
|
||||
|
||||
reg->se = d1 * (qs[7] & mask0) + md;
|
||||
reg->sf = d2 * (qs[7] & mask1) + md;
|
||||
}
|
||||
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// get_rows
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_get_rows_f32(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
int ne10,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb1,
|
||||
ulong nb2
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i10 = get_group_id(0);
|
||||
int i11 = get_group_id(1);
|
||||
|
||||
int r = ((global int *) ((global char *) src1 + i11*nb11 + i10*nb10))[0];
|
||||
|
||||
int i02 = i11;
|
||||
|
||||
for (int ind = get_local_id(0); ind < ne00; ind += get_local_size(0)) {
|
||||
((global float *) ((global char *) dst + i11*nb2 + i10*nb1))[ind] =
|
||||
((global float *) ((global char *) src0 + r*nb01 + i02*nb02))[ind];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_get_rows_f16(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
int ne10,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb1,
|
||||
ulong nb2
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i10 = get_group_id(0);
|
||||
int i11 = get_group_id(1);
|
||||
|
||||
int r = ((global int32_t *) ((global char *) src1 + i11*nb11 + i10*nb10))[0];
|
||||
|
||||
int i02 = i11;
|
||||
|
||||
for (int ind = get_local_id(0); ind < ne00; ind += get_local_size(0)) {
|
||||
((global float *) ((global char *) dst + i11*nb2 + i10*nb1))[ind] =
|
||||
((global half *) ((global char *) src0 + r*nb01 + i02*nb02))[ind];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_get_rows_q4_0(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
int ne10,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb1,
|
||||
ulong nb2
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
const int NL = 2;
|
||||
|
||||
int i10 = get_group_id(0);
|
||||
int i11 = get_group_id(1);
|
||||
|
||||
int r = ((global int32_t *) ((global char *) src1 + i11*nb11 + i10*nb10))[0];
|
||||
|
||||
int i02 = i11;
|
||||
|
||||
for (int ind = get_local_id(0); ind < ne00/16; ind += get_local_size(0)) {
|
||||
float16 temp;
|
||||
dequantize_q4_0_f32(
|
||||
((global struct block_q4_0 *) ((global char *) src0 + r*nb01 + i02*nb02)) + ind/NL, ind%NL, &temp);
|
||||
*(((global float16 *) ((global char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load diff
|
@ -1,146 +0,0 @@
|
|||
#ifdef cl_khr_fp16
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#elif defined(cl_amd_fp16)
|
||||
#pragma OPENCL EXTENSION cl_amd_fp16 : enable
|
||||
#else
|
||||
#error "Half precision floating point not supportedby OpenCL implementation on your device."
|
||||
#endif
|
||||
|
||||
#ifdef cl_khr_subgroups
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#elif defined(cl_intel_subgroups)
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#error "Subgroup not supported on your device."
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
// Always use subgroup size of 32 on Intel.
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
// Always use subgroups size of 64 on Adreno.
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#else
|
||||
// TODO: do not know how to choose subgroup size on other GPUs.
|
||||
#error "Selecting subgroup size is not supported on your device."
|
||||
#endif
|
||||
|
||||
kernel void kernel_im2col_f32(
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
ulong batch_offset,
|
||||
ulong delta_offset,
|
||||
long IW,
|
||||
long IH,
|
||||
long IC,
|
||||
long OW,
|
||||
long OH,
|
||||
long KW,
|
||||
long KH,
|
||||
long pelements,
|
||||
long CHW,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
int p1,
|
||||
int d0,
|
||||
int d1
|
||||
) {
|
||||
// threadIdx.x + blockIdx.x * blockDim.x
|
||||
long i = get_global_id(0);
|
||||
if (i >= pelements) {
|
||||
return;
|
||||
}
|
||||
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
long ksize = OW * (KH > 1 ? KW : 1);
|
||||
long kx = i / ksize;
|
||||
long kd = kx * ksize;
|
||||
long ky = (i - kd) / OW;
|
||||
long ix = i % OW;
|
||||
|
||||
long oh = get_group_id(1);
|
||||
long batch = get_group_id(2) / IC;
|
||||
long ic = get_group_id(2) % IC;
|
||||
|
||||
long iiw = ix * s0 + kx * d0 - p0;
|
||||
long iih = oh * s1 + ky * d1 - p1;
|
||||
|
||||
long offset_dst =
|
||||
((batch * OH + oh) * OW + ix) * CHW +
|
||||
(ic * (KW * KH) + ky * KW + kx);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = 0.0f;
|
||||
} else {
|
||||
long offset_src = ic * delta_offset + batch * batch_offset;
|
||||
dst[offset_dst] = src1[offset_src + iih * IW + iiw];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_im2col_f16(
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global half * dst,
|
||||
ulong offsetd,
|
||||
ulong batch_offset,
|
||||
ulong delta_offset,
|
||||
long IW,
|
||||
long IH,
|
||||
long IC,
|
||||
long OW,
|
||||
long OH,
|
||||
long KW,
|
||||
long KH,
|
||||
long pelements,
|
||||
long CHW,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
int p1,
|
||||
int d0,
|
||||
int d1
|
||||
) {
|
||||
long i = get_global_id(0);
|
||||
|
||||
if (i >= pelements) {
|
||||
return;
|
||||
}
|
||||
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global half*)((global char*)dst + offsetd);
|
||||
|
||||
long ksize = OW * (KH > 1 ? KW : 1);
|
||||
long kx = i / ksize;
|
||||
long kd = kx * ksize;
|
||||
long ky = (i - kd) / OW;
|
||||
long ix = i % OW;
|
||||
|
||||
long oh = get_group_id(1);
|
||||
long batch = get_group_id(2) / IC;
|
||||
long ic = get_group_id(2) % IC;
|
||||
|
||||
long iiw = ix * s0 + kx * d0 - p0;
|
||||
long iih = oh * s1 + ky * d1 - p1;
|
||||
|
||||
long offset_dst =
|
||||
((batch * OH + oh) * OW + ix) * CHW +
|
||||
(ic * (KW * KH) + ky * KW + kx);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = 0.0f;
|
||||
} else {
|
||||
long offset_src = ic * delta_offset + batch * batch_offset;
|
||||
dst[offset_dst] = src1[offset_src + iih * IW + iiw];
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load diff
|
@ -1,26 +0,0 @@
|
|||
// 16-bit transpose, loading/storing a 4x4 tile of elements
|
||||
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
kernel void kernel_transpose_16(
|
||||
__read_only image1d_buffer_t input,
|
||||
__write_only image1d_buffer_t output,
|
||||
const uint rows,
|
||||
const uint cols
|
||||
) {
|
||||
|
||||
const int i = get_global_id(0);
|
||||
const int j = get_global_id(1);
|
||||
const int i_2 = i<<2;
|
||||
const int j_2 = j<<2;
|
||||
|
||||
half4 temp0 = read_imageh(input, (j_2+0)*cols+i);
|
||||
half4 temp1 = read_imageh(input, (j_2+1)*cols+i);
|
||||
half4 temp2 = read_imageh(input, (j_2+2)*cols+i);
|
||||
half4 temp3 = read_imageh(input, (j_2+3)*cols+i);
|
||||
|
||||
write_imageh(output, (i_2+0)*rows+j, (half4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0));
|
||||
write_imageh(output, (i_2+1)*rows+j, (half4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
|
||||
write_imageh(output, (i_2+2)*rows+j, (half4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
|
||||
write_imageh(output, (i_2+3)*rows+j, (half4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
|
||||
}
|
|
@ -1,25 +0,0 @@
|
|||
// 32-bit transpose, loading/storing a 4x4 tile of elements
|
||||
|
||||
kernel void kernel_transpose_32(
|
||||
__read_only image1d_buffer_t input,
|
||||
__write_only image1d_buffer_t output,
|
||||
const uint rows,
|
||||
const uint cols
|
||||
) {
|
||||
|
||||
const int i = get_global_id(0);
|
||||
const int j = get_global_id(1);
|
||||
const int i_2 = i<<2;
|
||||
const int j_2 = j<<2;
|
||||
|
||||
float4 temp0 = read_imagef(input, (j_2+0)*cols+i);
|
||||
float4 temp1 = read_imagef(input, (j_2+1)*cols+i);
|
||||
float4 temp2 = read_imagef(input, (j_2+2)*cols+i);
|
||||
float4 temp3 = read_imagef(input, (j_2+3)*cols+i);
|
||||
|
||||
write_imagef(output, (i_2+0)*rows+j, (float4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0));
|
||||
write_imagef(output, (i_2+1)*rows+j, (float4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
|
||||
write_imagef(output, (i_2+2)*rows+j, (float4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
|
||||
write_imagef(output, (i_2+3)*rows+j, (float4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
|
||||
|
||||
}
|
|
@ -1,35 +0,0 @@
|
|||
// 32-bit transpose, loading/storing a 4x4 tile of elements
|
||||
// Only used for activations
|
||||
// converts to FP16
|
||||
// also adds zero padding for non multiple of 8 prompt lengths
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
kernel void kernel_transpose_32_16(__read_only image1d_buffer_t input, __write_only image1d_buffer_t output, const uint rows, const uint cols, const uint padded_rows) {
|
||||
|
||||
const int i = get_global_id(0);
|
||||
const int j = get_global_id(1);
|
||||
const int i_2 = i<<2;
|
||||
const int j_2 = j<<2;
|
||||
half4 temp0 = {0,0,0,0}; // initialize outputs to 0
|
||||
half4 temp1 = {0,0,0,0};
|
||||
half4 temp2 = {0,0,0,0};
|
||||
half4 temp3 = {0,0,0,0};
|
||||
|
||||
if((j_2+0)*cols+i*4+3 < rows*cols*16){ // only load from a valid location. Otherwise keep register data as 0
|
||||
temp0 = read_imageh(input, (j_2+0)*cols+i);
|
||||
}
|
||||
if((j_2+1)*cols+i*4+3 < rows*cols*16){
|
||||
temp1 = read_imageh(input, (j_2+1)*cols+i);
|
||||
}
|
||||
if((j_2+2)*cols+i*4+3 < rows*cols*16){
|
||||
temp2 = read_imageh(input, (j_2+2)*cols+i);
|
||||
}
|
||||
if((j_2+3)*cols+i*4+3 < rows*cols*16){
|
||||
temp3 = read_imageh(input, (j_2+3)*cols+i);
|
||||
}
|
||||
|
||||
write_imageh(output, (i_2+0)*padded_rows+j, (half4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0)); // no conditionals for output, includes zero padding
|
||||
write_imageh(output, (i_2+1)*padded_rows+j, (half4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
|
||||
write_imageh(output, (i_2+2)*padded_rows+j, (half4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
|
||||
write_imageh(output, (i_2+3)*padded_rows+j, (half4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
|
||||
}
|
57
ggml/src/ggml-opencl/kernels/im2col_f16.cl
Normal file
57
ggml/src/ggml-opencl/kernels/im2col_f16.cl
Normal file
|
@ -0,0 +1,57 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
kernel void kernel_im2col_f16(
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global half * dst,
|
||||
ulong offsetd,
|
||||
ulong batch_offset,
|
||||
ulong delta_offset,
|
||||
long IW,
|
||||
long IH,
|
||||
long IC,
|
||||
long OW,
|
||||
long OH,
|
||||
long KW,
|
||||
long KH,
|
||||
long pelements,
|
||||
long CHW,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
int p1,
|
||||
int d0,
|
||||
int d1
|
||||
) {
|
||||
long i = get_global_id(0);
|
||||
if (i >= pelements) {
|
||||
return;
|
||||
}
|
||||
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global half*)((global char*)dst + offsetd);
|
||||
|
||||
long ksize = OW * (KH > 1 ? KW : 1);
|
||||
long kx = i / ksize;
|
||||
long kd = kx * ksize;
|
||||
long ky = (i - kd) / OW;
|
||||
long ix = i % OW;
|
||||
|
||||
long oh = get_group_id(1);
|
||||
long batch = get_group_id(2) / IC;
|
||||
long ic = get_group_id(2) % IC;
|
||||
|
||||
long iiw = ix * s0 + kx * d0 - p0;
|
||||
long iih = oh * s1 + ky * d1 - p1;
|
||||
|
||||
long offset_dst =
|
||||
((batch * OH + oh) * OW + ix) * CHW +
|
||||
(ic * (KW * KH) + ky * KW + kx);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = 0.0f;
|
||||
} else {
|
||||
long offset_src = ic * delta_offset + batch * batch_offset;
|
||||
dst[offset_dst] = src1[offset_src + iih * IW + iiw];
|
||||
}
|
||||
}
|
57
ggml/src/ggml-opencl/kernels/im2col_f32.cl
Normal file
57
ggml/src/ggml-opencl/kernels/im2col_f32.cl
Normal file
|
@ -0,0 +1,57 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
kernel void kernel_im2col_f32(
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
ulong batch_offset,
|
||||
ulong delta_offset,
|
||||
long IW,
|
||||
long IH,
|
||||
long IC,
|
||||
long OW,
|
||||
long OH,
|
||||
long KW,
|
||||
long KH,
|
||||
long pelements,
|
||||
long CHW,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
int p1,
|
||||
int d0,
|
||||
int d1
|
||||
) {
|
||||
long i = get_global_id(0);
|
||||
if (i >= pelements) {
|
||||
return;
|
||||
}
|
||||
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
long ksize = OW * (KH > 1 ? KW : 1);
|
||||
long kx = i / ksize;
|
||||
long kd = kx * ksize;
|
||||
long ky = (i - kd) / OW;
|
||||
long ix = i % OW;
|
||||
|
||||
long oh = get_group_id(1);
|
||||
long batch = get_group_id(2) / IC;
|
||||
long ic = get_group_id(2) % IC;
|
||||
|
||||
long iiw = ix * s0 + kx * d0 - p0;
|
||||
long iih = oh * s1 + ky * d1 - p1;
|
||||
|
||||
long offset_dst =
|
||||
((batch * OH + oh) * OW + ix) * CHW +
|
||||
(ic * (KW * KH) + ky * KW + kx);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = 0.0f;
|
||||
} else {
|
||||
long offset_src = ic * delta_offset + batch * batch_offset;
|
||||
dst[offset_dst] = src1[offset_src + iih * IW + iiw];
|
||||
}
|
||||
}
|
79
ggml/src/ggml-opencl/kernels/mul.cl
Normal file
79
ggml/src/ggml-opencl/kernels/mul.cl
Normal file
|
@ -0,0 +1,79 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// mul
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_mul(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global char * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
int ne13,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
src0 = src0 + offset0;
|
||||
src1 = src1 + offset1;
|
||||
dst = dst + offsetd;
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
int i13 = i03 % ne13;
|
||||
int i12 = i02 % ne12;
|
||||
int i11 = i01 % ne11;
|
||||
|
||||
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
||||
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
|
||||
|
||||
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
|
||||
const int i10 = i0 % ne10;
|
||||
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) * *((global float *)(src1_ptr + i10*nb10));
|
||||
}
|
||||
}
|
||||
|
||||
// assumption: src1 is a row
|
||||
// broadcast src1 into src0
|
||||
kernel void kernel_mul_row(
|
||||
global float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * src1,
|
||||
ulong offset1,
|
||||
global float4 * dst,
|
||||
ulong offsetd,
|
||||
int ne
|
||||
) {
|
||||
src0 = (global float4*)((global char*)src0 + offset0);
|
||||
src1 = (global float4*)((global char*)src1 + offset1);
|
||||
dst = (global float4*)((global char*)dst + offsetd);
|
||||
|
||||
// This performs better than using %.
|
||||
uint gid = get_global_id(0);
|
||||
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||
dst[gid] = src0[gid] * src1[idx1];
|
||||
}
|
118
ggml/src/ggml-opencl/kernels/mul_mv_f16_f16.cl
Normal file
118
ggml/src/ggml-opencl/kernels/mul_mv_f16_f16.cl
Normal file
|
@ -0,0 +1,118 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define N_F16_F16 4
|
||||
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mat_f16_f16(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3)
|
||||
{
|
||||
src0 = (global char*)((global char*)src0 + offset0);
|
||||
src1 = (global char*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int rb = get_group_id(1)*N_F16_F16;
|
||||
int im = get_group_id(2);
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
||||
|
||||
global half * x = (global half *) (src0 + offset_src0);
|
||||
|
||||
if (ne00 < 128) {
|
||||
for (int row = 0; row < N_F16_F16; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
||||
|
||||
global half * y = (global half *) (src1 + offset_src1);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) {
|
||||
sumf += (half) x[i] * (half) y[i];
|
||||
}
|
||||
|
||||
float all_sum = sub_group_reduce_add(sumf);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
global half4 * x4 = (global half4 *)x;
|
||||
for (int row = 0; row < N_F16_F16; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
||||
|
||||
global half * y = (global half *) (src1 + offset_src1);
|
||||
global half4 * y4 = (global half4 *) y;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) {
|
||||
sumf += (half) x4[i].s0 * y4[i].s0;
|
||||
sumf += (half) x4[i].s1 * y4[i].s1;
|
||||
sumf += (half) x4[i].s2 * y4[i].s2;
|
||||
sumf += (half) x4[i].s3 * y4[i].s3;
|
||||
}
|
||||
|
||||
float all_sum = sub_group_reduce_add(sumf);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
for (int i = 4*(ne00/4); i < ne00; ++i) {
|
||||
all_sum += (half) x[i] * y[i];
|
||||
}
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
118
ggml/src/ggml-opencl/kernels/mul_mv_f16_f32.cl
Normal file
118
ggml/src/ggml-opencl/kernels/mul_mv_f16_f32.cl
Normal file
|
@ -0,0 +1,118 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define N_F16_F32 4
|
||||
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mat_f16_f32(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global char*)((global char*)src0 + offset0);
|
||||
src1 = (global char*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int rb = get_group_id(1)*N_F16_F32;
|
||||
int im = get_group_id(2);
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
||||
|
||||
global half * x = (global half *) (src0 + offset_src0);
|
||||
|
||||
if (ne00 < 128) {
|
||||
for (int row = 0; row < N_F16_F32; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
||||
|
||||
global float * y = (global float *) (src1 + offset_src1);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) {
|
||||
sumf += convert_float(x[i]) * y[i];
|
||||
}
|
||||
|
||||
float all_sum = sub_group_reduce_add(sumf);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
global half4 * x4 = (global half4 *)x;
|
||||
for (int row = 0; row < N_F16_F32; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
||||
|
||||
global float * y = (global float *) (src1 + offset_src1);
|
||||
global float4 * y4 = (global float4 *) y;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) {
|
||||
sumf += convert_float(x4[i].s0) * y4[i].s0;
|
||||
sumf += convert_float(x4[i].s1) * y4[i].s1;
|
||||
sumf += convert_float(x4[i].s2) * y4[i].s2;
|
||||
sumf += convert_float(x4[i].s3) * y4[i].s3;
|
||||
}
|
||||
|
||||
float all_sum = sub_group_reduce_add(sumf);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
for (int i = 4*(ne00/4); i < ne00; ++i) {
|
||||
all_sum += (float) x[i] * y[i];
|
||||
}
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
94
ggml/src/ggml-opencl/kernels/mul_mv_f16_f32_1row.cl
Normal file
94
ggml/src/ggml-opencl/kernels/mul_mv_f16_f32_1row.cl
Normal file
|
@ -0,0 +1,94 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mat_f16_f32_1row(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global char*)((global char*)src0 + offset0);
|
||||
src1 = (global char*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int r1 = get_group_id(1);
|
||||
int im = get_group_id(2);
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
||||
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
||||
|
||||
global half * x = (global half *) (src0 + offset_src0);
|
||||
global float * y = (global float *) (src1 + offset_src1);
|
||||
|
||||
float sumf = 0;
|
||||
if (ne00 < 128) {
|
||||
for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) {
|
||||
sumf += (float) x[i] * (float) y[i];
|
||||
}
|
||||
float all_sum = sub_group_reduce_add(sumf);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
} else {
|
||||
global half4 * x4 = (global half4 *) x;
|
||||
global float4 * y4 = (global float4 *) y;
|
||||
for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) {
|
||||
sumf += (float) x4[i].s0 * y4[i].s0;
|
||||
sumf += (float) x4[i].s1 * y4[i].s1;
|
||||
sumf += (float) x4[i].s2 * y4[i].s2;
|
||||
sumf += (float) x4[i].s3 * y4[i].s3;
|
||||
}
|
||||
float all_sum = sub_group_reduce_add(sumf);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
for (int i = 4*(ne00/4); i < ne00; ++i) {
|
||||
all_sum += (float) x[i] * y[i];
|
||||
}
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
84
ggml/src/ggml-opencl/kernels/mul_mv_f16_f32_l4.cl
Normal file
84
ggml/src/ggml-opencl/kernels/mul_mv_f16_f32_l4.cl
Normal file
|
@ -0,0 +1,84 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
// Assumes row size (ne00) is a multiple of 4
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mat_f16_f32_l4(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global char*)((global char*)src0 + offset0);
|
||||
src1 = (global char*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int nrows = ne11;
|
||||
int r0 = get_group_id(0);
|
||||
int im = get_group_id(2);
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
||||
|
||||
global half4 * x4 = (global half4 *) (src0 + offset_src0);
|
||||
|
||||
for (int r1 = 0; r1 < nrows; ++r1) {
|
||||
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
||||
|
||||
global float4 * y4 = (global float4 *) (src1 + offset_src1);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) {
|
||||
sumf += convert_float(x4[i].s0) * y4[i].s0;
|
||||
sumf += convert_float(x4[i].s1) * y4[i].s1;
|
||||
sumf += convert_float(x4[i].s2) * y4[i].s2;
|
||||
sumf += convert_float(x4[i].s3) * y4[i].s3;
|
||||
}
|
||||
|
||||
float all_sum = sub_group_reduce_add(sumf);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
118
ggml/src/ggml-opencl/kernels/mul_mv_f32_f32.cl
Normal file
118
ggml/src/ggml-opencl/kernels/mul_mv_f32_f32.cl
Normal file
|
@ -0,0 +1,118 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define N_F32_F32 4
|
||||
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mat_f32_f32(
|
||||
global char * src0,
|
||||
ulong offset0,
|
||||
global char * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne10,
|
||||
int ne11,
|
||||
int ne12,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global char*)((global char*)src0 + offset0);
|
||||
src1 = (global char*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int rb = get_group_id(1)*N_F32_F32;
|
||||
int im = get_group_id(2);
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
ulong offset_src0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
||||
|
||||
global float * x = (global float *) (src0 + offset_src0);
|
||||
|
||||
if (ne00 < 128) {
|
||||
for (int row = 0; row < N_F32_F32; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
||||
|
||||
global float * y = (global float *) (src1 + offset_src1);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = get_sub_group_local_id(); i < ne00; i += get_max_sub_group_size()) {
|
||||
sumf += (float) x[i] * (float) y[i];
|
||||
}
|
||||
|
||||
float all_sum = sub_group_reduce_add(sumf);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
global float4 * x4 = (global float4 *)x;
|
||||
for (int row = 0; row < N_F32_F32; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
||||
|
||||
global float * y = (global float *) (src1 + offset_src1);
|
||||
global float4 * y4 = (global float4 *) y;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = get_sub_group_local_id(); i < ne00/4; i += get_max_sub_group_size()) {
|
||||
sumf += (float) x4[i].s0 * y4[i].s0;
|
||||
sumf += (float) x4[i].s1 * y4[i].s1;
|
||||
sumf += (float) x4[i].s2 * y4[i].s2;
|
||||
sumf += (float) x4[i].s3 * y4[i].s3;
|
||||
}
|
||||
|
||||
float all_sum = sub_group_reduce_add(sumf);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
for (int i = 4*(ne00/4); i < ne00; ++i) {
|
||||
all_sum += (float) x[i] * y[i];
|
||||
}
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
192
ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32.cl
Normal file
192
ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32.cl
Normal file
|
@ -0,0 +1,192 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define QK4_0 32
|
||||
#define QR4_0 2
|
||||
#define QK4_1 32
|
||||
#define QR4_1 2
|
||||
#define QK5_0 32
|
||||
#define QR5_0 2
|
||||
#define QK5_1 32
|
||||
#define QR5_1 2
|
||||
#define QK8_0 32
|
||||
#define QR8_0 1
|
||||
#define QK_K 256
|
||||
#define K_QUANTS_PER_ITERATION 2
|
||||
|
||||
typedef char int8_t;
|
||||
typedef uchar uint8_t;
|
||||
typedef short int16_t;
|
||||
typedef ushort uint16_t;
|
||||
typedef int int32_t;
|
||||
typedef uint uint32_t;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// block_q4_0
|
||||
//------------------------------------------------------------------------------
|
||||
struct block_q4_0
|
||||
{
|
||||
half d;
|
||||
uint8_t qs[QK4_0 / 2];
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// mul_vec_q_n_f32
|
||||
//------------------------------------------------------------------------------
|
||||
// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
|
||||
// il indicates where the q4 quants begin (0 or QK4_0/4)
|
||||
// we assume that the yl's have been multiplied with the appropriate scale factor
|
||||
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
||||
inline float block_q_4_0_dot_y(
|
||||
global struct block_q4_0 * qb_curr,
|
||||
float sumy,
|
||||
private float * yl,
|
||||
int il
|
||||
) {
|
||||
float d = qb_curr->d;
|
||||
float2 acc = 0.f;
|
||||
global ushort * qs = ((global ushort *)qb_curr + 1 + il/2);
|
||||
for (int i = 0; i < 8; i+=2) {
|
||||
acc.s0 += yl[i + 0] * (qs[i / 2] & 0x000F)
|
||||
+ yl[i + 1] * (qs[i / 2] & 0x0F00);
|
||||
acc.s1 += yl[i + 8] * (qs[i / 2] & 0x00F0)
|
||||
+ yl[i + 9] * (qs[i / 2] & 0xF000);
|
||||
}
|
||||
return d * (sumy * -8.f + acc.s0 + acc.s1);
|
||||
}
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
#define N_DST 4 // each SIMD group works on 4 rows
|
||||
#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
|
||||
#define N_SIMDWIDTH 16 // assuming SIMD group size is 16
|
||||
#elif defined (ADRENO_GPU)
|
||||
#define N_DST 4
|
||||
#define N_SIMDGROUP 1
|
||||
#define N_SIMDWIDTH 64
|
||||
#endif
|
||||
|
||||
inline void mul_vec_q_n_f32(
|
||||
global void * src0,
|
||||
global float * src1,
|
||||
global float * dst,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
|
||||
const ulong nb = ne00/QK4_0;
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int r1 = get_group_id(1);
|
||||
int im = get_group_id(2);
|
||||
|
||||
// (r0 * N_SIMDGROUP + get_sub_group_id()) is essenatially the linear global
|
||||
// id of a SIMD group in the grid.
|
||||
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
ulong offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
global struct block_q4_0 * x = (global struct block_q4_0 *) src0 + offset0;
|
||||
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float yl[16]; // src1 vector cache
|
||||
float sumf[N_DST]={0.f};
|
||||
|
||||
int ix = get_sub_group_local_id()/2;
|
||||
int il = 8*(get_sub_group_local_id()%2);
|
||||
|
||||
global float * yb = y + ix * QK4_0 + il;
|
||||
|
||||
// each thread in a SIMD group deals with half a block.
|
||||
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
|
||||
float sumy = 0;
|
||||
for (int i = 0; i < 8; i += 2) {
|
||||
sumy += yb[i] + yb[i+1];
|
||||
yl[i+0] = yb[i+ 0];
|
||||
yl[i+1] = yb[i+ 1]/256.f;
|
||||
sumy += yb[i+16] + yb[i+17];
|
||||
yl[i+8] = yb[i+16]/16.f;
|
||||
yl[i+9] = yb[i+17]/4096.f;
|
||||
}
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
sumf[row] += block_q_4_0_dot_y(x+ib+row*nb, sumy, yl, il);
|
||||
}
|
||||
|
||||
// One thread in a SIMD group (i.e., subgroup) handles a half block,
|
||||
// hence then entire SIMD group handles SIMDWIDTH/2 blocks.
|
||||
// y points to the activation matrix (of type float). Therefore for
|
||||
// one thread, the # of blocks y should advance is SIMDWIDTH/2 (because
|
||||
// SIMDWIDTH/2 blocks are processed by a SIMD group) - in terms of
|
||||
// floats, it is QK4_0 * (SIMDWIDTH/2), where QK4_0 is the block size.
|
||||
yb += QK4_0 * (N_SIMDWIDTH/2);
|
||||
}
|
||||
|
||||
// The above does not work for Adreno - it produces incorrect results for
|
||||
// row = 1, 2, 3 and only row = 0 gives the correct result.
|
||||
// If N_DST is changed, the below array must be initialized accordingly.
|
||||
// This also seems to perform better on Intel.
|
||||
float tot[N_DST] = {
|
||||
sub_group_reduce_add(sumf[0]), sub_group_reduce_add(sumf[1]),
|
||||
sub_group_reduce_add(sumf[2]), sub_group_reduce_add(sumf[3])};
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
if (get_sub_group_local_id() == 0 && first_row + row < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot[row];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_16
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mat_q4_0_f32(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
mul_vec_q_n_f32(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
|
||||
}
|
307
ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_1d_16x_flat.cl
Normal file
307
ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_1d_16x_flat.cl
Normal file
|
@ -0,0 +1,307 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define QK4_0 32
|
||||
#define QR4_0 2
|
||||
#define QK4_1 32
|
||||
#define QR4_1 2
|
||||
#define QK5_0 32
|
||||
#define QR5_0 2
|
||||
#define QK5_1 32
|
||||
#define QR5_1 2
|
||||
#define QK8_0 32
|
||||
#define QR8_0 1
|
||||
#define QK_K 256
|
||||
#define K_QUANTS_PER_ITERATION 2
|
||||
|
||||
typedef char int8_t;
|
||||
typedef uchar uint8_t;
|
||||
typedef short int16_t;
|
||||
typedef ushort uint16_t;
|
||||
typedef int int32_t;
|
||||
typedef uint uint32_t;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// block_q4_0
|
||||
//------------------------------------------------------------------------------
|
||||
struct block_q4_0
|
||||
{
|
||||
half d;
|
||||
uint8_t qs[QK4_0 / 2];
|
||||
};
|
||||
|
||||
inline float mm_block_q_4_0_dot_y_flat(
|
||||
global uchar * x,
|
||||
global half * dh,
|
||||
float sumy,
|
||||
float16 yl,
|
||||
int il
|
||||
) {
|
||||
float d = *dh;
|
||||
global ushort * qs = ((global ushort *)x + il/2);
|
||||
float acc = 0.f;
|
||||
|
||||
acc += yl.s0 * (qs[0] & 0x000F);
|
||||
acc += yl.s1 * (qs[0] & 0x0F00);
|
||||
acc += yl.s8 * (qs[0] & 0x00F0);
|
||||
acc += yl.s9 * (qs[0] & 0xF000);
|
||||
|
||||
acc += yl.s2 * (qs[1] & 0x000F);
|
||||
acc += yl.s3 * (qs[1] & 0x0F00);
|
||||
acc += yl.sa * (qs[1] & 0x00F0);
|
||||
acc += yl.sb * (qs[1] & 0xF000);
|
||||
|
||||
acc += yl.s4 * (qs[2] & 0x000F);
|
||||
acc += yl.s5 * (qs[2] & 0x0F00);
|
||||
acc += yl.sc * (qs[2] & 0x00F0);
|
||||
acc += yl.sd * (qs[2] & 0xF000);
|
||||
|
||||
acc += yl.s6 * (qs[3] & 0x000F);
|
||||
acc += yl.s7 * (qs[3] & 0x0F00);
|
||||
acc += yl.se * (qs[3] & 0x00F0);
|
||||
acc += yl.sf * (qs[3] & 0xF000);
|
||||
|
||||
return d * (sumy * -8.f + acc);
|
||||
}
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
#define N_DST 16 // each SIMD group works on 8 rows (in weights matrix)
|
||||
#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
|
||||
#define N_SIMDWIDTH 16 // assuming SIMD group size is 16
|
||||
#elif defined (ADRENO_GPU)
|
||||
#define N_DST 16
|
||||
#define N_SIMDGROUP 1
|
||||
#define N_SIMDWIDTH 64
|
||||
#endif
|
||||
//
|
||||
// This variant performs 1d blocking with 16x output.
|
||||
// Eeach simdgroup outputs 16 values on `n0` dim (row in the output matrix).
|
||||
//
|
||||
inline void mul_mat_q_n_f32_1d_16x_flat(
|
||||
global uchar * src0_q,
|
||||
global half * src0_d,
|
||||
global float * src1,
|
||||
global float * dst,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
const int nb = ne00/QK4_0;
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int r1 = get_group_id(1);
|
||||
int im = get_group_id(2);
|
||||
|
||||
// (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of
|
||||
// a SIMD group in the grid. Each SIMD group produces N_DST values in the
|
||||
// result, hence uses nb blocks, i.e., the offset becomes first_row*nb.
|
||||
// Currently with llama2 7B, im is always 0.
|
||||
// TODO: how to handle im/gqa*(nb*ne0)?
|
||||
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
// The number of scales is the same as the number of blocks.
|
||||
ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
// Each block contains QK4_0/2 uchars, hence offset for qs is as follows.
|
||||
ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2;
|
||||
|
||||
global uchar * x = (global uchar *) src0_q + offset0_q;
|
||||
global half * d = (global half *) src0_d + offset0_d;
|
||||
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float16 yl;
|
||||
float16 sumf = (float16)(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
||||
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
|
||||
|
||||
int ix = get_sub_group_local_id()/2;
|
||||
int il = 8*(get_sub_group_local_id()%2);
|
||||
|
||||
global float * yb = y + ix*QK4_0 + il;
|
||||
|
||||
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
|
||||
float sumy = 0.f;
|
||||
|
||||
sumy += yb[0];
|
||||
sumy += yb[1];
|
||||
sumy += yb[2];
|
||||
sumy += yb[3];
|
||||
sumy += yb[4];
|
||||
sumy += yb[5];
|
||||
sumy += yb[6];
|
||||
sumy += yb[7];
|
||||
|
||||
sumy += yb[16];
|
||||
sumy += yb[17];
|
||||
sumy += yb[18];
|
||||
sumy += yb[19];
|
||||
sumy += yb[20];
|
||||
sumy += yb[21];
|
||||
sumy += yb[22];
|
||||
sumy += yb[23];
|
||||
|
||||
yl.s0 = yb[0];
|
||||
yl.s1 = yb[1]/256.f;
|
||||
|
||||
yl.s2 = yb[2];
|
||||
yl.s3 = yb[3]/256.f;
|
||||
|
||||
yl.s4 = yb[4];
|
||||
yl.s5 = yb[5]/256.f;
|
||||
|
||||
yl.s6 = yb[6];
|
||||
yl.s7 = yb[7]/256.f;
|
||||
|
||||
yl.s8 = yb[16]/16.f;
|
||||
yl.s9 = yb[17]/4096.f;
|
||||
|
||||
yl.sa = yb[18]/16.f;
|
||||
yl.sb = yb[19]/4096.f;
|
||||
|
||||
yl.sc = yb[20]/16.f;
|
||||
yl.sd = yb[21]/4096.f;
|
||||
|
||||
yl.se = yb[22]/16.f;
|
||||
yl.sf = yb[23]/4096.f;
|
||||
|
||||
sumf.s0 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il);
|
||||
sumf.s1 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il);
|
||||
sumf.s2 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il);
|
||||
sumf.s3 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il);
|
||||
|
||||
sumf.s4 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il);
|
||||
sumf.s5 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il);
|
||||
sumf.s6 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il);
|
||||
sumf.s7 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il);
|
||||
|
||||
sumf.s8 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 8*nb*QK4_0/2, d + ib + 8*nb, sumy, yl, il);
|
||||
sumf.s9 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 9*nb*QK4_0/2, d + ib + 9*nb, sumy, yl, il);
|
||||
sumf.sa += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 10*nb*QK4_0/2, d + ib + 10*nb, sumy, yl, il);
|
||||
sumf.sb += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 11*nb*QK4_0/2, d + ib + 11*nb, sumy, yl, il);
|
||||
|
||||
sumf.sc += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 12*nb*QK4_0/2, d + ib + 12*nb, sumy, yl, il);
|
||||
sumf.sd += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 13*nb*QK4_0/2, d + ib + 13*nb, sumy, yl, il);
|
||||
sumf.se += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 14*nb*QK4_0/2, d + ib + 14*nb, sumy, yl, il);
|
||||
sumf.sf += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 15*nb*QK4_0/2, d + ib + 15*nb, sumy, yl, il);
|
||||
|
||||
yb += QK4_0 * (N_SIMDWIDTH/2);
|
||||
}
|
||||
|
||||
float16 tot = (float16)(
|
||||
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
|
||||
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3),
|
||||
sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5),
|
||||
sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7),
|
||||
|
||||
sub_group_reduce_add(sumf.s8), sub_group_reduce_add(sumf.s9),
|
||||
sub_group_reduce_add(sumf.sa), sub_group_reduce_add(sumf.sb),
|
||||
sub_group_reduce_add(sumf.sc), sub_group_reduce_add(sumf.sd),
|
||||
sub_group_reduce_add(sumf.se), sub_group_reduce_add(sumf.sf)
|
||||
);
|
||||
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
if (first_row + 0 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
|
||||
}
|
||||
if (first_row + 1 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
|
||||
}
|
||||
if (first_row + 2 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
|
||||
}
|
||||
if (first_row + 3 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
|
||||
}
|
||||
|
||||
if (first_row + 4 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4;
|
||||
}
|
||||
if (first_row + 5 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5;
|
||||
}
|
||||
if (first_row + 6 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6;
|
||||
}
|
||||
if (first_row + 7 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7;
|
||||
}
|
||||
|
||||
if (first_row + 8 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 8] = tot.s8;
|
||||
}
|
||||
if (first_row + 9 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 9] = tot.s9;
|
||||
}
|
||||
if (first_row + 10 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 10] = tot.sa;
|
||||
}
|
||||
if (first_row + 11 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 11] = tot.sb;
|
||||
}
|
||||
|
||||
if (first_row + 12 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 12] = tot.sc;
|
||||
}
|
||||
if (first_row + 13 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 13] = tot.sd;
|
||||
}
|
||||
if (first_row + 14 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 14] = tot.se;
|
||||
}
|
||||
if (first_row + 15 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 15] = tot.sf;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_16
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mat_q4_0_f32_1d_16x_flat(
|
||||
global uchar * src0_q,
|
||||
global half * src0_d,
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
mul_mat_q_n_f32_1d_16x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
|
||||
}
|
265
ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_1d_8x_flat.cl
Normal file
265
ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_1d_8x_flat.cl
Normal file
|
@ -0,0 +1,265 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define QK4_0 32
|
||||
#define QR4_0 2
|
||||
#define QK4_1 32
|
||||
#define QR4_1 2
|
||||
#define QK5_0 32
|
||||
#define QR5_0 2
|
||||
#define QK5_1 32
|
||||
#define QR5_1 2
|
||||
#define QK8_0 32
|
||||
#define QR8_0 1
|
||||
#define QK_K 256
|
||||
#define K_QUANTS_PER_ITERATION 2
|
||||
|
||||
typedef char int8_t;
|
||||
typedef uchar uint8_t;
|
||||
typedef short int16_t;
|
||||
typedef ushort uint16_t;
|
||||
typedef int int32_t;
|
||||
typedef uint uint32_t;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// block_q4_0
|
||||
//------------------------------------------------------------------------------
|
||||
struct block_q4_0
|
||||
{
|
||||
half d;
|
||||
uint8_t qs[QK4_0 / 2];
|
||||
};
|
||||
|
||||
inline float mm_block_q_4_0_dot_y_flat(
|
||||
global uchar * x,
|
||||
global half * dh,
|
||||
float sumy,
|
||||
float16 yl,
|
||||
int il
|
||||
) {
|
||||
float d = *dh;
|
||||
global ushort * qs = ((global ushort *)x + il/2);
|
||||
float acc = 0.f;
|
||||
|
||||
acc += yl.s0 * (qs[0] & 0x000F);
|
||||
acc += yl.s1 * (qs[0] & 0x0F00);
|
||||
acc += yl.s8 * (qs[0] & 0x00F0);
|
||||
acc += yl.s9 * (qs[0] & 0xF000);
|
||||
|
||||
acc += yl.s2 * (qs[1] & 0x000F);
|
||||
acc += yl.s3 * (qs[1] & 0x0F00);
|
||||
acc += yl.sa * (qs[1] & 0x00F0);
|
||||
acc += yl.sb * (qs[1] & 0xF000);
|
||||
|
||||
acc += yl.s4 * (qs[2] & 0x000F);
|
||||
acc += yl.s5 * (qs[2] & 0x0F00);
|
||||
acc += yl.sc * (qs[2] & 0x00F0);
|
||||
acc += yl.sd * (qs[2] & 0xF000);
|
||||
|
||||
acc += yl.s6 * (qs[3] & 0x000F);
|
||||
acc += yl.s7 * (qs[3] & 0x0F00);
|
||||
acc += yl.se * (qs[3] & 0x00F0);
|
||||
acc += yl.sf * (qs[3] & 0xF000);
|
||||
|
||||
return d * (sumy * -8.f + acc);
|
||||
}
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
#define N_DST 8 // each SIMD group works on 8 rows (in weights matrix)
|
||||
#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
|
||||
#define N_SIMDWIDTH 16 // assuming SIMD group size is 16
|
||||
#elif defined (ADRENO_GPU)
|
||||
#define N_DST 8
|
||||
#define N_SIMDGROUP 1
|
||||
#define N_SIMDWIDTH 64
|
||||
#endif
|
||||
//
|
||||
// This variant performs 1d blocking with 8x output.
|
||||
// Eeach simdgroup outputs 8 values on `n0` dim (row in the output matrix).
|
||||
//
|
||||
inline void mul_mat_q_n_f32_1d_8x_flat(
|
||||
global uchar * src0_q,
|
||||
global half * src0_d,
|
||||
global float * src1,
|
||||
global float * dst,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
const int nb = ne00/QK4_0;
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int r1 = get_group_id(1);
|
||||
int im = get_group_id(2);
|
||||
|
||||
// (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of
|
||||
// a SIMD group in the grid. Each SIMD group produces N_DST values in the
|
||||
// result, hence uses nb blocks, i.e., the offset becomes first_row*nb.
|
||||
// Currently with llama2 7B, im is always 0.
|
||||
// TODO: how to handle im/gqa*(nb*ne0)?
|
||||
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
// The number of scales is the same as the number of blocks.
|
||||
ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
// Each block contains QK4_0/2 uchars, hence offset for qs is as follows.
|
||||
ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2;
|
||||
|
||||
global uchar * x = (global uchar *) src0_q + offset0_q;
|
||||
global half * d = (global half *) src0_d + offset0_d;
|
||||
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float16 yl;
|
||||
float8 sumf = (float8)(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
|
||||
|
||||
int ix = get_sub_group_local_id()/2;
|
||||
int il = 8*(get_sub_group_local_id()%2);
|
||||
|
||||
global float * yb = y + ix*QK4_0 + il;
|
||||
|
||||
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
|
||||
float sumy = 0.f;
|
||||
|
||||
sumy += yb[0];
|
||||
sumy += yb[1];
|
||||
sumy += yb[2];
|
||||
sumy += yb[3];
|
||||
sumy += yb[4];
|
||||
sumy += yb[5];
|
||||
sumy += yb[6];
|
||||
sumy += yb[7];
|
||||
|
||||
sumy += yb[16];
|
||||
sumy += yb[17];
|
||||
sumy += yb[18];
|
||||
sumy += yb[19];
|
||||
sumy += yb[20];
|
||||
sumy += yb[21];
|
||||
sumy += yb[22];
|
||||
sumy += yb[23];
|
||||
|
||||
yl.s0 = yb[0];
|
||||
yl.s1 = yb[1]/256.f;
|
||||
|
||||
yl.s2 = yb[2];
|
||||
yl.s3 = yb[3]/256.f;
|
||||
|
||||
yl.s4 = yb[4];
|
||||
yl.s5 = yb[5]/256.f;
|
||||
|
||||
yl.s6 = yb[6];
|
||||
yl.s7 = yb[7]/256.f;
|
||||
|
||||
yl.s8 = yb[16]/16.f;
|
||||
yl.s9 = yb[17]/4096.f;
|
||||
|
||||
yl.sa = yb[18]/16.f;
|
||||
yl.sb = yb[19]/4096.f;
|
||||
|
||||
yl.sc = yb[20]/16.f;
|
||||
yl.sd = yb[21]/4096.f;
|
||||
|
||||
yl.se = yb[22]/16.f;
|
||||
yl.sf = yb[23]/4096.f;
|
||||
|
||||
sumf.s0 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il);
|
||||
sumf.s1 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il);
|
||||
sumf.s2 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il);
|
||||
sumf.s3 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il);
|
||||
|
||||
sumf.s4 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il);
|
||||
sumf.s5 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il);
|
||||
sumf.s6 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il);
|
||||
sumf.s7 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il);
|
||||
|
||||
yb += QK4_0 * (N_SIMDWIDTH/2);
|
||||
}
|
||||
|
||||
float8 tot = (float8)(
|
||||
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
|
||||
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3),
|
||||
sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5),
|
||||
sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7)
|
||||
);
|
||||
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
if (first_row + 0 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
|
||||
}
|
||||
if (first_row + 1 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
|
||||
}
|
||||
if (first_row + 2 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
|
||||
}
|
||||
if (first_row + 3 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
|
||||
}
|
||||
|
||||
if (first_row + 4 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4;
|
||||
}
|
||||
if (first_row + 5 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5;
|
||||
}
|
||||
if (first_row + 6 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6;
|
||||
}
|
||||
if (first_row + 7 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_16
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mat_q4_0_f32_1d_8x_flat(
|
||||
global uchar * src0_q,
|
||||
global half * src0_d,
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
mul_mat_q_n_f32_1d_8x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
|
||||
}
|
272
ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_8x_flat.cl
Normal file
272
ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_8x_flat.cl
Normal file
|
@ -0,0 +1,272 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define QK4_0 32
|
||||
#define QR4_0 2
|
||||
#define QK4_1 32
|
||||
#define QR4_1 2
|
||||
#define QK5_0 32
|
||||
#define QR5_0 2
|
||||
#define QK5_1 32
|
||||
#define QR5_1 2
|
||||
#define QK8_0 32
|
||||
#define QR8_0 1
|
||||
#define QK_K 256
|
||||
#define K_QUANTS_PER_ITERATION 2
|
||||
|
||||
typedef char int8_t;
|
||||
typedef uchar uint8_t;
|
||||
typedef short int16_t;
|
||||
typedef ushort uint16_t;
|
||||
typedef int int32_t;
|
||||
typedef uint uint32_t;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// block_q4_0
|
||||
//------------------------------------------------------------------------------
|
||||
struct block_q4_0
|
||||
{
|
||||
half d;
|
||||
uint8_t qs[QK4_0 / 2];
|
||||
};
|
||||
|
||||
// This function requires the original shuffled weights.
|
||||
// As a reminder, the original weights are shuffled so that (q[0], q[16]) are
|
||||
// packed together in a byte, so are (q[1], q[17]) and so on.
|
||||
inline float block_q_4_0_dot_y_flat(
|
||||
global uchar * x,
|
||||
global half * dh,
|
||||
float sumy,
|
||||
float16 yl,
|
||||
int il
|
||||
) {
|
||||
float d = *dh;
|
||||
global ushort * qs = ((global ushort *)x + il/2);
|
||||
float acc = 0.f;
|
||||
|
||||
acc += yl.s0 * (qs[0] & 0x000F);
|
||||
acc += yl.s1 * (qs[0] & 0x0F00);
|
||||
acc += yl.s8 * (qs[0] & 0x00F0);
|
||||
acc += yl.s9 * (qs[0] & 0xF000);
|
||||
|
||||
acc += yl.s2 * (qs[1] & 0x000F);
|
||||
acc += yl.s3 * (qs[1] & 0x0F00);
|
||||
acc += yl.sa * (qs[1] & 0x00F0);
|
||||
acc += yl.sb * (qs[1] & 0xF000);
|
||||
|
||||
acc += yl.s4 * (qs[2] & 0x000F);
|
||||
acc += yl.s5 * (qs[2] & 0x0F00);
|
||||
acc += yl.sc * (qs[2] & 0x00F0);
|
||||
acc += yl.sd * (qs[2] & 0xF000);
|
||||
|
||||
acc += yl.s6 * (qs[3] & 0x000F);
|
||||
acc += yl.s7 * (qs[3] & 0x0F00);
|
||||
acc += yl.se * (qs[3] & 0x00F0);
|
||||
acc += yl.sf * (qs[3] & 0xF000);
|
||||
|
||||
return d * (sumy * -8.f + acc);
|
||||
}
|
||||
|
||||
//
|
||||
// This variant outputs 8 values.
|
||||
//
|
||||
#undef N_DST
|
||||
#undef N_SIMDGROUP
|
||||
#undef N_SIMDWIDTH
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
#define N_DST 8 // each SIMD group works on 8 rows
|
||||
#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
|
||||
#define N_SIMDWIDTH 16 // assuming SIMD group size is 32
|
||||
#elif defined (ADRENO_GPU)
|
||||
#define N_DST 8
|
||||
#define N_SIMDGROUP 1
|
||||
#define N_SIMDWIDTH 64
|
||||
#endif
|
||||
|
||||
inline void mul_vec_q_n_f32_8x_flat(
|
||||
global uchar * src0_q,
|
||||
global half * src0_d,
|
||||
global float * src1,
|
||||
global float * dst,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
const ulong nb = ne00/QK4_0;
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int r1 = get_group_id(1);
|
||||
int im = get_group_id(2);
|
||||
|
||||
// (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of
|
||||
// a SIMD group in the grid. Each SIMD group produces N_DST values in the
|
||||
// result, hence uses nb blocks, i.e., the offset becomes first_row*nb.
|
||||
// Currently with llama2 7B, im is always 0.
|
||||
// TODO: how to handle im/gqa*(nb*ne0)?
|
||||
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
// The number of scales is the same as the number of blocks.
|
||||
ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
// Each block contains QK4_0/2 uchars, hence offset for qs is as follows.
|
||||
ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2;
|
||||
|
||||
global uchar * x = (global uchar *) src0_q + offset0_q;
|
||||
global half * d = (global half *) src0_d + offset0_d;
|
||||
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float16 yl;
|
||||
float8 sumf = 0.f;
|
||||
|
||||
int ix = get_sub_group_local_id()/2;
|
||||
int il = 8*(get_sub_group_local_id()%2);
|
||||
|
||||
global float * yb = y + ix*QK4_0 + il;
|
||||
|
||||
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
|
||||
float sumy = 0.f;
|
||||
|
||||
sumy += yb[0];
|
||||
sumy += yb[1];
|
||||
sumy += yb[2];
|
||||
sumy += yb[3];
|
||||
sumy += yb[4];
|
||||
sumy += yb[5];
|
||||
sumy += yb[6];
|
||||
sumy += yb[7];
|
||||
|
||||
sumy += yb[16];
|
||||
sumy += yb[17];
|
||||
sumy += yb[18];
|
||||
sumy += yb[19];
|
||||
sumy += yb[20];
|
||||
sumy += yb[21];
|
||||
sumy += yb[22];
|
||||
sumy += yb[23];
|
||||
|
||||
yl.s0 = yb[0];
|
||||
yl.s1 = yb[1]/256.f;
|
||||
|
||||
yl.s2 = yb[2];
|
||||
yl.s3 = yb[3]/256.f;
|
||||
|
||||
yl.s4 = yb[4];
|
||||
yl.s5 = yb[5]/256.f;
|
||||
|
||||
yl.s6 = yb[6];
|
||||
yl.s7 = yb[7]/256.f;
|
||||
|
||||
yl.s8 = yb[16]/16.f;
|
||||
yl.s9 = yb[17]/4096.f;
|
||||
|
||||
yl.sa = yb[18]/16.f;
|
||||
yl.sb = yb[19]/4096.f;
|
||||
|
||||
yl.sc = yb[20]/16.f;
|
||||
yl.sd = yb[21]/4096.f;
|
||||
|
||||
yl.se = yb[22]/16.f;
|
||||
yl.sf = yb[23]/4096.f;
|
||||
|
||||
sumf.s0 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il);
|
||||
sumf.s1 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il);
|
||||
sumf.s2 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il);
|
||||
sumf.s3 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il);
|
||||
|
||||
sumf.s4 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il);
|
||||
sumf.s5 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il);
|
||||
sumf.s6 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il);
|
||||
sumf.s7 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il);
|
||||
|
||||
yb += QK4_0 * (N_SIMDWIDTH/2);
|
||||
}
|
||||
|
||||
float8 tot = (float8)(
|
||||
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
|
||||
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3),
|
||||
sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5),
|
||||
sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7)
|
||||
);
|
||||
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
if (first_row + 0 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
|
||||
}
|
||||
if (first_row + 1 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
|
||||
}
|
||||
if (first_row + 2 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
|
||||
}
|
||||
if (first_row + 3 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
|
||||
}
|
||||
|
||||
if (first_row + 4 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4;
|
||||
}
|
||||
if (first_row + 5 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5;
|
||||
}
|
||||
if (first_row + 6 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6;
|
||||
}
|
||||
if (first_row + 7 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_16
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mat_q4_0_f32_8x_flat(
|
||||
global uchar * src0_q,
|
||||
global half * src0_d,
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
mul_vec_q_n_f32_8x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
|
||||
}
|
254
ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_v.cl
Normal file
254
ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_v.cl
Normal file
|
@ -0,0 +1,254 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define QK4_0 32
|
||||
#define QR4_0 2
|
||||
#define QK4_1 32
|
||||
#define QR4_1 2
|
||||
#define QK5_0 32
|
||||
#define QR5_0 2
|
||||
#define QK5_1 32
|
||||
#define QR5_1 2
|
||||
#define QK8_0 32
|
||||
#define QR8_0 1
|
||||
#define QK_K 256
|
||||
#define K_QUANTS_PER_ITERATION 2
|
||||
|
||||
typedef char int8_t;
|
||||
typedef uchar uint8_t;
|
||||
typedef short int16_t;
|
||||
typedef ushort uint16_t;
|
||||
typedef int int32_t;
|
||||
typedef uint uint32_t;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// block_q4_0
|
||||
//------------------------------------------------------------------------------
|
||||
struct block_q4_0
|
||||
{
|
||||
half d;
|
||||
uint8_t qs[QK4_0 / 2];
|
||||
};
|
||||
|
||||
//
|
||||
// This variant unrolls the loops and uses vector types instead of pointers.
|
||||
// It improves performance on Adreno but not so much on Intel.
|
||||
//
|
||||
inline float block_q_4_0_dot_y_v(
|
||||
global struct block_q4_0 * qb_curr,
|
||||
float sumy,
|
||||
float16 yl,
|
||||
int il
|
||||
) {
|
||||
float d = qb_curr->d;
|
||||
float acc = 0.f;
|
||||
global ushort * qs = ((global ushort *)qb_curr + 1 + il/2);
|
||||
|
||||
acc += yl.s0 * (qs[0] & 0x000F);
|
||||
acc += yl.s1 * (qs[0] & 0x0F00);
|
||||
acc += yl.s8 * (qs[0] & 0x00F0);
|
||||
acc += yl.s9 * (qs[0] & 0xF000);
|
||||
|
||||
acc += yl.s2 * (qs[1] & 0x000F);
|
||||
acc += yl.s3 * (qs[1] & 0x0F00);
|
||||
acc += yl.sa * (qs[1] & 0x00F0);
|
||||
acc += yl.sb * (qs[1] & 0xF000);
|
||||
|
||||
acc += yl.s4 * (qs[2] & 0x000F);
|
||||
acc += yl.s5 * (qs[2] & 0x0F00);
|
||||
acc += yl.sc * (qs[2] & 0x00F0);
|
||||
acc += yl.sd * (qs[2] & 0xF000);
|
||||
|
||||
acc += yl.s6 * (qs[3] & 0x000F);
|
||||
acc += yl.s7 * (qs[3] & 0x0F00);
|
||||
acc += yl.se * (qs[3] & 0x00F0);
|
||||
acc += yl.sf * (qs[3] & 0xF000);
|
||||
|
||||
return d * (sumy * -8.f + acc);
|
||||
}
|
||||
|
||||
#undef N_DST
|
||||
#undef N_SIMDGROUP
|
||||
#undef N_SIMDWIDTH
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
#define N_DST 4 // each SIMD group works on 4 rows
|
||||
#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
|
||||
#define N_SIMDWIDTH 16 // assuming SIMD group size is 16
|
||||
#elif defined (ADRENO_GPU)
|
||||
#define N_DST 4
|
||||
#define N_SIMDGROUP 1
|
||||
#define N_SIMDWIDTH 64
|
||||
#endif
|
||||
|
||||
inline void mul_vec_q_n_f32_v(
|
||||
global void * src0,
|
||||
global float * src1,
|
||||
global float * dst,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
const ulong nb = ne00/QK4_0;
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int r1 = get_group_id(1);
|
||||
int im = get_group_id(2);
|
||||
|
||||
// (r0 * N_SIMDGROUP + get_sub_group_id()) is essenatially the linear global
|
||||
// id of a SIMD group in the grid.
|
||||
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
ulong offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
global struct block_q4_0 * x = (global struct block_q4_0 *) src0 + offset0;
|
||||
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float16 yl; // src1 vector cache
|
||||
float4 sumf = (float4)(0.f, 0.f, 0.f, 0.f);
|
||||
|
||||
int ix = get_sub_group_local_id()/2;
|
||||
int il = 8*(get_sub_group_local_id()%2);
|
||||
|
||||
global float * yb = y + ix * QK4_0 + il;
|
||||
|
||||
// each thread in a SIMD group deals with half a block.
|
||||
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
|
||||
float sumy = 0;
|
||||
|
||||
sumy += yb[0];
|
||||
sumy += yb[1];
|
||||
sumy += yb[2];
|
||||
sumy += yb[3];
|
||||
sumy += yb[4];
|
||||
sumy += yb[5];
|
||||
sumy += yb[6];
|
||||
sumy += yb[7];
|
||||
|
||||
sumy += yb[16];
|
||||
sumy += yb[17];
|
||||
sumy += yb[18];
|
||||
sumy += yb[19];
|
||||
sumy += yb[20];
|
||||
sumy += yb[21];
|
||||
sumy += yb[22];
|
||||
sumy += yb[23];
|
||||
|
||||
|
||||
yl.s0 = yb[0];
|
||||
yl.s1 = yb[1]/256.f;
|
||||
|
||||
yl.s2 = yb[2];
|
||||
yl.s3 = yb[3]/256.f;
|
||||
|
||||
yl.s4 = yb[4];
|
||||
yl.s5 = yb[5]/256.f;
|
||||
|
||||
yl.s6 = yb[6];
|
||||
yl.s7 = yb[7]/256.f;
|
||||
|
||||
yl.s8 = yb[16]/16.f;
|
||||
yl.s9 = yb[17]/4096.f;
|
||||
|
||||
yl.sa = yb[18]/16.f;
|
||||
yl.sb = yb[19]/4096.f;
|
||||
|
||||
yl.sc = yb[20]/16.f;
|
||||
yl.sd = yb[21]/4096.f;
|
||||
|
||||
yl.se = yb[22]/16.f;
|
||||
yl.sf = yb[23]/4096.f;
|
||||
|
||||
sumf.s0 += block_q_4_0_dot_y_v(x+ib+0*nb, sumy, yl, il);
|
||||
sumf.s1 += block_q_4_0_dot_y_v(x+ib+1*nb, sumy, yl, il);
|
||||
sumf.s2 += block_q_4_0_dot_y_v(x+ib+2*nb, sumy, yl, il);
|
||||
sumf.s3 += block_q_4_0_dot_y_v(x+ib+3*nb, sumy, yl, il);
|
||||
|
||||
// One thread in a SIMD group (i.e., subgroup) handles a half block,
|
||||
// hence then entire SIMD group handles SIMDWIDTH/2 blocks.
|
||||
// y points to the activation matrix (of type float). Therefore for
|
||||
// one thread, the # of blocks y should advance is SIMDWIDTH/2 (because
|
||||
// SIMDWIDTH/2 blocks are processed by a SIMD group) - in terms of
|
||||
// floats, it is QK4_0 * (SIMDWIDTH/2), where QK4_0 is the block size.
|
||||
yb += QK4_0 * (N_SIMDWIDTH/2);
|
||||
}
|
||||
|
||||
// The above does not work for Adreno - it produces incorrect results for
|
||||
// row = 1, 2, 3 and only row = 0 gives the correct result.
|
||||
// If N_DST is changed, the below array must be initialized accordingly.
|
||||
// This also seems to perform better on Intel.
|
||||
float4 tot = (float4)(
|
||||
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
|
||||
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3)
|
||||
);
|
||||
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
if (first_row + 0 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
|
||||
}
|
||||
if (first_row + 1 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
|
||||
}
|
||||
if (first_row + 2 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
|
||||
}
|
||||
if (first_row + 3 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_16
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mat_q4_0_f32_v(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
mul_vec_q_n_f32_v(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
|
||||
}
|
190
ggml/src/ggml-opencl/kernels/mul_mv_q6_k.cl
Normal file
190
ggml/src/ggml-opencl/kernels/mul_mv_q6_k.cl
Normal file
|
@ -0,0 +1,190 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define QK4_0 32
|
||||
#define QR4_0 2
|
||||
#define QK4_1 32
|
||||
#define QR4_1 2
|
||||
#define QK5_0 32
|
||||
#define QR5_0 2
|
||||
#define QK5_1 32
|
||||
#define QR5_1 2
|
||||
#define QK8_0 32
|
||||
#define QR8_0 1
|
||||
#define QK_K 256
|
||||
#define K_QUANTS_PER_ITERATION 2
|
||||
|
||||
typedef char int8_t;
|
||||
typedef uchar uint8_t;
|
||||
typedef short int16_t;
|
||||
typedef ushort uint16_t;
|
||||
typedef int int32_t;
|
||||
typedef uint uint32_t;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// block_q6_K
|
||||
//------------------------------------------------------------------------------
|
||||
// 6-bit quantization
|
||||
// weight is represented as x = a * q
|
||||
// 16 blocks of 16 elements each
|
||||
// Effectively 6.5625 bits per weight
|
||||
typedef struct {
|
||||
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
||||
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
||||
half d; // super-block scale
|
||||
} block_q6_K;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// kernel_mul_mv_q6_K_f32
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#undef N_DST
|
||||
#undef N_SIMDGROUP
|
||||
#undef N_SIMDWIDTH
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
#define N_DST 1 // number of rows each SIMD group works on
|
||||
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
||||
#define N_SIMDWIDTH 16 // SIMD group size
|
||||
#elif defined (ADRENO_GPU)
|
||||
#define N_DST 1
|
||||
#define N_SIMDGROUP 2
|
||||
#define N_SIMDWIDTH 64
|
||||
#endif
|
||||
|
||||
#define BLOCK_STRIDE (N_SIMDWIDTH/16) // number of blocks each subgroup processes
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_16
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mv_q6_K_f32(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
uchar kmask1 = 0x03;
|
||||
uchar kmask2 = 0x0C;
|
||||
uchar kmask3 = 0x30;
|
||||
uchar kmask4 = 0xC0;
|
||||
|
||||
int nb = ne00/QK_K;
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int r1 = get_group_id(1);
|
||||
int im = get_group_id(2);
|
||||
|
||||
int row = N_SIMDGROUP * r0 + get_sub_group_id();
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
ulong offset_src0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
global block_q6_K * x = (global block_q6_K *) src0 + row*nb + offset_src0;
|
||||
global float * yy = (global float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
// For Q6_K quantization, 16 values forms a subblock, 16 subblock forms a
|
||||
// block. Values in a subblock shares a scale that is quantized with 8 bits;
|
||||
// the entire block shares a single floating point scale.
|
||||
// For work distribution, each thread processes a subblock (16 weights), hence
|
||||
// 16 threads process a (super) block -- a subgroup thus handles SIMDWIDTH/16
|
||||
// (super) blocks -- this is the block stride.
|
||||
// The 16 threads that process a (super) block are split into 2 portions, each has
|
||||
// 8 threads; each portion works on 8 subblocks.
|
||||
// For subgroup of 16 threads, the entire subgroup works on a single (super) block
|
||||
// before moving to the next (super) block. Thread0 - thread7 work on the
|
||||
// first 8 subblocks; thread8 - thread15 works on the last 8 subblocks.
|
||||
// Thread0 - thread3 work on subblocks 0, 2, 4, 6; thread4 - thread7 work on
|
||||
// subblocks 1, 3, 5, 7. Each thread does not work on an entire subblock, but
|
||||
// works on a total of 16 weight values.
|
||||
int tid = get_sub_group_local_id()/BLOCK_STRIDE; // first block_stride groups have tid=0
|
||||
int ix = get_sub_group_local_id()%BLOCK_STRIDE; // first block is 0..block_stride-1
|
||||
int ip = tid/8; // first or second half of (super) block (0 or 1)
|
||||
int il = tid%8; // each half has 8 parts, one per scale
|
||||
int n = 4; // 4 scales at a time (and 4 sums)
|
||||
int l0 = n*il; // offset into half-block, 0..28
|
||||
int is = 8*ip + l0/16; // 0, 1, 8, 9
|
||||
|
||||
int y_offset = 128*ip + l0;
|
||||
int q_offset_l = 64*ip + l0;
|
||||
int q_offset_h = 32*ip + l0;
|
||||
|
||||
for (int i = ix; i < nb; i += BLOCK_STRIDE) {
|
||||
|
||||
global uint8_t * q1 = x[i].ql + q_offset_l;
|
||||
global uint8_t * q2 = q1 + QK_K/8;
|
||||
global uint8_t * qh = x[i].qh + q_offset_h;
|
||||
global int8_t * sc = x[i].scales + is;
|
||||
|
||||
global float * y = yy + i * QK_K + y_offset;
|
||||
|
||||
float dall = x[i].d;
|
||||
|
||||
float4 sums = {0.f, 0.f, 0.f, 0.f};
|
||||
|
||||
sums.s0 += y[0+ 0] * ((float)((q1[0] & 0xF) | ((qh[0] & kmask1) << 4)) - 32.f);
|
||||
sums.s1 += y[0+32] * ((float)((q2[0] & 0xF) | ((qh[0] & kmask2) << 2)) - 32.f);
|
||||
sums.s2 += y[0+64] * ((float)((q1[0] >> 4) | ((qh[0] & kmask3) << 0)) - 32.f);
|
||||
sums.s3 += y[0+96] * ((float)((q2[0] >> 4) | ((qh[0] & kmask4) >> 2)) - 32.f);
|
||||
|
||||
sums.s0 += y[1+ 0] * ((float)((q1[1] & 0xF) | ((qh[1] & kmask1) << 4)) - 32.f);
|
||||
sums.s1 += y[1+32] * ((float)((q2[1] & 0xF) | ((qh[1] & kmask2) << 2)) - 32.f);
|
||||
sums.s2 += y[1+64] * ((float)((q1[1] >> 4) | ((qh[1] & kmask3) << 0)) - 32.f);
|
||||
sums.s3 += y[1+96] * ((float)((q2[1] >> 4) | ((qh[1] & kmask4) >> 2)) - 32.f);
|
||||
|
||||
sums.s0 += y[2+ 0] * ((float)((q1[2] & 0xF) | ((qh[2] & kmask1) << 4)) - 32.f);
|
||||
sums.s1 += y[2+32] * ((float)((q2[2] & 0xF) | ((qh[2] & kmask2) << 2)) - 32.f);
|
||||
sums.s2 += y[2+64] * ((float)((q1[2] >> 4) | ((qh[2] & kmask3) << 0)) - 32.f);
|
||||
sums.s3 += y[2+96] * ((float)((q2[2] >> 4) | ((qh[2] & kmask4) >> 2)) - 32.f);
|
||||
|
||||
sums.s0 += y[3+ 0] * ((float)((q1[3] & 0xF) | ((qh[3] & kmask1) << 4)) - 32.f);
|
||||
sums.s1 += y[3+32] * ((float)((q2[3] & 0xF) | ((qh[3] & kmask2) << 2)) - 32.f);
|
||||
sums.s2 += y[3+64] * ((float)((q1[3] >> 4) | ((qh[3] & kmask3) << 0)) - 32.f);
|
||||
sums.s3 += y[3+96] * ((float)((q2[3] >> 4) | ((qh[3] & kmask4) >> 2)) - 32.f);
|
||||
|
||||
sumf += dall * (sums.s0 * sc[0] + sums.s1 * sc[2] + sums.s2 * sc[4] + sums.s3 * sc[6]);
|
||||
}
|
||||
|
||||
float tot = sub_group_reduce_add(sumf);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
|
||||
}
|
||||
}
|
81
ggml/src/ggml-opencl/kernels/norm.cl
Normal file
81
ggml/src/ggml-opencl/kernels/norm.cl
Normal file
|
@ -0,0 +1,81 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// norm
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_norm(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
float eps,
|
||||
local float * sum
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
dst = (global void*)((global char*)dst + offsetd);
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
global float * x = (global float *) ((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
|
||||
// MEAN
|
||||
// parallel sum
|
||||
sum[get_local_id(0)] = 0.0f;
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
sum[get_local_id(0)] += x[i00];
|
||||
}
|
||||
// reduce
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for (uint i = get_local_size(0)/2; i > 0; i /= 2) {
|
||||
if (get_local_id(0) < i) {
|
||||
sum[get_local_id(0)] += sum[get_local_id(0) + i];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
float mean = sum[0] / ne00;
|
||||
|
||||
// recenter and VARIANCE
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
global float * y = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
sum[get_local_id(0)] = 0.0f;
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
y[i00] = x[i00] - mean;
|
||||
sum[get_local_id(0)] += y[i00] * y[i00];
|
||||
}
|
||||
|
||||
// reduce
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for (uint i = get_local_size(0)/2; i > 0; i /= 2) {
|
||||
if (get_local_id(0) < i) {
|
||||
sum[get_local_id(0)] += sum[get_local_id(0) + i];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
float variance = sum[0] / ne00;
|
||||
|
||||
float scale = 1.0f/sqrt(variance + eps);
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
y[i00] = y[i00] * scale;
|
||||
}
|
||||
}
|
16
ggml/src/ggml-opencl/kernels/relu.cl
Normal file
16
ggml/src/ggml-opencl/kernels/relu.cl
Normal file
|
@ -0,0 +1,16 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// relu
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_relu(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
dst[get_global_id(0)] = fmax(0.0f, src0[get_global_id(0)]);
|
||||
}
|
96
ggml/src/ggml-opencl/kernels/rms_norm.cl
Normal file
96
ggml/src/ggml-opencl/kernels/rms_norm.cl
Normal file
|
@ -0,0 +1,96 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// rms_norm
|
||||
//------------------------------------------------------------------------------
|
||||
// This kernel depends on subgroup size.
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_32
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_rms_norm(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
float eps,
|
||||
local float * sum // Note, the size depends on number of subgroups
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
global float4 * x = (global float4 *) ((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
global float * x_scalar = (global float *) x;
|
||||
float4 sumf = 0;
|
||||
float all_sum = 0;
|
||||
|
||||
// parallel sum
|
||||
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
|
||||
sumf += x[i00] * x[i00];
|
||||
}
|
||||
all_sum = sumf.s0 + sumf.s1 + sumf.s2 + sumf.s3;
|
||||
all_sum = sub_group_reduce_add(all_sum);
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
sum[get_sub_group_id()] = all_sum;
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
// broadcast
|
||||
for (uint i = get_local_size(0) / get_max_sub_group_size() / 2; i > 0; i /= 2) {
|
||||
if (get_local_id(0) < i) {
|
||||
sum[get_local_id(0)] += sum[get_local_id(0) + i];
|
||||
}
|
||||
}
|
||||
if (get_local_id(0) == 0) {
|
||||
for (int i = 4 * (ne00 / 4); i < ne00; i++) {
|
||||
sum[0] += x_scalar[i];
|
||||
}
|
||||
sum[0] /= ne00;
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
const float mean = sum[0];
|
||||
const float scale = 1.0f/sqrt(mean + eps);
|
||||
|
||||
global float4 * y = (global float4 *) (dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
global float * y_scalar = (global float *) y;
|
||||
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
|
||||
y[i00] = x[i00] * scale;
|
||||
}
|
||||
if (get_local_id(0) == 0) {
|
||||
for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {
|
||||
y_scalar[i00] = x_scalar[i00] * scale;
|
||||
}
|
||||
}
|
||||
}
|
721
ggml/src/ggml-opencl/kernels/rope.cl
Normal file
721
ggml/src/ggml-opencl/kernels/rope.cl
Normal file
|
@ -0,0 +1,721 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// kernel_rope
|
||||
//------------------------------------------------------------------------------
|
||||
float rope_yarn_ramp(float low, float high, int i0) {
|
||||
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
||||
return 1.0f - min(1.0f, max(0.0f, y));
|
||||
}
|
||||
|
||||
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||
float2 rope_yarn(
|
||||
float theta_extrap, float freq_scale, float2 corr_dims, int i0, float ext_factor, float mscale
|
||||
) {
|
||||
// Get n-d rotational scaling corrected for extrapolation
|
||||
float theta_interp = freq_scale * theta_extrap;
|
||||
float theta = theta_interp;
|
||||
if (ext_factor != 0.0f) {
|
||||
float ramp_mix = rope_yarn_ramp(corr_dims.s0, corr_dims.s1, i0) * ext_factor;
|
||||
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
|
||||
// Get n-d magnitude scaling corrected for interpolation
|
||||
mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
|
||||
}
|
||||
return (float2)(cos(theta) * mscale, sin(theta) * mscale);
|
||||
}
|
||||
|
||||
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
|
||||
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
|
||||
float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) {
|
||||
return n_dims * log(n_ctx_orig / (n_rot * 2 * M_PI_F)) / (2 * log(base));
|
||||
}
|
||||
|
||||
float2 rope_yarn_corr_dims(
|
||||
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow
|
||||
) {
|
||||
// start and end correction dims
|
||||
return (float2)(
|
||||
max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base))),
|
||||
min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base)))
|
||||
);
|
||||
}
|
||||
|
||||
kernel void kernel_rope_norm_f32(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * src2,
|
||||
ulong offset2,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
src2 = (global float*)((global char*)src2 + offset2);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i3 = get_group_id(2);
|
||||
int i2 = get_group_id(1);
|
||||
int i1 = get_group_id(0);
|
||||
|
||||
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
|
||||
|
||||
global int * pos = src1;
|
||||
|
||||
float theta_base = (float) pos[i2];
|
||||
float inv_ndims = -1.f/n_dims;
|
||||
|
||||
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
|
||||
if (i0 < n_dims) {
|
||||
int ic = i0/2;
|
||||
|
||||
float theta = theta_base * pow(freq_base, inv_ndims*i0);
|
||||
|
||||
float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
|
||||
|
||||
float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
|
||||
|
||||
global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
float x0 = src[0];
|
||||
float x1 = src[1];
|
||||
|
||||
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
|
||||
dst_data[1] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
|
||||
} else {
|
||||
global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_rope_norm_f16(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * src2,
|
||||
ulong offset2,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
src2 = (global float*)((global char*)src2 + offset2);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i3 = get_group_id(2);
|
||||
int i2 = get_group_id(1);
|
||||
int i1 = get_group_id(0);
|
||||
|
||||
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
|
||||
|
||||
global int * pos = src1;
|
||||
|
||||
float theta_base = (float) pos[i2];
|
||||
float inv_ndims = -1.f/n_dims;
|
||||
|
||||
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
|
||||
if (i0 < n_dims) {
|
||||
int ic = i0/2;
|
||||
|
||||
float theta = theta_base * pow(freq_base, inv_ndims*i0);
|
||||
|
||||
float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
|
||||
|
||||
float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
|
||||
|
||||
global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
float x0 = src[0];
|
||||
float x1 = src[1];
|
||||
|
||||
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
|
||||
dst_data[1] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
|
||||
} else {
|
||||
global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_rope_neox_f32(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * src2,
|
||||
ulong offset2,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
src2 = (global float*)((global char*)src2 + offset2);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i3 = get_group_id(2);
|
||||
int i2 = get_group_id(1);
|
||||
int i1 = get_group_id(0);
|
||||
|
||||
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
|
||||
|
||||
global int * pos = src1;
|
||||
|
||||
float theta_base = (float) pos[i2];
|
||||
float inv_ndims = -1.f/n_dims;
|
||||
|
||||
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
|
||||
if (i0 < n_dims) {
|
||||
int ic = i0/2;
|
||||
|
||||
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
|
||||
|
||||
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
|
||||
|
||||
float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
|
||||
|
||||
global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims/2];
|
||||
|
||||
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
|
||||
dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
|
||||
} else {
|
||||
global float * const src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_rope_neox_f16(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * src2,
|
||||
ulong offset2,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
src2 = (global float*)((global char*)src2 + offset2);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i3 = get_group_id(2);
|
||||
int i2 = get_group_id(1);
|
||||
int i1 = get_group_id(0);
|
||||
|
||||
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
|
||||
|
||||
global int * pos = src1;
|
||||
|
||||
float theta_base = (float) pos[i2];
|
||||
float inv_ndims = -1.f/n_dims;
|
||||
|
||||
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
|
||||
if (i0 < n_dims) {
|
||||
int ic = i0/2;
|
||||
|
||||
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
|
||||
|
||||
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
|
||||
|
||||
float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
|
||||
|
||||
global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims/2];
|
||||
|
||||
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
|
||||
dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
|
||||
} else {
|
||||
global half * const src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_rope_multi_f32(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * src2,
|
||||
ulong offset2,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow,
|
||||
int4 sections
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
src2 = (global float*)((global char*)src2 + offset2);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i3 = get_group_id(2);
|
||||
int i2 = get_group_id(1);
|
||||
int i1 = get_group_id(0);
|
||||
|
||||
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
|
||||
|
||||
global int * pos = src1;
|
||||
|
||||
const int sect_dims = sections.s0 + sections.s1 + sections.s2 + sections.s3;
|
||||
const int sec_w = sections.s1 + sections.s0;
|
||||
|
||||
float inv_ndims = -1.f/n_dims;
|
||||
|
||||
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
|
||||
if (i0 < n_dims) {
|
||||
int ic = i0/2;
|
||||
|
||||
const int sector = (i0 / 2) % sect_dims;
|
||||
float theta_base = 0.0f;
|
||||
|
||||
if (sector < sections.s0) {
|
||||
theta_base = pos[i2];
|
||||
}
|
||||
else if (sector >= sections.s0 && sector < sec_w) {
|
||||
theta_base = pos[i2 + ne2 * 1];
|
||||
}
|
||||
else if (sector >= sec_w && sector < sec_w + sections.s2) {
|
||||
theta_base = pos[i2 + ne2 * 2];
|
||||
}
|
||||
else if (sector >= sec_w + sections.s2) {
|
||||
theta_base = pos[i2 + ne2 * 3];
|
||||
}
|
||||
|
||||
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
|
||||
|
||||
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
|
||||
|
||||
float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
|
||||
|
||||
global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims/2];
|
||||
|
||||
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
|
||||
dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
|
||||
} else {
|
||||
global float * const src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_rope_multi_f16(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * src2,
|
||||
ulong offset2,
|
||||
global half * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow,
|
||||
int4 sections
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
src2 = (global float*)((global char*)src2 + offset2);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i3 = get_group_id(2);
|
||||
int i2 = get_group_id(1);
|
||||
int i1 = get_group_id(0);
|
||||
|
||||
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
|
||||
|
||||
global int * pos = src1;
|
||||
|
||||
const int sect_dims = sections.s0 + sections.s1 + sections.s2 + sections.s3;
|
||||
const int sec_w = sections.s1 + sections.s0;
|
||||
|
||||
float inv_ndims = -1.f/n_dims;
|
||||
|
||||
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
|
||||
if (i0 < n_dims) {
|
||||
int ic = i0/2;
|
||||
|
||||
const int sector = (i0 / 2) % sect_dims;
|
||||
float theta_base = 0.0f;
|
||||
|
||||
if (sector < sections.s0) {
|
||||
theta_base = pos[i2];
|
||||
}
|
||||
else if (sector >= sections.s0 && sector < sec_w) {
|
||||
theta_base = pos[i2 + ne2 * 1];
|
||||
}
|
||||
else if (sector >= sec_w && sector < sec_w + sections.s2) {
|
||||
theta_base = pos[i2 + ne2 * 2];
|
||||
}
|
||||
else if (sector >= sec_w + sections.s2) {
|
||||
theta_base = pos[i2 + ne2 * 3];
|
||||
}
|
||||
|
||||
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
|
||||
|
||||
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
|
||||
|
||||
float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
|
||||
|
||||
global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims/2];
|
||||
|
||||
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
|
||||
dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
|
||||
} else {
|
||||
global half * const src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
dst_data[0] = src[0];
|
||||
dst_data[1] = src[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_rope_vision_f32(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * src2,
|
||||
ulong offset2,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow,
|
||||
int4 sections
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
src2 = (global float*)((global char*)src2 + offset2);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i3 = get_group_id(2);
|
||||
int i2 = get_group_id(1);
|
||||
int i1 = get_group_id(0);
|
||||
|
||||
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
|
||||
|
||||
global int * pos = src1;
|
||||
|
||||
const int sect_dims = sections.s0 + sections.s1;
|
||||
const int sec_w = sections.s1 + sections.s0;
|
||||
|
||||
float inv_ndims = -1.f/n_dims;
|
||||
|
||||
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
|
||||
int ic = i0/2;
|
||||
|
||||
const int sector = (i0/2) % sect_dims;
|
||||
float theta_base = 0.0f;
|
||||
|
||||
if (sector < sections.s0) {
|
||||
const int p = sector;
|
||||
theta_base = pos[i2] * pow(freq_base, inv_ndims*2.0f*p);
|
||||
} else if (sector >= sections.s0 && sector < sec_w) {
|
||||
const int p = sector - sections.s0;
|
||||
theta_base = pos[i2 + ne2] * pow(freq_base, inv_ndims*2.0f*p);
|
||||
}
|
||||
|
||||
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
|
||||
|
||||
float2 cos_sin_theta = rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
|
||||
|
||||
global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims];
|
||||
|
||||
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
|
||||
dst_data[n_dims] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_rope_vision_f16(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global int * src1,
|
||||
ulong offset1,
|
||||
global float * src2,
|
||||
ulong offset2,
|
||||
global half * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow,
|
||||
int4 sections
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global int*)((global char*)src1 + offset1);
|
||||
src2 = (global float*)((global char*)src2 + offset2);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i3 = get_group_id(2);
|
||||
int i2 = get_group_id(1);
|
||||
int i1 = get_group_id(0);
|
||||
|
||||
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
|
||||
|
||||
global int * pos = src1;
|
||||
|
||||
const int sect_dims = sections.s0 + sections.s1;
|
||||
const int sec_w = sections.s1 + sections.s0;
|
||||
|
||||
float inv_ndims = -1.f/n_dims;
|
||||
|
||||
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
|
||||
int ic = i0/2;
|
||||
|
||||
const int sector = (i0/2) % sect_dims;
|
||||
float theta_base = 0.0f;
|
||||
|
||||
if (sector < sections.s0) {
|
||||
const int p = sector;
|
||||
theta_base = pos[i2] * pow(freq_base, inv_ndims*2.0f*p);
|
||||
} else if (sector >= sections.s0 && sector < sec_w) {
|
||||
const int p = sector - sections.s0;
|
||||
theta_base = pos[i2 + ne2] * pow(freq_base, inv_ndims*2.0f*p);
|
||||
}
|
||||
|
||||
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
|
||||
|
||||
float2 cos_sin_theta = rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
|
||||
|
||||
global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
||||
global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims];
|
||||
|
||||
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
|
||||
dst_data[n_dims] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
|
||||
}
|
||||
}
|
16
ggml/src/ggml-opencl/kernels/scale.cl
Normal file
16
ggml/src/ggml-opencl/kernels/scale.cl
Normal file
|
@ -0,0 +1,16 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// scale
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_scale(
|
||||
global float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * dst,
|
||||
ulong offsetd,
|
||||
float scale
|
||||
) {
|
||||
src0 = (global float4*)((global char*)src0 + offset0);
|
||||
dst = (global float4*)((global char*)dst + offsetd);
|
||||
dst[get_global_id(0)] = src0[get_global_id(0)] * scale;
|
||||
}
|
30
ggml/src/ggml-opencl/kernels/silu.cl
Normal file
30
ggml/src/ggml-opencl/kernels/silu.cl
Normal file
|
@ -0,0 +1,30 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// silu
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_silu(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
float x = src0[get_global_id(0)];
|
||||
dst[get_global_id(0)] = x / (1.0f + exp(-x));
|
||||
}
|
||||
|
||||
kernel void kernel_silu_4(
|
||||
global float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
src0 = (global float4*)((global char*)src0 + offset0);
|
||||
dst = (global float4*)((global char*)dst + offsetd);
|
||||
|
||||
float4 x = src0[get_global_id(0)];
|
||||
dst[get_global_id(0)] = x / (1.0f + exp(-x));
|
||||
}
|
87
ggml/src/ggml-opencl/kernels/softmax_4_f16.cl
Normal file
87
ggml/src/ggml-opencl/kernels/softmax_4_f16.cl
Normal file
|
@ -0,0 +1,87 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_soft_max_4_f16(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global half * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
float scale,
|
||||
float max_bias,
|
||||
float m0,
|
||||
float m1,
|
||||
int n_head_log2
|
||||
) {
|
||||
src0 = (global float *)((global char *)src0 + offset0);
|
||||
src1 = (global half *)((global char *)src1 + offset1);
|
||||
dst = (global float *)((global char *)dst + offsetd);
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
global float4 * psrc4 = (global float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
global half4 * pmask = (global char *)src1 != (global char *)src0 ? (global half4 *)(src1 + i01*ne00) : 0;
|
||||
global float4 * pdst4 = (global float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
int h = i02;
|
||||
|
||||
float base = h < n_head_log2 ? m0 : m1;
|
||||
int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = pow(base, exp);
|
||||
}
|
||||
|
||||
// parallel max
|
||||
float4 lmax4 = -INFINITY;
|
||||
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
|
||||
lmax4 = fmax(lmax4, psrc4[i00]*scale + slope*(pmask ? convert_float4(pmask[i00]) : 0.0f));
|
||||
}
|
||||
float lmax = fmax(fmax(lmax4.s0, lmax4.s1), fmax(lmax4.s2, lmax4.s3));
|
||||
|
||||
const float max = sub_group_reduce_max(lmax);
|
||||
|
||||
// parallel sum
|
||||
float4 lsum4 = 0.0f;
|
||||
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
|
||||
const float4 exp_psrc4 = exp((psrc4[i00]*scale + slope*(pmask ? convert_float4(pmask[i00]) : 0.0f)) - max);
|
||||
lsum4 += exp_psrc4;
|
||||
pdst4[i00] = exp_psrc4;
|
||||
}
|
||||
float lsum = lsum4.s0 + lsum4.s1 + lsum4.s2 + lsum4.s3;
|
||||
|
||||
const float sum = sub_group_reduce_add(lsum);
|
||||
|
||||
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
|
||||
pdst4[i00] /= sum;
|
||||
}
|
||||
}
|
87
ggml/src/ggml-opencl/kernels/softmax_4_f32.cl
Normal file
87
ggml/src/ggml-opencl/kernels/softmax_4_f32.cl
Normal file
|
@ -0,0 +1,87 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_soft_max_4(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
float scale,
|
||||
float max_bias,
|
||||
float m0,
|
||||
float m1,
|
||||
int n_head_log2
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
global float4 * psrc4 = (global float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
global float4 * pmask = src1 != src0 ? (global float4 *)(src1 + i01*ne00) : 0;
|
||||
global float4 * pdst4 = (global float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
int h = i02;
|
||||
|
||||
float base = h < n_head_log2 ? m0 : m1;
|
||||
int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = pow(base, exp);
|
||||
}
|
||||
|
||||
// parallel max
|
||||
float4 lmax4 = -INFINITY;
|
||||
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
|
||||
lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
|
||||
}
|
||||
float lmax = fmax(fmax(lmax4.s0, lmax4.s1), fmax(lmax4.s2, lmax4.s3));
|
||||
|
||||
const float max = sub_group_reduce_max(lmax);
|
||||
|
||||
// parallel sum
|
||||
float4 lsum4 = 0.0f;
|
||||
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
|
||||
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max);
|
||||
lsum4 += exp_psrc4;
|
||||
pdst4[i00] = exp_psrc4;
|
||||
}
|
||||
float lsum = lsum4.s0 + lsum4.s1 + lsum4.s2 + lsum4.s3;
|
||||
|
||||
const float sum = sub_group_reduce_add(lsum);
|
||||
|
||||
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
|
||||
pdst4[i00] /= sum;
|
||||
}
|
||||
}
|
86
ggml/src/ggml-opencl/kernels/softmax_f16.cl
Normal file
86
ggml/src/ggml-opencl/kernels/softmax_f16.cl
Normal file
|
@ -0,0 +1,86 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_soft_max_f16(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global half * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
float scale,
|
||||
float max_bias,
|
||||
float m0,
|
||||
float m1,
|
||||
int n_head_log2
|
||||
) {
|
||||
src0 = (global float *)((global char *)src0 + offset0);
|
||||
src1 = (global half *)((global char *)src1 + offset1);
|
||||
dst = (global float *)((global char *)dst + offsetd);
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
global float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
global half * pmask = (global char *)src1 != (global char *)src0 ? src1 + i01*ne00 : 0;
|
||||
global float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
int h = i02;
|
||||
|
||||
float base = h < n_head_log2 ? m0 : m1;
|
||||
int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = pow(base, exp);
|
||||
}
|
||||
|
||||
// parallel max
|
||||
float lmax = -INFINITY;
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
lmax = fmax(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
|
||||
}
|
||||
float max = sub_group_reduce_max(lmax);
|
||||
|
||||
// parallel sum
|
||||
float lsum = 0.0f;
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max);
|
||||
lsum += exp_psrc0;
|
||||
// Remember the result of exp here. exp is expensive, so we really do not
|
||||
// wish to compute it twice.
|
||||
pdst[i00] = exp_psrc0;
|
||||
}
|
||||
|
||||
const float sum = sub_group_reduce_add(lsum);
|
||||
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
pdst[i00] /= sum;
|
||||
}
|
||||
}
|
86
ggml/src/ggml-opencl/kernels/softmax_f32.cl
Normal file
86
ggml/src/ggml-opencl/kernels/softmax_f32.cl
Normal file
|
@ -0,0 +1,86 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_soft_max(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
float scale,
|
||||
float max_bias,
|
||||
float m0,
|
||||
float m1,
|
||||
int n_head_log2
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
int i03 = get_group_id(2);
|
||||
int i02 = get_group_id(1);
|
||||
int i01 = get_group_id(0);
|
||||
|
||||
global float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
global float * pmask = src1 != src0 ? src1 + i01*ne00 : 0;
|
||||
global float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
int h = i02;
|
||||
|
||||
float base = h < n_head_log2 ? m0 : m1;
|
||||
int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = pow(base, exp);
|
||||
}
|
||||
|
||||
// parallel max
|
||||
float lmax = -INFINITY;
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
lmax = fmax(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
|
||||
}
|
||||
float max = sub_group_reduce_max(lmax);
|
||||
|
||||
// parallel sum
|
||||
float lsum = 0.0f;
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max);
|
||||
lsum += exp_psrc0;
|
||||
// Remember the result of exp here. exp is expensive, so we really do not
|
||||
// wish to compute it twice.
|
||||
pdst[i00] = exp_psrc0;
|
||||
}
|
||||
|
||||
const float sum = sub_group_reduce_add(lsum);
|
||||
|
||||
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
|
||||
pdst[i00] /= sum;
|
||||
}
|
||||
}
|
84
ggml/src/ggml-opencl/kernels/transpose.cl
Normal file
84
ggml/src/ggml-opencl/kernels/transpose.cl
Normal file
|
@ -0,0 +1,84 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
// 16-bit transpose, loading/storing a 4x4 tile of elements
|
||||
kernel void kernel_transpose_16(
|
||||
__read_only image1d_buffer_t input,
|
||||
__write_only image1d_buffer_t output,
|
||||
const uint rows,
|
||||
const uint cols
|
||||
) {
|
||||
|
||||
const int i = get_global_id(0);
|
||||
const int j = get_global_id(1);
|
||||
const int i_2 = i<<2;
|
||||
const int j_2 = j<<2;
|
||||
|
||||
half4 temp0 = read_imageh(input, (j_2+0)*cols+i);
|
||||
half4 temp1 = read_imageh(input, (j_2+1)*cols+i);
|
||||
half4 temp2 = read_imageh(input, (j_2+2)*cols+i);
|
||||
half4 temp3 = read_imageh(input, (j_2+3)*cols+i);
|
||||
|
||||
write_imageh(output, (i_2+0)*rows+j, (half4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0));
|
||||
write_imageh(output, (i_2+1)*rows+j, (half4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
|
||||
write_imageh(output, (i_2+2)*rows+j, (half4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
|
||||
write_imageh(output, (i_2+3)*rows+j, (half4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
|
||||
}
|
||||
|
||||
// 32-bit transpose, loading/storing a 4x4 tile of elements
|
||||
kernel void kernel_transpose_32(
|
||||
__read_only image1d_buffer_t input,
|
||||
__write_only image1d_buffer_t output,
|
||||
const uint rows,
|
||||
const uint cols
|
||||
) {
|
||||
|
||||
const int i = get_global_id(0);
|
||||
const int j = get_global_id(1);
|
||||
const int i_2 = i<<2;
|
||||
const int j_2 = j<<2;
|
||||
|
||||
float4 temp0 = read_imagef(input, (j_2+0)*cols+i);
|
||||
float4 temp1 = read_imagef(input, (j_2+1)*cols+i);
|
||||
float4 temp2 = read_imagef(input, (j_2+2)*cols+i);
|
||||
float4 temp3 = read_imagef(input, (j_2+3)*cols+i);
|
||||
|
||||
write_imagef(output, (i_2+0)*rows+j, (float4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0));
|
||||
write_imagef(output, (i_2+1)*rows+j, (float4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
|
||||
write_imagef(output, (i_2+2)*rows+j, (float4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
|
||||
write_imagef(output, (i_2+3)*rows+j, (float4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
|
||||
|
||||
}
|
||||
|
||||
// 32-bit transpose, loading/storing a 4x4 tile of elements
|
||||
// Only used for activations
|
||||
// converts to FP16
|
||||
// also adds zero padding for non multiple of 8 prompt lengths
|
||||
kernel void kernel_transpose_32_16(__read_only image1d_buffer_t input, __write_only image1d_buffer_t output, const uint rows, const uint cols, const uint padded_rows) {
|
||||
|
||||
const int i = get_global_id(0);
|
||||
const int j = get_global_id(1);
|
||||
const int i_2 = i<<2;
|
||||
const int j_2 = j<<2;
|
||||
half4 temp0 = {0,0,0,0}; // initialize outputs to 0
|
||||
half4 temp1 = {0,0,0,0};
|
||||
half4 temp2 = {0,0,0,0};
|
||||
half4 temp3 = {0,0,0,0};
|
||||
|
||||
if((j_2+0)*cols+i*4+3 < rows*cols*16){ // only load from a valid location. Otherwise keep register data as 0
|
||||
temp0 = read_imageh(input, (j_2+0)*cols+i);
|
||||
}
|
||||
if((j_2+1)*cols+i*4+3 < rows*cols*16){
|
||||
temp1 = read_imageh(input, (j_2+1)*cols+i);
|
||||
}
|
||||
if((j_2+2)*cols+i*4+3 < rows*cols*16){
|
||||
temp2 = read_imageh(input, (j_2+2)*cols+i);
|
||||
}
|
||||
if((j_2+3)*cols+i*4+3 < rows*cols*16){
|
||||
temp3 = read_imageh(input, (j_2+3)*cols+i);
|
||||
}
|
||||
|
||||
write_imageh(output, (i_2+0)*padded_rows+j, (half4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0)); // no conditionals for output, includes zero padding
|
||||
write_imageh(output, (i_2+1)*padded_rows+j, (half4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
|
||||
write_imageh(output, (i_2+2)*padded_rows+j, (half4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
|
||||
write_imageh(output, (i_2+3)*padded_rows+j, (half4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
|
||||
}
|
|
@ -1,6 +1,7 @@
|
|||
#include "ggml-rpc.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <cinttypes>
|
||||
#include <string>
|
||||
|
@ -853,12 +854,13 @@ bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_
|
|||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_context_ptr ctx_ptr { ggml_init(params) };
|
||||
GGML_ASSERT(ctx_ptr != nullptr);
|
||||
ggml_context * ctx = ctx_ptr.get();
|
||||
ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
|
||||
|
||||
if (tensor == nullptr) {
|
||||
GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -871,7 +873,6 @@ bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_
|
|||
|
||||
response.alloc_size = ggml_backend_buft_get_alloc_size(buft,tensor);
|
||||
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -985,11 +986,12 @@ bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
|
|||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_context_ptr ctx_ptr { ggml_init(params) };
|
||||
GGML_ASSERT(ctx_ptr != nullptr);
|
||||
ggml_context * ctx = ctx_ptr.get();
|
||||
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
|
||||
if (tensor == nullptr) {
|
||||
GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
|
||||
|
@ -1016,7 +1018,6 @@ bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
|
|||
printf("[%s] saved to '%s'\n", __func__, cache_file.c_str());
|
||||
}
|
||||
ggml_backend_tensor_set(tensor, data, offset, size);
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -1060,11 +1061,12 @@ bool rpc_server::set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set
|
|||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_context_ptr ctx_ptr { ggml_init(params) };
|
||||
GGML_ASSERT(ctx_ptr != nullptr);
|
||||
ggml_context * ctx = ctx_ptr.get();
|
||||
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
|
||||
if (tensor == nullptr) {
|
||||
GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu, hash: %" PRIx64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size, *hash);
|
||||
|
@ -1080,7 +1082,6 @@ bool rpc_server::set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set
|
|||
}
|
||||
ggml_backend_tensor_set(tensor, cached_file.data(), offset, size);
|
||||
response.result = 1;
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -1090,11 +1091,12 @@ bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) {
|
|||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_context_ptr ctx_ptr { ggml_init(params) };
|
||||
GGML_ASSERT(ctx_ptr != nullptr);
|
||||
ggml_context * ctx = ctx_ptr.get();
|
||||
ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
|
||||
if (tensor == nullptr) {
|
||||
GGML_LOG_ERROR("Null tensor pointer passed to server init_tensor function.\n");
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -1110,11 +1112,9 @@ bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) {
|
|||
// This pointer can either be passed around client/server, or probably better stored server-side and kept track of.
|
||||
// Currently unimplemented.
|
||||
GGML_LOG_ERROR("tensor->extra populated by the backend, this is currently unsupported.\n");
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -1124,11 +1124,12 @@ bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<
|
|||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_context_ptr ctx_ptr { ggml_init(params) };
|
||||
GGML_ASSERT(ctx_ptr != nullptr);
|
||||
ggml_context * ctx = ctx_ptr.get();
|
||||
ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
|
||||
if (tensor == nullptr) {
|
||||
GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, request.offset, request.size);
|
||||
|
@ -1147,7 +1148,6 @@ bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<
|
|||
|
||||
response.resize(request.size, 0);
|
||||
ggml_backend_tensor_get(tensor, response.data(), request.offset, request.size);
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -1157,12 +1157,14 @@ bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_co
|
|||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_context_ptr ctx_ptr { ggml_init(params) };
|
||||
GGML_ASSERT(ctx_ptr != nullptr);
|
||||
ggml_context * ctx = ctx_ptr.get();
|
||||
|
||||
ggml_tensor * src = deserialize_tensor(ctx, &request.src);
|
||||
ggml_tensor * dst = deserialize_tensor(ctx, &request.dst);
|
||||
if (src == nullptr || dst == nullptr) {
|
||||
GGML_LOG_ERROR("[%s] error deserializing tensors\n", __func__);
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -1180,7 +1182,6 @@ bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_co
|
|||
dst_data + src_size,
|
||||
dst_base,
|
||||
dst_base + dst_buf_sz);
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -1188,7 +1189,6 @@ bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_co
|
|||
__func__, (void*) src->buffer, (void*) dst->buffer);
|
||||
|
||||
response.result = ggml_backend_buffer_copy_tensor(src, dst);
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -1242,7 +1242,9 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
|
|||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_context_ptr ctx_ptr { ggml_init(params) };
|
||||
GGML_ASSERT(ctx_ptr != nullptr);
|
||||
ggml_context * ctx = ctx_ptr.get();
|
||||
struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
|
||||
graph->n_nodes = n_nodes;
|
||||
std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
|
||||
|
@ -1257,7 +1259,6 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
|
|||
}
|
||||
ggml_status status = ggml_backend_graph_compute(backend, graph);
|
||||
response.result = status;
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
@ -4009,17 +4009,14 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_OP_ROPE:
|
||||
{
|
||||
const int mode = ((const int32_t *) op->op_params)[2];
|
||||
if (mode & GGML_ROPE_TYPE_MROPE) {
|
||||
return false;
|
||||
}
|
||||
if (mode & GGML_ROPE_TYPE_VISION) {
|
||||
// mode is not used as a bitmask in practice, the various rope type modes are independent implementations
|
||||
if (mode == GGML_ROPE_TYPE_MROPE) {
|
||||
return false;
|
||||
}
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
}
|
||||
case GGML_OP_IM2COL:
|
||||
// TODO: add support for the new F32 operations
|
||||
return op->src[0]->type == GGML_TYPE_F16;
|
||||
return true;
|
||||
case GGML_OP_UPSCALE:
|
||||
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
|
||||
case GGML_OP_POOL_2D:
|
||||
|
|
|
@ -12,110 +12,125 @@
|
|||
|
||||
#include "im2col.hpp"
|
||||
|
||||
#include <sycl/sycl.hpp>
|
||||
#include <type_traits> // For std::is_same_v
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
template <typename T>
|
||||
static void im2col_kernel(
|
||||
const float *x, T *dst, int64_t batch_offset, int64_t offset_delta,
|
||||
int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH,
|
||||
int64_t pelements, int64_t CHW, int s0, int s1, int p0, int p1, int d0, int d1,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
static void im2col_kernel(const float * x, T * dst, int64_t batch_offset, int64_t offset_delta, int64_t IC, int64_t IW,
|
||||
int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1, const sycl::nd_item<3> & item_ct1) {
|
||||
const int64_t work_group_size = item_ct1.get_local_range(2);
|
||||
const int64_t global_id = item_ct1.get_local_id(2) + work_group_size * item_ct1.get_group(2);
|
||||
const int64_t global_id = item_ct1.get_local_id(2) + (work_group_size * item_ct1.get_group(2));
|
||||
|
||||
// make each work-item deal with more elements since sycl global range can not exceed max int
|
||||
for (int64_t i = global_id; i < pelements; i += work_group_size * item_ct1.get_group_range(2)) {
|
||||
|
||||
for (int64_t i = global_id; i < pelements; i += (work_group_size * item_ct1.get_group_range(2))) {
|
||||
const int64_t ksize = OW * (KH > 1 ? KW : 1);
|
||||
const int64_t kx = i / ksize;
|
||||
const int64_t kd = kx * ksize;
|
||||
const int64_t ky = (i - kd) / OW;
|
||||
const int64_t ix = i % OW;
|
||||
const int64_t kx = i / ksize;
|
||||
const int64_t kd = kx * ksize;
|
||||
const int64_t ky = (i - kd) / OW;
|
||||
const int64_t ix = i % OW;
|
||||
|
||||
const int64_t oh = item_ct1.get_group(1);
|
||||
const int64_t batch = item_ct1.get_group(0) / IC;
|
||||
const int64_t ic = item_ct1.get_group(0) % IC;
|
||||
const int64_t oh = item_ct1.get_group(1);
|
||||
const int64_t batch = item_ct1.get_group(0) / IC;
|
||||
const int64_t ic = item_ct1.get_group(0) % IC;
|
||||
|
||||
const int64_t iiw = ix * s0 + kx * d0 - p0;
|
||||
const int64_t iih = oh * s1 + ky * d1 - p1;
|
||||
const int64_t iiw = (ix * s0) + (kx * d0) - p0;
|
||||
const int64_t iih = (oh * s1) + (ky * d1) - p1;
|
||||
|
||||
const int64_t offset_dst =
|
||||
((batch * OH + oh) * OW + ix) * CHW +
|
||||
(ic * (KW * KH) + ky * KW + kx);
|
||||
const int64_t offset_dst = (((batch * OH + oh) * OW + ix) * CHW) + (ic * (KW * KH) + ky * KW + kx);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] =
|
||||
sycl::vec<float, 1>(0.0f)
|
||||
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
|
||||
} else {
|
||||
const int64_t offset_src = ic * offset_delta + batch * batch_offset;
|
||||
dst[offset_dst] =
|
||||
sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
|
||||
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
|
||||
const int64_t offset_src_base = (ic * offset_delta) + (batch * batch_offset);
|
||||
const int64_t offset_src = offset_src_base + (iih * IW) + iiw;
|
||||
|
||||
const bool out_of_bounds = (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW);
|
||||
const float src_val = out_of_bounds ? 0.0f : x[offset_src];
|
||||
|
||||
if constexpr (std::is_same_v<T, sycl::half>) {
|
||||
dst[offset_dst] = sycl::half(src_val);
|
||||
} else if constexpr (std::is_same_v<T, float>) {
|
||||
dst[offset_dst] = src_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void im2col_sycl(
|
||||
const float *x, T *dst, int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW,
|
||||
int64_t KH, int64_t IC, int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1,
|
||||
queue_ptr stream) {
|
||||
static void im2col_sycl_internal(const float * x, T * dst, int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW,
|
||||
int64_t KH, int64_t IC, int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1, queue_ptr stream) {
|
||||
const int64_t parallel_elements = OW * KW * KH;
|
||||
const int64_t num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
|
||||
const int64_t num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
|
||||
|
||||
// decrease global range when it exceeds the max int
|
||||
int64_t local_size = downsample_sycl_global_range(batch * IC * OH * num_blocks, SYCL_IM2COL_BLOCK_SIZE);
|
||||
|
||||
sycl::range<3> block_nums(batch * IC, OH, num_blocks);
|
||||
sycl::range<3> local_range(1, 1, local_size);
|
||||
|
||||
{
|
||||
dpct::has_capability_or_fail(stream->get_device(),
|
||||
{sycl::aspect::fp16});
|
||||
const int64_t CHW = IC * KH * KW;
|
||||
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * local_range, local_range),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
im2col_kernel(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH,
|
||||
parallel_elements, (IC * KH * KW), s0, s1, p0,
|
||||
p1, d0, d1, item_ct1);
|
||||
});
|
||||
}
|
||||
stream->parallel_for(sycl::nd_range<3>(block_nums * local_range, local_range), [=](sycl::nd_item<3> item_ct1) {
|
||||
im2col_kernel<T>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, CHW, s0, s1,
|
||||
p0, p1, d0, d1, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
void ggml_sycl_op_im2col(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
|
||||
static void im2col_sycl_f16(const float * x, sycl::half * dst, int64_t IW, int64_t IH, int64_t OW, int64_t OH,
|
||||
int64_t KW, int64_t KH, int64_t IC, int64_t batch, int64_t batch_offset,
|
||||
int64_t offset_delta, int s0, int s1, int p0, int p1, int d0, int d1, queue_ptr stream) {
|
||||
if (!stream->get_device().has(sycl::aspect::fp16)) {
|
||||
throw sycl::exception(sycl::make_error_code(sycl::errc::kernel_not_supported),
|
||||
"Device does not support half precision (fp16) operations!");
|
||||
}
|
||||
im2col_sycl_internal<sycl::half>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0,
|
||||
p1, d0, d1, stream);
|
||||
}
|
||||
|
||||
static void im2col_sycl_f32(const float * x, float * dst, int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW,
|
||||
int64_t KH, int64_t IC, int64_t batch, int64_t batch_offset, int64_t offset_delta, int s0,
|
||||
int s1, int p0, int p1, int d0, int d1, queue_ptr stream) {
|
||||
im2col_sycl_internal<float>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1,
|
||||
d0, d1, stream);
|
||||
}
|
||||
|
||||
void ggml_sycl_op_im2col(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
||||
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
|
||||
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
|
||||
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
|
||||
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
|
||||
const int32_t s0 = ((const int32_t *) (dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *) (dst->op_params))[1];
|
||||
const int32_t p0 = ((const int32_t *) (dst->op_params))[2];
|
||||
const int32_t p1 = ((const int32_t *) (dst->op_params))[3];
|
||||
const int32_t d0 = ((const int32_t *) (dst->op_params))[4];
|
||||
const int32_t d1 = ((const int32_t *) (dst->op_params))[5];
|
||||
|
||||
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
|
||||
const bool is_2D = ((const int32_t *) (dst->op_params))[6] == 1;
|
||||
|
||||
const int64_t IC = src1->ne[is_2D ? 2 : 1];
|
||||
const int64_t IH = is_2D ? src1->ne[1] : 1;
|
||||
const int64_t IW = src1->ne[0];
|
||||
const int64_t IW = src1->ne[0];
|
||||
|
||||
const int64_t KH = is_2D ? src0->ne[1] : 1;
|
||||
const int64_t KW = src0->ne[0];
|
||||
const int64_t KW = src0->ne[0];
|
||||
|
||||
const int64_t OH = is_2D ? dst->ne[2] : 1;
|
||||
const int64_t OW = dst->ne[1];
|
||||
const int64_t OW = dst->ne[1];
|
||||
|
||||
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
||||
const int64_t batch = src1->ne[3];
|
||||
const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
|
||||
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / sizeof(float);
|
||||
const int64_t batch = src1->ne[is_2D ? 3 : 2];
|
||||
const size_t batch_offset = src1->nb[is_2D ? 3 : 2] / sizeof(float);
|
||||
|
||||
queue_ptr stream = ctx.stream();
|
||||
|
||||
if (dst->type == GGML_TYPE_F16) {
|
||||
im2col_sycl((const float *) src1->data, (sycl::half *)dst->data, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, ctx.stream());
|
||||
im2col_sycl_f16((const float *) src1->data, (sycl::half *) dst->data, IW, IH, OW, OH, KW, KH, IC, batch,
|
||||
batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
|
||||
} else {
|
||||
im2col_sycl((const float *) src1->data, (float *)dst->data, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, ctx.stream());
|
||||
im2col_sycl_f32((const float *) src1->data, (float *) dst->data, IW, IH, OW, OH, KW, KH, IC, batch,
|
||||
batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,9 +1,15 @@
|
|||
#include "rope.hpp"
|
||||
#include "ggml-sycl/common.hpp"
|
||||
#include "ggml.h"
|
||||
|
||||
struct rope_corr_dims {
|
||||
float v[2];
|
||||
};
|
||||
|
||||
struct mrope_sections {
|
||||
int v[4];
|
||||
};
|
||||
|
||||
static float rope_yarn_ramp(const float low, const float high, const int i0) {
|
||||
const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
|
||||
return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
|
||||
|
@ -114,6 +120,48 @@ static void rope_neox(
|
|||
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template <typename T, bool has_ff>
|
||||
static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
|
||||
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
|
||||
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
|
||||
const float theta_scale, const float * freq_factors, const mrope_sections sections,
|
||||
const sycl::nd_item<3> & item_ct1) {
|
||||
// get index pos
|
||||
const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
|
||||
const int row_x = row_dst % ne1;
|
||||
const int channel_x = row_dst / ne1;
|
||||
const int idst = (row_dst * ne0) + (i0 / 2);
|
||||
const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
|
||||
|
||||
const int sect_dims = sections.v[0] + sections.v[1];
|
||||
const int sector = (i0 / 2) % sect_dims;
|
||||
|
||||
float theta_base = 0.0f;
|
||||
if (sector < sections.v[0]) {
|
||||
const int p = sector;
|
||||
theta_base = pos[channel_x] * sycl::pow(theta_scale, (float) p);
|
||||
} else {
|
||||
// Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0]
|
||||
const int p = sector - sections.v[0];
|
||||
theta_base = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p);
|
||||
}
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
const float x0 = x[ix + 0];
|
||||
const float x1 = x[ix + n_dims];
|
||||
|
||||
// store results in dst
|
||||
dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
|
||||
dst[idst + n_dims] = x0 * sin_theta + x1 * cos_theta;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void rope_norm_sycl(
|
||||
const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
|
||||
|
@ -192,21 +240,58 @@ static void rope_neox_sycl(
|
|||
}
|
||||
}
|
||||
|
||||
// rope vision
|
||||
template <typename T>
|
||||
static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
|
||||
const size_t s2, const int n_dims, const int nr, const int32_t * pos,
|
||||
const float freq_scale, const float freq_base, const float ext_factor,
|
||||
const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
|
||||
const mrope_sections sections, queue_ptr stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
|
||||
const int n_blocks_y = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
|
||||
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
|
||||
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
|
||||
|
||||
const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
|
||||
// Add FP16 capability check if T could be sycl::half
|
||||
if constexpr (std::is_same_v<T, sycl::half>) {
|
||||
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
|
||||
}
|
||||
// launch kernel
|
||||
if (freq_factors == nullptr) {
|
||||
stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
|
||||
rope_vision<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
|
||||
corr_dims, theta_scale, freq_factors, sections, item_ct1);
|
||||
});
|
||||
} else {
|
||||
stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
|
||||
rope_vision<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
|
||||
corr_dims, theta_scale, freq_factors, sections, item_ct1);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
|
||||
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(dst->src[0]->type == dst->type);
|
||||
|
||||
const int64_t ne00 = dst->src[0]->ne[0];
|
||||
const int64_t ne01 = dst->src[0]->ne[1];
|
||||
const int64_t ne00 = dst->src[0]->ne[0]; // head dims
|
||||
const int64_t ne01 = dst->src[0]->ne[1]; // num heads
|
||||
const int64_t ne02 = dst->src[0]->ne[2]; // num heads
|
||||
const int64_t nr = ggml_nrows(dst->src[0]);
|
||||
|
||||
const size_t s01 = dst->src[0]->nb[1] / ggml_type_size(dst->src[0]->type);
|
||||
const size_t s02 = dst->src[0]->nb[2] / ggml_type_size(dst->src[0]->type);
|
||||
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
//const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
||||
mrope_sections sections;
|
||||
|
||||
// RoPE alteration for extended context
|
||||
float freq_base;
|
||||
|
@ -222,8 +307,10 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
|
|||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
memcpy(§ions.v, (int32_t *) dst->op_params + 11, sizeof(int)*4);
|
||||
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
||||
|
||||
const int32_t * pos = (const int32_t *) dst->src[1]->data;
|
||||
|
||||
|
@ -240,6 +327,7 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
|
|||
|
||||
// compute
|
||||
if (is_neox) {
|
||||
GGML_SYCL_DEBUG("%s: neox path\n", __func__);
|
||||
if (dst->src[0]->type == GGML_TYPE_F32) {
|
||||
rope_neox_sycl(
|
||||
(const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
|
@ -253,7 +341,19 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
|
|||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
} else if (is_vision) {
|
||||
GGML_SYCL_DEBUG("%s: vision path\n", __func__);
|
||||
if (dst->src[0]->type == GGML_TYPE_F16) {
|
||||
rope_vision_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
|
||||
} else if (dst->src[0]->type == GGML_TYPE_F32) {
|
||||
rope_vision_sycl((const float *) dst->src[0]->data, (float *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
|
||||
} else {
|
||||
GGML_ABORT("Fatal error: Tensor type unsupported!");
|
||||
}
|
||||
} else {
|
||||
GGML_SYCL_DEBUG("%s: norm path\n", __func__);
|
||||
if (dst->src[0]->type == GGML_TYPE_F32) {
|
||||
rope_norm_sycl(
|
||||
(const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue