model : add support for Falcon-H1 family (#14534)

* v1

* push more fixes

* another fix

* fix

* more fixes

* minor fix

* more cleaning on python code

* python fixes

* changed precision for multipliers float 32->64

* fixes

* another fix

* fix

* pre-norm -> norm

* fix

* Revert "fix"

This reverts commit 243e4d1a50bd73467d99f6b289b9a1826f83b94b.

* fix

* small fix ffn_norm

* try

* mix instead of max

* fix vocab size

* conflict solve

* fixed multipliers

* falcon-h1 specefic vocab resolved

* read arch from gguf.MODEL_ARCH

* mamba_d_ssm added to d_inner find_hparam

* remove unused functions from gguf_writer.py

* override modify_tensors instead of get_tensors

* fix conversion and d_inner

* added some cb functions for debugging puposes

* inp_out_ids moved outside of layers loop

* mup_vec create as float64

* fix rope_theta

* injected mup

* clean ups

* rm extra space

* rm unused MAMBA_CHUNK_SIZE

* rm unused key

* add bos False

* changed ROPE_TYPE

* cleaning debugging stuff

* cleaning debug quant

* fix comment

* some cleanups

* some cleanups

* Update src/llama-model-loader.cpp

* more cleanups

* moe cleanuips

* d_ssm -> d_inner;

* cleaning unused hparams

* cleanup

* more cleanups

* more cleanups on python conversion;

* minor cleanups

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* remove todo

* added falcon-h1

* tensor not required

* clean

* remove unneeded attributes

* more cleanups and fixed conversion

* remove final_norm

* flake8 fixes

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* flake8 fixes

* Update src/llama-hparams.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* added hashes

* Update src/llama-arch.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-vocab.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update the update file

* Revert "update the update file"

This reverts commit 082ab4ad2a3927384d878666a5f8cae4eb15f577.

* fix: address suggestions

* fix: update convert_hf_to_gguf.py

* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model-loader.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* d_inner fixed

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* reshaping ssm_norm for 34B

* removing generate_mup

* remove duplicates metadata keys

* rm comment

* final comment

* fix unused args

* fix constants

* fix bad merge

* Update src/llama-model.cpp

Co-authored-by: compilade <git@compilade.net>

* falcon-h1: remove unused ssm_in_b and bad merge

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* falcon-h1: fix last comment

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* falcon-h1: revert add_add_bos(False)

* falcon-h1: fix tied weights

* falcon-h1: remove whitespace

* falcon-h1: fix wrong size param

* falcon-h1: fix whitespace issues

---------

Co-authored-by: younesbelkada <younes.belkada@tii.ae>
Co-authored-by: Younes B <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: compilade <git@compilade.net>
This commit is contained in:
ibrahim khadraoui 2025-07-09 12:03:49 +04:00 committed by GitHub
parent 20b7bf8a32
commit 04655063c4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 585 additions and 9 deletions

View file

@ -818,6 +818,18 @@ class TextModel(ModelBase):
if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
# ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
res = "hunyuan"
if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
# ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
res = "falcon-h1"
if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
# ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
res = "falcon-h1"
if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
# ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
res = "falcon-h1"
if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
# ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
res = "falcon-h1"
if res is None:
logger.warning("\n")
@ -4899,17 +4911,19 @@ class Mamba2Model(TextModel):
def set_gguf_parameters(self):
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * d_model
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
head_dim = self.find_hparam(["head_dim"], optional=True) or 64
head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
n_group = self.find_hparam(["n_groups"], optional=True) or 1
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
# Fail early for models which don't have a block expansion factor of 2
# TODO: does this really matter?
assert d_inner == 2 * d_model
assert d_inner % head_dim == 0
# skip the assertion for FalconH1 Model
if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
assert d_inner == 2 * d_model
assert d_inner % head_dim == 0
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
self.gguf_writer.add_embedding_length(d_model)
@ -4946,7 +4960,7 @@ class Mamba2Model(TextModel):
data_torch = data_torch.reshape((*data_torch.shape, 1))
elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * d_model
n_group = self.hparams.get("n_groups", 1)
data_torch = data_torch.reshape((n_group, d_inner // n_group))
@ -6539,6 +6553,113 @@ class UltravoxWhisperEncoderModel(WhisperEncoderModel):
self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
@ModelBase.register("FalconH1ForCausalLM")
class FalconH1Model(Mamba2Model):
model_arch = gguf.MODEL_ARCH.FALCON_H1
def __init__(self, *args, **kwargs):
# Set the hparam prefixes for Falcon Mamba2
self.hparam_prefixes = ["mamba"]
# Initialize the base Mamba2Model
super().__init__(*args, **kwargs)
# Use Llama conversion for attention
self._transformer_model_class = LlamaModel
# n_group and d_inner are used during reshape_tensors for mamaba2
self.n_group = self.find_hparam(["n_groups"])
self.d_inner = self.find_hparam(["mamba_d_ssm"])
self.d_head = self.find_hparam(["d_head"])
# Initialize any Falcon Mamba2 specific attributes
self.has_attention = True # Falcon Mamba2 has attention components
# Load Falcon-H1 multipliers from hyperparameters
self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
self.intermediate_size = self.find_hparam(["intermediate_size"])
self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
prefixed = []
for pfx in self.hparam_prefixes:
prefixed.extend(
"_".join([pfx, k])
for k in keys
)
keys = list(keys) + prefixed
return super().find_hparam(keys, *args, **kwargs)
def set_vocab(self):
self._set_vocab_gpt2()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
tensors = list(super().modify_tensors(data_torch, name, bid))
tensor = tensors[0][1]
if "down_proj" in name:
tensor = tensor * self.mlp_multipliers[1]
elif "gate_proj" in name:
tensor = tensor * self.mlp_multipliers[0]
elif "k_proj" in name:
tensor = tensor * self.key_multiplier * self.attention_in_multiplier
elif "q_proj" in name:
tensor = tensor * self.attention_in_multiplier
elif "v_proj" in name:
tensor = tensor * self.attention_in_multiplier
elif "o_proj" in name:
tensor = tensor * self.attention_out_multiplier
elif "out_proj" in name:
tensor = tensor * self.ssm_out_multiplier
elif "in_proj" in name:
tensor = tensor * self.ssm_in_multiplier
zxbcdt_multipliers = self.hparams["ssm_multipliers"]
intermediate_size = self.hparams["mamba_d_ssm"]
groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
elif "lm_head" in name:
tensor = tensor * self.hparams["lm_head_multiplier"]
elif "embed_tokens" in name:
tensor = tensor * self.hparams["embedding_multiplier"]
elif "mamba.norm" in name:
tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
tensors = [(tensors[0][0], tensor)]
return tensors
def set_gguf_parameters(self):
super().set_gguf_parameters()
## General Params ##
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
# Override some Mamba2 defaults
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
## Attention params ##
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
self.gguf_writer.add_key_length(self.hparams["head_dim"])
self.gguf_writer.add_value_length(self.hparams["head_dim"])
## Validation ##
assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
# Add any other Falcon Mamba2 specific configuration
self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
@ModelBase.register("HunYuanMoEV1ForCausalLM")
class HunYuanMoEModel(TextModel):
model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE