mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 09:04:36 +00:00
model : add support for Falcon-H1 family (#14534)
* v1 * push more fixes * another fix * fix * more fixes * minor fix * more cleaning on python code * python fixes * changed precision for multipliers float 32->64 * fixes * another fix * fix * pre-norm -> norm * fix * Revert "fix" This reverts commit 243e4d1a50bd73467d99f6b289b9a1826f83b94b. * fix * small fix ffn_norm * try * mix instead of max * fix vocab size * conflict solve * fixed multipliers * falcon-h1 specefic vocab resolved * read arch from gguf.MODEL_ARCH * mamba_d_ssm added to d_inner find_hparam * remove unused functions from gguf_writer.py * override modify_tensors instead of get_tensors * fix conversion and d_inner * added some cb functions for debugging puposes * inp_out_ids moved outside of layers loop * mup_vec create as float64 * fix rope_theta * injected mup * clean ups * rm extra space * rm unused MAMBA_CHUNK_SIZE * rm unused key * add bos False * changed ROPE_TYPE * cleaning debugging stuff * cleaning debug quant * fix comment * some cleanups * some cleanups * Update src/llama-model-loader.cpp * more cleanups * moe cleanuips * d_ssm -> d_inner; * cleaning unused hparams * cleanup * more cleanups * more cleanups on python conversion; * minor cleanups * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * remove todo * added falcon-h1 * tensor not required * clean * remove unneeded attributes * more cleanups and fixed conversion * remove final_norm * flake8 fixes * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * flake8 fixes * Update src/llama-hparams.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-arch.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update convert_hf_to_gguf.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * added hashes * Update src/llama-arch.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update src/llama-vocab.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update the update file * Revert "update the update file" This reverts commit 082ab4ad2a3927384d878666a5f8cae4eb15f577. * fix: address suggestions * fix: update convert_hf_to_gguf.py * Update gguf-py/gguf/constants.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-model-loader.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * d_inner fixed * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * reshaping ssm_norm for 34B * removing generate_mup * remove duplicates metadata keys * rm comment * final comment * fix unused args * fix constants * fix bad merge * Update src/llama-model.cpp Co-authored-by: compilade <git@compilade.net> * falcon-h1: remove unused ssm_in_b and bad merge * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * falcon-h1: fix last comment * Update convert_hf_to_gguf.py Co-authored-by: compilade <git@compilade.net> * falcon-h1: revert add_add_bos(False) * falcon-h1: fix tied weights * falcon-h1: remove whitespace * falcon-h1: fix wrong size param * falcon-h1: fix whitespace issues --------- Co-authored-by: younesbelkada <younes.belkada@tii.ae> Co-authored-by: Younes B <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> Co-authored-by: compilade <git@compilade.net>
This commit is contained in:
parent
20b7bf8a32
commit
04655063c4
8 changed files with 585 additions and 9 deletions
|
@ -818,6 +818,18 @@ class TextModel(ModelBase):
|
||||||
if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
|
if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
|
||||||
# ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
|
# ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
|
||||||
res = "hunyuan"
|
res = "hunyuan"
|
||||||
|
if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
|
||||||
|
# ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
|
||||||
|
res = "falcon-h1"
|
||||||
|
if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
|
||||||
|
# ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
|
||||||
|
res = "falcon-h1"
|
||||||
|
if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
|
||||||
|
# ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
|
||||||
|
res = "falcon-h1"
|
||||||
|
if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
|
||||||
|
# ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
|
||||||
|
res = "falcon-h1"
|
||||||
|
|
||||||
if res is None:
|
if res is None:
|
||||||
logger.warning("\n")
|
logger.warning("\n")
|
||||||
|
@ -4899,15 +4911,17 @@ class Mamba2Model(TextModel):
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
|
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
|
||||||
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
|
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
|
||||||
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
|
d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * d_model
|
||||||
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
|
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
|
||||||
head_dim = self.find_hparam(["head_dim"], optional=True) or 64
|
head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
|
||||||
n_group = self.find_hparam(["n_groups"], optional=True) or 1
|
n_group = self.find_hparam(["n_groups"], optional=True) or 1
|
||||||
|
|
||||||
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
|
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
|
||||||
|
|
||||||
# Fail early for models which don't have a block expansion factor of 2
|
# Fail early for models which don't have a block expansion factor of 2
|
||||||
# TODO: does this really matter?
|
# TODO: does this really matter?
|
||||||
|
# skip the assertion for FalconH1 Model
|
||||||
|
if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
|
||||||
assert d_inner == 2 * d_model
|
assert d_inner == 2 * d_model
|
||||||
assert d_inner % head_dim == 0
|
assert d_inner % head_dim == 0
|
||||||
|
|
||||||
|
@ -4946,7 +4960,7 @@ class Mamba2Model(TextModel):
|
||||||
data_torch = data_torch.reshape((*data_torch.shape, 1))
|
data_torch = data_torch.reshape((*data_torch.shape, 1))
|
||||||
elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
|
elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
|
||||||
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
|
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
|
||||||
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
|
d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * d_model
|
||||||
n_group = self.hparams.get("n_groups", 1)
|
n_group = self.hparams.get("n_groups", 1)
|
||||||
data_torch = data_torch.reshape((n_group, d_inner // n_group))
|
data_torch = data_torch.reshape((n_group, d_inner // n_group))
|
||||||
|
|
||||||
|
@ -6539,6 +6553,113 @@ class UltravoxWhisperEncoderModel(WhisperEncoderModel):
|
||||||
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
|
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
|
||||||
|
|
||||||
|
|
||||||
|
@ModelBase.register("FalconH1ForCausalLM")
|
||||||
|
class FalconH1Model(Mamba2Model):
|
||||||
|
model_arch = gguf.MODEL_ARCH.FALCON_H1
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
# Set the hparam prefixes for Falcon Mamba2
|
||||||
|
self.hparam_prefixes = ["mamba"]
|
||||||
|
|
||||||
|
# Initialize the base Mamba2Model
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
# Use Llama conversion for attention
|
||||||
|
self._transformer_model_class = LlamaModel
|
||||||
|
|
||||||
|
# n_group and d_inner are used during reshape_tensors for mamaba2
|
||||||
|
self.n_group = self.find_hparam(["n_groups"])
|
||||||
|
self.d_inner = self.find_hparam(["mamba_d_ssm"])
|
||||||
|
self.d_head = self.find_hparam(["d_head"])
|
||||||
|
|
||||||
|
# Initialize any Falcon Mamba2 specific attributes
|
||||||
|
self.has_attention = True # Falcon Mamba2 has attention components
|
||||||
|
|
||||||
|
# Load Falcon-H1 multipliers from hyperparameters
|
||||||
|
self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
|
||||||
|
self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
|
||||||
|
self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
|
||||||
|
self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
|
||||||
|
self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
|
||||||
|
self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
|
||||||
|
self.intermediate_size = self.find_hparam(["intermediate_size"])
|
||||||
|
self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
|
||||||
|
|
||||||
|
def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
|
||||||
|
prefixed = []
|
||||||
|
for pfx in self.hparam_prefixes:
|
||||||
|
prefixed.extend(
|
||||||
|
"_".join([pfx, k])
|
||||||
|
for k in keys
|
||||||
|
)
|
||||||
|
keys = list(keys) + prefixed
|
||||||
|
return super().find_hparam(keys, *args, **kwargs)
|
||||||
|
|
||||||
|
def set_vocab(self):
|
||||||
|
self._set_vocab_gpt2()
|
||||||
|
|
||||||
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
tensors = list(super().modify_tensors(data_torch, name, bid))
|
||||||
|
tensor = tensors[0][1]
|
||||||
|
|
||||||
|
if "down_proj" in name:
|
||||||
|
tensor = tensor * self.mlp_multipliers[1]
|
||||||
|
elif "gate_proj" in name:
|
||||||
|
tensor = tensor * self.mlp_multipliers[0]
|
||||||
|
elif "k_proj" in name:
|
||||||
|
tensor = tensor * self.key_multiplier * self.attention_in_multiplier
|
||||||
|
elif "q_proj" in name:
|
||||||
|
tensor = tensor * self.attention_in_multiplier
|
||||||
|
elif "v_proj" in name:
|
||||||
|
tensor = tensor * self.attention_in_multiplier
|
||||||
|
elif "o_proj" in name:
|
||||||
|
tensor = tensor * self.attention_out_multiplier
|
||||||
|
elif "out_proj" in name:
|
||||||
|
tensor = tensor * self.ssm_out_multiplier
|
||||||
|
elif "in_proj" in name:
|
||||||
|
tensor = tensor * self.ssm_in_multiplier
|
||||||
|
zxbcdt_multipliers = self.hparams["ssm_multipliers"]
|
||||||
|
intermediate_size = self.hparams["mamba_d_ssm"]
|
||||||
|
groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
|
||||||
|
tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
|
||||||
|
tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
|
||||||
|
tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
|
||||||
|
tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
|
||||||
|
tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
|
||||||
|
elif "lm_head" in name:
|
||||||
|
tensor = tensor * self.hparams["lm_head_multiplier"]
|
||||||
|
elif "embed_tokens" in name:
|
||||||
|
tensor = tensor * self.hparams["embedding_multiplier"]
|
||||||
|
elif "mamba.norm" in name:
|
||||||
|
tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
|
||||||
|
|
||||||
|
tensors = [(tensors[0][0], tensor)]
|
||||||
|
return tensors
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
super().set_gguf_parameters()
|
||||||
|
|
||||||
|
## General Params ##
|
||||||
|
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
|
||||||
|
# Override some Mamba2 defaults
|
||||||
|
self.gguf_writer.add_block_count(self.block_count)
|
||||||
|
self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
|
||||||
|
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||||
|
|
||||||
|
## Attention params ##
|
||||||
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
|
||||||
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||||||
|
self.gguf_writer.add_key_length(self.hparams["head_dim"])
|
||||||
|
self.gguf_writer.add_value_length(self.hparams["head_dim"])
|
||||||
|
|
||||||
|
## Validation ##
|
||||||
|
assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
|
||||||
|
assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
|
||||||
|
|
||||||
|
# Add any other Falcon Mamba2 specific configuration
|
||||||
|
self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
|
||||||
|
|
||||||
|
|
||||||
@ModelBase.register("HunYuanMoEV1ForCausalLM")
|
@ModelBase.register("HunYuanMoEV1ForCausalLM")
|
||||||
class HunYuanMoEModel(TextModel):
|
class HunYuanMoEModel(TextModel):
|
||||||
model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
|
model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
|
||||||
|
|
|
@ -138,6 +138,11 @@ pre_computed_hashes = [
|
||||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
|
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
|
||||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
|
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
|
||||||
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
|
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
|
||||||
|
# falcon-h1 series uses 4 different tokenizers across model sizes (0.5b - 34b), hence we need to define 4 different hashes
|
||||||
|
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base", "chkhsh": "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6"},
|
||||||
|
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-1B-Base", "chkhsh": "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86"},
|
||||||
|
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-7B-Base", "chkhsh": "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896"},
|
||||||
|
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-34B-Base", "chkhsh": "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b"},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -288,6 +288,7 @@ class MODEL_ARCH(IntEnum):
|
||||||
LLAMA4 = auto()
|
LLAMA4 = auto()
|
||||||
DECI = auto()
|
DECI = auto()
|
||||||
FALCON = auto()
|
FALCON = auto()
|
||||||
|
FALCON_H1 = auto()
|
||||||
BAICHUAN = auto()
|
BAICHUAN = auto()
|
||||||
GROK = auto()
|
GROK = auto()
|
||||||
GPT2 = auto()
|
GPT2 = auto()
|
||||||
|
@ -662,6 +663,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
MODEL_ARCH.DOTS1: "dots1",
|
MODEL_ARCH.DOTS1: "dots1",
|
||||||
MODEL_ARCH.ARCEE: "arcee",
|
MODEL_ARCH.ARCEE: "arcee",
|
||||||
MODEL_ARCH.ERNIE4_5: "ernie4_5",
|
MODEL_ARCH.ERNIE4_5: "ernie4_5",
|
||||||
|
MODEL_ARCH.FALCON_H1: "falcon-h1",
|
||||||
MODEL_ARCH.HUNYUAN_MOE: "hunyuan-moe",
|
MODEL_ARCH.HUNYUAN_MOE: "hunyuan-moe",
|
||||||
MODEL_ARCH.SMOLLM3: "smollm3",
|
MODEL_ARCH.SMOLLM3: "smollm3",
|
||||||
}
|
}
|
||||||
|
@ -2215,6 +2217,40 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.FALCON_H1: [
|
||||||
|
# Token embedding
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
|
||||||
|
# Input layernorm
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
|
||||||
|
# Attention components
|
||||||
|
MODEL_TENSOR.ATTN_Q, # Query projection
|
||||||
|
MODEL_TENSOR.ATTN_K, # Key projection
|
||||||
|
MODEL_TENSOR.ATTN_V, # Value projection
|
||||||
|
MODEL_TENSOR.ATTN_OUT, # Output projection
|
||||||
|
|
||||||
|
# SSM components (Mamba2 specific)
|
||||||
|
MODEL_TENSOR.SSM_IN, # Input projection for SSM
|
||||||
|
MODEL_TENSOR.SSM_CONV1D, # Convolution layer
|
||||||
|
MODEL_TENSOR.SSM_DT, # Delta time projection
|
||||||
|
MODEL_TENSOR.SSM_A, # A parameter (log form)
|
||||||
|
MODEL_TENSOR.SSM_D, # D parameter
|
||||||
|
MODEL_TENSOR.SSM_NORM, # Normalization in SSM
|
||||||
|
MODEL_TENSOR.SSM_OUT, # Output projection
|
||||||
|
|
||||||
|
# Pre-feedforward layernorm
|
||||||
|
MODEL_TENSOR.FFN_PRE_NORM,
|
||||||
|
|
||||||
|
# Feed-forward network components
|
||||||
|
MODEL_TENSOR.FFN_GATE, # Gate projection (SwiGLU)
|
||||||
|
MODEL_TENSOR.FFN_DOWN, # Down projection
|
||||||
|
MODEL_TENSOR.FFN_UP, # Up projection
|
||||||
|
|
||||||
|
# Post-feedforward layernorm
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM, # Final layer norm
|
||||||
|
MODEL_TENSOR.OUTPUT, # Output projection (lm_head)
|
||||||
|
],
|
||||||
MODEL_ARCH.HUNYUAN_MOE: [
|
MODEL_ARCH.HUNYUAN_MOE: [
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.OUTPUT_NORM,
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
|
|
@ -286,12 +286,14 @@ class TensorNameMap:
|
||||||
# Post feed-forward norm
|
# Post feed-forward norm
|
||||||
MODEL_TENSOR.FFN_PRE_NORM: (
|
MODEL_TENSOR.FFN_PRE_NORM: (
|
||||||
"model.layers.{bid}.pre_feedforward_layernorm", # gemma2
|
"model.layers.{bid}.pre_feedforward_layernorm", # gemma2
|
||||||
|
"model.layers.{bid}.pre_ff_layernorm.weight",
|
||||||
),
|
),
|
||||||
|
|
||||||
# Post feed-forward norm
|
# Post feed-forward norm
|
||||||
MODEL_TENSOR.FFN_POST_NORM: (
|
MODEL_TENSOR.FFN_POST_NORM: (
|
||||||
"model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
|
"model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
|
||||||
"model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
|
"model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
|
||||||
|
"model.layers.{bid}.feed_forward.up_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_GATE_INP: (
|
MODEL_TENSOR.FFN_GATE_INP: (
|
||||||
|
@ -363,6 +365,7 @@ class TensorNameMap:
|
||||||
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
|
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
|
||||||
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
|
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
|
||||||
"model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
|
"model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
|
||||||
|
"model.layers.{bid}.feed_forward.down_proj",
|
||||||
"model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
|
"model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
|
||||||
),
|
),
|
||||||
|
|
||||||
|
@ -553,11 +556,13 @@ class TensorNameMap:
|
||||||
MODEL_TENSOR.SSM_IN: (
|
MODEL_TENSOR.SSM_IN: (
|
||||||
"model.layers.{bid}.in_proj",
|
"model.layers.{bid}.in_proj",
|
||||||
"backbone.layers.{bid}.mixer.in_proj",
|
"backbone.layers.{bid}.mixer.in_proj",
|
||||||
|
"model.layers.{bid}.mamba.in_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_CONV1D: (
|
MODEL_TENSOR.SSM_CONV1D: (
|
||||||
"model.layers.{bid}.conv1d",
|
"model.layers.{bid}.conv1d",
|
||||||
"backbone.layers.{bid}.mixer.conv1d",
|
"backbone.layers.{bid}.mixer.conv1d",
|
||||||
|
"model.layers.{bid}.mamba.conv1d",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_X: (
|
MODEL_TENSOR.SSM_X: (
|
||||||
|
@ -568,25 +573,30 @@ class TensorNameMap:
|
||||||
MODEL_TENSOR.SSM_DT: (
|
MODEL_TENSOR.SSM_DT: (
|
||||||
"model.layers.{bid}.dt_proj",
|
"model.layers.{bid}.dt_proj",
|
||||||
"backbone.layers.{bid}.mixer.dt_proj",
|
"backbone.layers.{bid}.mixer.dt_proj",
|
||||||
|
"model.layers.{bid}.mamba.dt_proj",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_A: (
|
MODEL_TENSOR.SSM_A: (
|
||||||
"model.layers.{bid}.A_log",
|
"model.layers.{bid}.A_log",
|
||||||
"backbone.layers.{bid}.mixer.A_log",
|
"backbone.layers.{bid}.mixer.A_log",
|
||||||
|
"model.layers.{bid}.mamba.A_log",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_D: (
|
MODEL_TENSOR.SSM_D: (
|
||||||
"model.layers.{bid}.D",
|
"model.layers.{bid}.D",
|
||||||
"backbone.layers.{bid}.mixer.D",
|
"backbone.layers.{bid}.mixer.D",
|
||||||
|
"model.layers.{bid}.mamba.D",
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_NORM: (
|
MODEL_TENSOR.SSM_NORM: (
|
||||||
|
"model.layers.{bid}.mamba.norm", # falcon-h1
|
||||||
"backbone.layers.{bid}.mixer.norm", # mamba2
|
"backbone.layers.{bid}.mixer.norm", # mamba2
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.SSM_OUT: (
|
MODEL_TENSOR.SSM_OUT: (
|
||||||
"model.layers.{bid}.out_proj",
|
"model.layers.{bid}.out_proj",
|
||||||
"backbone.layers.{bid}.mixer.out_proj",
|
"backbone.layers.{bid}.mixer.out_proj",
|
||||||
|
"model.layers.{bid}.mamba.out_proj", # falcon-h1
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.TIME_MIX_W0: (
|
MODEL_TENSOR.TIME_MIX_W0: (
|
||||||
|
|
|
@ -46,6 +46,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||||
{ LLM_ARCH_MAMBA, "mamba" },
|
{ LLM_ARCH_MAMBA, "mamba" },
|
||||||
{ LLM_ARCH_MAMBA2, "mamba2" },
|
{ LLM_ARCH_MAMBA2, "mamba2" },
|
||||||
|
{ LLM_ARCH_FALCON_H1, "falcon-h1" },
|
||||||
{ LLM_ARCH_XVERSE, "xverse" },
|
{ LLM_ARCH_XVERSE, "xverse" },
|
||||||
{ LLM_ARCH_COMMAND_R, "command-r" },
|
{ LLM_ARCH_COMMAND_R, "command-r" },
|
||||||
{ LLM_ARCH_COHERE2, "cohere2" },
|
{ LLM_ARCH_COHERE2, "cohere2" },
|
||||||
|
@ -1024,6 +1025,30 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||||
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_FALCON_H1,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
|
||||||
|
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
|
||||||
|
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
|
||||||
|
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
|
||||||
|
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
|
||||||
|
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
|
||||||
|
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||||||
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_XVERSE,
|
LLM_ARCH_XVERSE,
|
||||||
{
|
{
|
||||||
|
@ -1967,9 +1992,10 @@ bool llm_arch_is_recurrent(const llm_arch & arch) {
|
||||||
}
|
}
|
||||||
|
|
||||||
bool llm_arch_is_hybrid(const llm_arch & arch) {
|
bool llm_arch_is_hybrid(const llm_arch & arch) {
|
||||||
// TODO: There are currently no hybrid models! Once there are, this will be
|
// List all mamba-attention hybrid models here
|
||||||
// the place to identify them
|
|
||||||
switch (arch) {
|
switch (arch) {
|
||||||
|
case LLM_ARCH_FALCON_H1:
|
||||||
|
return true;
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
|
@ -50,6 +50,7 @@ enum llm_arch {
|
||||||
LLM_ARCH_STARCODER2,
|
LLM_ARCH_STARCODER2,
|
||||||
LLM_ARCH_MAMBA,
|
LLM_ARCH_MAMBA,
|
||||||
LLM_ARCH_MAMBA2,
|
LLM_ARCH_MAMBA2,
|
||||||
|
LLM_ARCH_FALCON_H1,
|
||||||
LLM_ARCH_XVERSE,
|
LLM_ARCH_XVERSE,
|
||||||
LLM_ARCH_COMMAND_R,
|
LLM_ARCH_COMMAND_R,
|
||||||
LLM_ARCH_COHERE2,
|
LLM_ARCH_COHERE2,
|
||||||
|
|
|
@ -1550,6 +1550,37 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||||
default: type = LLM_TYPE_UNKNOWN;
|
default: type = LLM_TYPE_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_FALCON_H1:
|
||||||
|
{
|
||||||
|
// Common parameters
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
|
||||||
|
// SSM parameters
|
||||||
|
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
||||||
|
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
||||||
|
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
||||||
|
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
||||||
|
ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
|
||||||
|
|
||||||
|
std::fill(hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), true);
|
||||||
|
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 36:
|
||||||
|
type = LLM_TYPE_0_5B; break;
|
||||||
|
case 24:
|
||||||
|
type = LLM_TYPE_1_5B; break;
|
||||||
|
case 66:
|
||||||
|
type = LLM_TYPE_1B; break;
|
||||||
|
case 32:
|
||||||
|
type = LLM_TYPE_3B; break;
|
||||||
|
case 44:
|
||||||
|
type = LLM_TYPE_7B; break;
|
||||||
|
case 72:
|
||||||
|
type = LLM_TYPE_34B; break;
|
||||||
|
default:
|
||||||
|
type = LLM_TYPE_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_HUNYUAN_MOE:
|
case LLM_ARCH_HUNYUAN_MOE:
|
||||||
{
|
{
|
||||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
@ -4497,6 +4528,83 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_FALCON_H1:
|
||||||
|
{
|
||||||
|
// Common
|
||||||
|
const int64_t hidden_size = hparams.n_embd; // hidden_size
|
||||||
|
|
||||||
|
// mamba2 Mixer SSM params
|
||||||
|
const int64_t ssm_conv_kernel_size = hparams.ssm_d_conv; // ssm_conv_kernel_size
|
||||||
|
const int64_t ssm_n_groups = hparams.ssm_n_group; // ssm_n_groups
|
||||||
|
const int64_t ssm_state_size = hparams.ssm_d_state; // ssm_state_size
|
||||||
|
const int64_t ssm_intermediate_size = hparams.ssm_d_inner; // TODO expand
|
||||||
|
const int64_t ssm_num_heads = hparams.ssm_dt_rank; // ssm_num_heads
|
||||||
|
const int64_t ssm_conv_dim = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
|
||||||
|
const int64_t ssm_projection_size = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;
|
||||||
|
|
||||||
|
// attn params
|
||||||
|
const int64_t attn_num_attention_head = hparams.n_head(0); // rename to: attn_num_attention_head
|
||||||
|
const int64_t attn_num_key_value_head = hparams.n_head_kv(0);
|
||||||
|
|
||||||
|
// ffn params
|
||||||
|
const int64_t ffn_intermediate_size = hparams.n_ff(0);
|
||||||
|
|
||||||
|
// embeddings
|
||||||
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, 0);
|
||||||
|
|
||||||
|
// output
|
||||||
|
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||||
|
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {hidden_size}, 0);
|
||||||
|
|
||||||
|
// if output is NULL, init from the input tok embed
|
||||||
|
if (output == NULL) {
|
||||||
|
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, TENSOR_DUPLICATED);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
auto & layer = layers[i];
|
||||||
|
|
||||||
|
/*SSM LAYERS*/
|
||||||
|
// ssm in
|
||||||
|
layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {hidden_size, ssm_projection_size}, 0);
|
||||||
|
// ssm 1d conv
|
||||||
|
layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {ssm_conv_kernel_size, ssm_conv_dim}, 0);
|
||||||
|
layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {ssm_conv_dim}, TENSOR_NOT_REQUIRED);
|
||||||
|
// ssm_dt
|
||||||
|
layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {ssm_num_heads}, 0);
|
||||||
|
// no "weight" suffix for these
|
||||||
|
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, ssm_num_heads}, 0);
|
||||||
|
layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, ssm_num_heads}, 0);
|
||||||
|
// ssm_norm
|
||||||
|
layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_intermediate_size / ssm_n_groups, ssm_n_groups}, TENSOR_NOT_REQUIRED);
|
||||||
|
// out_proj
|
||||||
|
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_intermediate_size, hidden_size}, 0);
|
||||||
|
|
||||||
|
/*ATTENTION LAYERS*/
|
||||||
|
// attention layers (with optional bias)
|
||||||
|
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {hidden_size, n_embd_head_k * attn_num_attention_head}, 0);
|
||||||
|
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_k}, 0);
|
||||||
|
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_v}, 0);
|
||||||
|
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * attn_num_attention_head, hidden_size}, 0);
|
||||||
|
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
|
||||||
|
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {attn_num_key_value_head * n_embd_head_k}, TENSOR_NOT_REQUIRED);
|
||||||
|
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {attn_num_key_value_head * n_embd_head_v}, TENSOR_NOT_REQUIRED);
|
||||||
|
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
|
||||||
|
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {hidden_size}, 0);
|
||||||
|
|
||||||
|
|
||||||
|
// feed forward (w/ optional biases)
|
||||||
|
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, i), {hidden_size}, 0);
|
||||||
|
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||||
|
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
|
||||||
|
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { ffn_intermediate_size, hidden_size}, 0);
|
||||||
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
|
||||||
|
|
||||||
|
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
|
||||||
|
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
|
||||||
|
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_HUNYUAN_MOE:
|
case LLM_ARCH_HUNYUAN_MOE:
|
||||||
{
|
{
|
||||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||||
|
@ -10147,7 +10255,7 @@ struct llm_build_mamba : public llm_graph_context {
|
||||||
|
|
||||||
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
||||||
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
||||||
// cb(cur, "mamba_out", il);
|
cb(cur, "mamba_out", il);
|
||||||
|
|
||||||
return cur;
|
return cur;
|
||||||
}
|
}
|
||||||
|
@ -14598,6 +14706,267 @@ struct llm_build_ernie4_5 : public llm_graph_context {
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct llm_build_falcon_h1 : public llm_graph_context {
|
||||||
|
const llama_model & model;
|
||||||
|
|
||||||
|
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
|
||||||
|
ggml_tensor * cur;
|
||||||
|
ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = build_inp_embd(model.tok_embd);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
|
// Build the inputs in the recurrent & kv cache
|
||||||
|
auto * inp = build_inp_mem_hybrid();
|
||||||
|
|
||||||
|
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||||
|
|
||||||
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
cur = build_norm(inpL,
|
||||||
|
model.layers[il].attn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, il);
|
||||||
|
cb(cur, "attn_norm", il);
|
||||||
|
|
||||||
|
// self-attention
|
||||||
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||||
|
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||||
|
|
||||||
|
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||||
|
|
||||||
|
Qcur = ggml_rope_ext(
|
||||||
|
ctx0, Qcur, inp_pos, nullptr,
|
||||||
|
n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||||
|
|
||||||
|
Kcur = ggml_rope_ext(
|
||||||
|
ctx0, Kcur, inp_pos, nullptr,
|
||||||
|
n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
|
||||||
|
cb(Qcur, "Qcur-post-rope", il);
|
||||||
|
cb(Kcur, "Kcur-post-rope", il);
|
||||||
|
cb(Vcur, "Vcur-post-rope", il);
|
||||||
|
|
||||||
|
ggml_tensor * attn_out = build_attn(inp, gf,
|
||||||
|
model.layers[il].wo, NULL,
|
||||||
|
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
||||||
|
cb(attn_out, "attn_out", il);
|
||||||
|
|
||||||
|
cur = build_norm(inpL,
|
||||||
|
model.layers[il].attn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, il);
|
||||||
|
// Mamba2 layer
|
||||||
|
cb(cur, "ssm_in", il);
|
||||||
|
|
||||||
|
ggml_tensor * ssm_out = build_mamba2_layer(inp, gf, cur, ubatch, il);
|
||||||
|
cb(ssm_out, "ssm_out", il);
|
||||||
|
|
||||||
|
// // Aggregation
|
||||||
|
cur = ggml_add(ctx0, attn_out, ssm_out);
|
||||||
|
inpSA = ggml_add(ctx0, cur, inpSA);
|
||||||
|
cb(cur, "layer_out", il);
|
||||||
|
|
||||||
|
if (il == n_layer - 1 && inp_out_ids) {
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_tensor * ffn_inp = inpSA;
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
||||||
|
// feed-forward network
|
||||||
|
cur = build_norm(ffn_inp,
|
||||||
|
model.layers[il].ffn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, il);
|
||||||
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
|
cur = build_ffn(cur,
|
||||||
|
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||||
|
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||||
|
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||||
|
NULL,
|
||||||
|
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, inpSA);
|
||||||
|
|
||||||
|
cur = build_cvec(cur, il);
|
||||||
|
cb(cur, "l_out", il);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
cur = build_norm(cur,
|
||||||
|
model.output_norm, NULL,
|
||||||
|
LLM_NORM_RMS, -1);
|
||||||
|
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
res->t_embd = cur;
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = build_lora_mm(model.output, cur);
|
||||||
|
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
res->t_logits = cur;
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_tensor * build_mamba2_layer(
|
||||||
|
llm_graph_input_mem_hybrid * inp,
|
||||||
|
ggml_cgraph * gf,
|
||||||
|
ggml_tensor * cur,
|
||||||
|
const llama_ubatch & ubatch,
|
||||||
|
int il) const {
|
||||||
|
const auto * kv_state = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
|
||||||
|
|
||||||
|
const auto kv_head = kv_state->get_head();
|
||||||
|
|
||||||
|
const int64_t d_conv = hparams.ssm_d_conv;
|
||||||
|
const int64_t d_inner = hparams.ssm_d_inner;
|
||||||
|
const int64_t d_state = hparams.ssm_d_state;
|
||||||
|
const int64_t n_head = hparams.ssm_dt_rank;
|
||||||
|
const int64_t head_dim = d_inner / n_head;
|
||||||
|
const int64_t n_group = hparams.ssm_n_group;
|
||||||
|
const int64_t n_seqs = ubatch.n_seqs;
|
||||||
|
|
||||||
|
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||||
|
|
||||||
|
GGML_ASSERT(n_seqs != 0);
|
||||||
|
GGML_ASSERT(ubatch.equal_seqs);
|
||||||
|
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
||||||
|
|
||||||
|
ggml_tensor * conv_states_all = kv_state->get_r_l(il);
|
||||||
|
ggml_tensor * ssm_states_all = kv_state->get_s_l(il);
|
||||||
|
|
||||||
|
ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs);
|
||||||
|
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
|
||||||
|
|
||||||
|
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
|
||||||
|
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
||||||
|
|
||||||
|
// d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
|
||||||
|
|
||||||
|
// {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
|
||||||
|
ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
|
||||||
|
cb(zxBCdt, "zxBCdt", il);
|
||||||
|
|
||||||
|
// split the above in three
|
||||||
|
ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
|
||||||
|
ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner*ggml_element_size(zxBCdt));
|
||||||
|
ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
|
||||||
|
|
||||||
|
// conv
|
||||||
|
{
|
||||||
|
// => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
|
||||||
|
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
|
||||||
|
|
||||||
|
// copy last (d_conv - 1) columns back into the state cache
|
||||||
|
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf,
|
||||||
|
ggml_cpy(ctx0, last_conv,
|
||||||
|
ggml_view_1d(ctx0, conv_states_all,
|
||||||
|
(d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
|
||||||
|
kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
|
||||||
|
|
||||||
|
// 1D convolution
|
||||||
|
// The equivalent is to make a self-overlapping view of conv_x
|
||||||
|
// over d_conv columns at each stride in the 3rd dimension,
|
||||||
|
// then element-wise multiply that with the conv1d weight,
|
||||||
|
// then sum the elements of each row,
|
||||||
|
// (the last two steps are a dot product over rows (also doable with mul_mat))
|
||||||
|
// then permute away the ne[0] dimension,
|
||||||
|
// and then you're left with the resulting x tensor.
|
||||||
|
// For simultaneous sequences, all sequences need to have the same length.
|
||||||
|
xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
|
||||||
|
|
||||||
|
// bias
|
||||||
|
xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
|
||||||
|
|
||||||
|
xBC = ggml_silu(ctx0, xBC);
|
||||||
|
}
|
||||||
|
|
||||||
|
// ssm
|
||||||
|
{
|
||||||
|
// These correspond to V K Q in SSM/attention duality
|
||||||
|
ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
|
||||||
|
|
||||||
|
ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner*ggml_element_size(xBC));
|
||||||
|
|
||||||
|
ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
|
||||||
|
|
||||||
|
// {n_head, n_seq_tokens, n_seqs}
|
||||||
|
dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
|
||||||
|
|
||||||
|
ggml_tensor * A = model.layers[il].ssm_a;
|
||||||
|
|
||||||
|
// use the states and the indices provided by build_rs
|
||||||
|
// (this is necessary in order to properly use the states before they are overwritten,
|
||||||
|
// while avoiding to make unnecessary copies of the states)
|
||||||
|
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
|
||||||
|
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, kv_state->get_size());
|
||||||
|
|
||||||
|
// TODO: use semistructured matrices to implement state-space duality
|
||||||
|
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
|
||||||
|
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
|
||||||
|
};
|
||||||
|
|
||||||
|
ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
|
||||||
|
|
||||||
|
// store last states
|
||||||
|
ggml_build_forward_expand(gf,
|
||||||
|
ggml_cpy(ctx0,
|
||||||
|
ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, ggml_nelements(x)*x->nb[0]),
|
||||||
|
ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
|
||||||
|
|
||||||
|
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
|
||||||
|
|
||||||
|
// TODO: skip computing output earlier for unused tokens
|
||||||
|
|
||||||
|
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
|
||||||
|
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
||||||
|
|
||||||
|
// grouped RMS norm
|
||||||
|
if (model.layers[il].ssm_norm) {
|
||||||
|
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
||||||
|
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
||||||
|
}
|
||||||
|
|
||||||
|
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
|
||||||
|
|
||||||
|
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
||||||
|
cur = build_lora_mm(model.layers[il].ssm_out, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
||||||
|
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
||||||
|
cb(cur, "mamba_out", il);
|
||||||
|
return cur;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
struct llm_build_arcee : public llm_graph_context {
|
struct llm_build_arcee : public llm_graph_context {
|
||||||
llm_build_arcee(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
llm_build_arcee(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
@ -15077,7 +15446,9 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||||
/* recurrent_type_v */ GGML_TYPE_F32,
|
/* recurrent_type_v */ GGML_TYPE_F32,
|
||||||
/* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
|
/* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
|
||||||
/* n_seq_max */ cparams.n_seq_max,
|
/* n_seq_max */ cparams.n_seq_max,
|
||||||
/* offload */ cparams.offload_kqv);
|
/* offload */ cparams.offload_kqv,
|
||||||
|
/* filter_attn */ (arch == LLM_ARCH_FALCON_H1) ? [&](int32_t) { return true; } : (llama_memory_hybrid::layer_filter_cb)nullptr,
|
||||||
|
/* filter_recr */ (arch == LLM_ARCH_FALCON_H1) ? [&](int32_t) { return true; } : (llama_memory_hybrid::layer_filter_cb)nullptr);
|
||||||
} else {
|
} else {
|
||||||
const auto padding = llama_kv_cache_unified::get_padding(cparams);
|
const auto padding = llama_kv_cache_unified::get_padding(cparams);
|
||||||
|
|
||||||
|
@ -15419,6 +15790,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
||||||
{
|
{
|
||||||
llm = std::make_unique<llm_build_smollm3>(*this, params, gf);
|
llm = std::make_unique<llm_build_smollm3>(*this, params, gf);
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_FALCON_H1:
|
||||||
|
{
|
||||||
|
llm = std::make_unique<llm_build_falcon_h1>(*this, params, gf);
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
GGML_ABORT("fatal error");
|
GGML_ABORT("fatal error");
|
||||||
}
|
}
|
||||||
|
@ -15577,6 +15952,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||||
|
|
||||||
// the pairs of head values are offset by n_rot/2
|
// the pairs of head values are offset by n_rot/2
|
||||||
case LLM_ARCH_FALCON:
|
case LLM_ARCH_FALCON:
|
||||||
|
case LLM_ARCH_FALCON_H1:
|
||||||
case LLM_ARCH_GROK:
|
case LLM_ARCH_GROK:
|
||||||
case LLM_ARCH_DBRX:
|
case LLM_ARCH_DBRX:
|
||||||
case LLM_ARCH_BERT:
|
case LLM_ARCH_BERT:
|
||||||
|
|
|
@ -1523,6 +1523,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||||
tokenizer_pre == "llama-v3" ||
|
tokenizer_pre == "llama-v3" ||
|
||||||
tokenizer_pre == "llama-bpe"||
|
tokenizer_pre == "llama-bpe"||
|
||||||
tokenizer_pre == "falcon3" ||
|
tokenizer_pre == "falcon3" ||
|
||||||
|
tokenizer_pre == "falcon-h1" ||
|
||||||
tokenizer_pre == "pixtral") {
|
tokenizer_pre == "pixtral") {
|
||||||
pre_type = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
|
pre_type = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
|
||||||
ignore_merges = true;
|
ignore_merges = true;
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue