mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-01 18:19:08 +00:00
870 lines
31 KiB
Python
870 lines
31 KiB
Python
# Force asyncio to use standard event loop before unstructured imports
|
|
import asyncio
|
|
|
|
from fastapi import APIRouter, BackgroundTasks, Depends, Form, HTTPException, UploadFile
|
|
from litellm import atranscription
|
|
from sqlalchemy.ext.asyncio import AsyncSession
|
|
from sqlalchemy.future import select
|
|
|
|
from app.config import config as app_config
|
|
from app.db import Document, DocumentType, Log, SearchSpace, User, get_async_session
|
|
from app.schemas import DocumentRead, DocumentsCreate, DocumentUpdate
|
|
from app.services.task_logging_service import TaskLoggingService
|
|
from app.tasks.document_processors import (
|
|
add_crawled_url_document,
|
|
add_extension_received_document,
|
|
add_received_file_document_using_docling,
|
|
add_received_file_document_using_llamacloud,
|
|
add_received_file_document_using_unstructured,
|
|
add_received_markdown_file_document,
|
|
add_youtube_video_document,
|
|
)
|
|
from app.users import current_active_user
|
|
from app.utils.check_ownership import check_ownership
|
|
|
|
try:
|
|
asyncio.set_event_loop_policy(asyncio.DefaultEventLoopPolicy())
|
|
except RuntimeError as e:
|
|
print("Error setting event loop policy", e)
|
|
pass
|
|
|
|
import os
|
|
|
|
os.environ["UNSTRUCTURED_HAS_PATCHED_LOOP"] = "1"
|
|
|
|
|
|
router = APIRouter()
|
|
|
|
|
|
@router.post("/documents/")
|
|
async def create_documents(
|
|
request: DocumentsCreate,
|
|
session: AsyncSession = Depends(get_async_session),
|
|
user: User = Depends(current_active_user),
|
|
fastapi_background_tasks: BackgroundTasks = BackgroundTasks(),
|
|
):
|
|
try:
|
|
# Check if the user owns the search space
|
|
await check_ownership(session, SearchSpace, request.search_space_id, user)
|
|
|
|
if request.document_type == DocumentType.EXTENSION:
|
|
for individual_document in request.content:
|
|
fastapi_background_tasks.add_task(
|
|
process_extension_document_with_new_session,
|
|
individual_document,
|
|
request.search_space_id,
|
|
str(user.id),
|
|
)
|
|
elif request.document_type == DocumentType.CRAWLED_URL:
|
|
for url in request.content:
|
|
fastapi_background_tasks.add_task(
|
|
process_crawled_url_with_new_session,
|
|
url,
|
|
request.search_space_id,
|
|
str(user.id),
|
|
)
|
|
elif request.document_type == DocumentType.YOUTUBE_VIDEO:
|
|
for url in request.content:
|
|
fastapi_background_tasks.add_task(
|
|
process_youtube_video_with_new_session,
|
|
url,
|
|
request.search_space_id,
|
|
str(user.id),
|
|
)
|
|
else:
|
|
raise HTTPException(status_code=400, detail="Invalid document type")
|
|
|
|
await session.commit()
|
|
return {"message": "Documents processed successfully"}
|
|
except HTTPException:
|
|
raise
|
|
except Exception as e:
|
|
await session.rollback()
|
|
raise HTTPException(
|
|
status_code=500, detail=f"Failed to process documents: {e!s}"
|
|
) from e
|
|
|
|
|
|
@router.post("/documents/fileupload")
|
|
async def create_documents_file_upload(
|
|
files: list[UploadFile],
|
|
search_space_id: int = Form(...),
|
|
session: AsyncSession = Depends(get_async_session),
|
|
user: User = Depends(current_active_user),
|
|
fastapi_background_tasks: BackgroundTasks = BackgroundTasks(),
|
|
):
|
|
try:
|
|
await check_ownership(session, SearchSpace, search_space_id, user)
|
|
|
|
if not files:
|
|
raise HTTPException(status_code=400, detail="No files provided")
|
|
|
|
for file in files:
|
|
try:
|
|
# Save file to a temporary location to avoid stream issues
|
|
import os
|
|
import tempfile
|
|
|
|
# Create temp file
|
|
with tempfile.NamedTemporaryFile(
|
|
delete=False, suffix=os.path.splitext(file.filename)[1]
|
|
) as temp_file:
|
|
temp_path = temp_file.name
|
|
|
|
# Write uploaded file to temp file
|
|
content = await file.read()
|
|
with open(temp_path, "wb") as f:
|
|
f.write(content)
|
|
|
|
fastapi_background_tasks.add_task(
|
|
process_file_in_background_with_new_session,
|
|
temp_path,
|
|
file.filename,
|
|
search_space_id,
|
|
str(user.id),
|
|
)
|
|
except Exception as e:
|
|
raise HTTPException(
|
|
status_code=422,
|
|
detail=f"Failed to process file {file.filename}: {e!s}",
|
|
) from e
|
|
|
|
await session.commit()
|
|
return {"message": "Files uploaded for processing"}
|
|
except HTTPException:
|
|
raise
|
|
except Exception as e:
|
|
await session.rollback()
|
|
raise HTTPException(
|
|
status_code=500, detail=f"Failed to upload files: {e!s}"
|
|
) from e
|
|
|
|
|
|
async def process_file_in_background(
|
|
file_path: str,
|
|
filename: str,
|
|
search_space_id: int,
|
|
user_id: str,
|
|
session: AsyncSession,
|
|
task_logger: TaskLoggingService,
|
|
log_entry: Log,
|
|
):
|
|
try:
|
|
# Check if the file is a markdown or text file
|
|
if filename.lower().endswith((".md", ".markdown", ".txt")):
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Processing markdown/text file: {filename}",
|
|
{"file_type": "markdown", "processing_stage": "reading_file"},
|
|
)
|
|
|
|
# For markdown files, read the content directly
|
|
with open(file_path, encoding="utf-8") as f:
|
|
markdown_content = f.read()
|
|
|
|
# Clean up the temp file
|
|
import os
|
|
|
|
try:
|
|
os.unlink(file_path)
|
|
except Exception as e:
|
|
print("Error deleting temp file", e)
|
|
pass
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Creating document from markdown content: {filename}",
|
|
{
|
|
"processing_stage": "creating_document",
|
|
"content_length": len(markdown_content),
|
|
},
|
|
)
|
|
|
|
# Process markdown directly through specialized function
|
|
result = await add_received_markdown_file_document(
|
|
session, filename, markdown_content, search_space_id, user_id
|
|
)
|
|
|
|
if result:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully processed markdown file: {filename}",
|
|
{
|
|
"document_id": result.id,
|
|
"content_hash": result.content_hash,
|
|
"file_type": "markdown",
|
|
},
|
|
)
|
|
else:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Markdown file already exists (duplicate): {filename}",
|
|
{"duplicate_detected": True, "file_type": "markdown"},
|
|
)
|
|
|
|
# Check if the file is an audio file
|
|
elif filename.lower().endswith(
|
|
(".mp3", ".mp4", ".mpeg", ".mpga", ".m4a", ".wav", ".webm")
|
|
):
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Processing audio file for transcription: {filename}",
|
|
{"file_type": "audio", "processing_stage": "starting_transcription"},
|
|
)
|
|
|
|
# Open the audio file for transcription
|
|
with open(file_path, "rb") as audio_file:
|
|
# Use LiteLLM for audio transcription
|
|
if app_config.STT_SERVICE_API_BASE:
|
|
transcription_response = await atranscription(
|
|
model=app_config.STT_SERVICE,
|
|
file=audio_file,
|
|
api_base=app_config.STT_SERVICE_API_BASE,
|
|
api_key=app_config.STT_SERVICE_API_KEY,
|
|
)
|
|
else:
|
|
transcription_response = await atranscription(
|
|
model=app_config.STT_SERVICE,
|
|
api_key=app_config.STT_SERVICE_API_KEY,
|
|
file=audio_file,
|
|
)
|
|
|
|
# Extract the transcribed text
|
|
transcribed_text = transcription_response.get("text", "")
|
|
|
|
# Add metadata about the transcription
|
|
transcribed_text = (
|
|
f"# Transcription of {filename}\n\n{transcribed_text}"
|
|
)
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Transcription completed, creating document: {filename}",
|
|
{
|
|
"processing_stage": "transcription_complete",
|
|
"transcript_length": len(transcribed_text),
|
|
},
|
|
)
|
|
|
|
# Clean up the temp file
|
|
try:
|
|
os.unlink(file_path)
|
|
except Exception as e:
|
|
print("Error deleting temp file", e)
|
|
pass
|
|
|
|
# Process transcription as markdown document
|
|
result = await add_received_markdown_file_document(
|
|
session, filename, transcribed_text, search_space_id, user_id
|
|
)
|
|
|
|
if result:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully transcribed and processed audio file: {filename}",
|
|
{
|
|
"document_id": result.id,
|
|
"content_hash": result.content_hash,
|
|
"file_type": "audio",
|
|
"transcript_length": len(transcribed_text),
|
|
},
|
|
)
|
|
else:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Audio file transcript already exists (duplicate): {filename}",
|
|
{"duplicate_detected": True, "file_type": "audio"},
|
|
)
|
|
|
|
else:
|
|
if app_config.ETL_SERVICE == "UNSTRUCTURED":
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Processing file with Unstructured ETL: {filename}",
|
|
{
|
|
"file_type": "document",
|
|
"etl_service": "UNSTRUCTURED",
|
|
"processing_stage": "loading",
|
|
},
|
|
)
|
|
|
|
from langchain_unstructured import UnstructuredLoader
|
|
|
|
# Process the file
|
|
loader = UnstructuredLoader(
|
|
file_path,
|
|
mode="elements",
|
|
post_processors=[],
|
|
languages=["eng"],
|
|
include_orig_elements=False,
|
|
include_metadata=False,
|
|
strategy="auto",
|
|
)
|
|
|
|
docs = await loader.aload()
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Unstructured ETL completed, creating document: {filename}",
|
|
{"processing_stage": "etl_complete", "elements_count": len(docs)},
|
|
)
|
|
|
|
# Clean up the temp file
|
|
import os
|
|
|
|
try:
|
|
os.unlink(file_path)
|
|
except Exception as e:
|
|
print("Error deleting temp file", e)
|
|
pass
|
|
|
|
# Pass the documents to the existing background task
|
|
result = await add_received_file_document_using_unstructured(
|
|
session, filename, docs, search_space_id, user_id
|
|
)
|
|
|
|
if result:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully processed file with Unstructured: {filename}",
|
|
{
|
|
"document_id": result.id,
|
|
"content_hash": result.content_hash,
|
|
"file_type": "document",
|
|
"etl_service": "UNSTRUCTURED",
|
|
},
|
|
)
|
|
else:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Document already exists (duplicate): {filename}",
|
|
{
|
|
"duplicate_detected": True,
|
|
"file_type": "document",
|
|
"etl_service": "UNSTRUCTURED",
|
|
},
|
|
)
|
|
|
|
elif app_config.ETL_SERVICE == "LLAMACLOUD":
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Processing file with LlamaCloud ETL: {filename}",
|
|
{
|
|
"file_type": "document",
|
|
"etl_service": "LLAMACLOUD",
|
|
"processing_stage": "parsing",
|
|
},
|
|
)
|
|
|
|
from llama_cloud_services import LlamaParse
|
|
from llama_cloud_services.parse.utils import ResultType
|
|
|
|
# Create LlamaParse parser instance
|
|
parser = LlamaParse(
|
|
api_key=app_config.LLAMA_CLOUD_API_KEY,
|
|
num_workers=1, # Use single worker for file processing
|
|
verbose=True,
|
|
language="en",
|
|
result_type=ResultType.MD,
|
|
)
|
|
|
|
# Parse the file asynchronously
|
|
result = await parser.aparse(file_path)
|
|
|
|
# Clean up the temp file
|
|
import os
|
|
|
|
try:
|
|
os.unlink(file_path)
|
|
except Exception as e:
|
|
print("Error deleting temp file", e)
|
|
pass
|
|
|
|
# Get markdown documents from the result
|
|
markdown_documents = await result.aget_markdown_documents(
|
|
split_by_page=False
|
|
)
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"LlamaCloud parsing completed, creating documents: {filename}",
|
|
{
|
|
"processing_stage": "parsing_complete",
|
|
"documents_count": len(markdown_documents),
|
|
},
|
|
)
|
|
|
|
for doc in markdown_documents:
|
|
# Extract text content from the markdown documents
|
|
markdown_content = doc.text
|
|
|
|
# Process the documents using our LlamaCloud background task
|
|
doc_result = await add_received_file_document_using_llamacloud(
|
|
session,
|
|
filename,
|
|
llamacloud_markdown_document=markdown_content,
|
|
search_space_id=search_space_id,
|
|
user_id=user_id,
|
|
)
|
|
|
|
if doc_result:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully processed file with LlamaCloud: {filename}",
|
|
{
|
|
"document_id": doc_result.id,
|
|
"content_hash": doc_result.content_hash,
|
|
"file_type": "document",
|
|
"etl_service": "LLAMACLOUD",
|
|
},
|
|
)
|
|
else:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Document already exists (duplicate): {filename}",
|
|
{
|
|
"duplicate_detected": True,
|
|
"file_type": "document",
|
|
"etl_service": "LLAMACLOUD",
|
|
},
|
|
)
|
|
|
|
elif app_config.ETL_SERVICE == "DOCLING":
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Processing file with Docling ETL: {filename}",
|
|
{
|
|
"file_type": "document",
|
|
"etl_service": "DOCLING",
|
|
"processing_stage": "parsing",
|
|
},
|
|
)
|
|
|
|
# Use Docling service for document processing
|
|
from app.services.docling_service import create_docling_service
|
|
|
|
# Create Docling service
|
|
docling_service = create_docling_service()
|
|
|
|
# Process the document
|
|
result = await docling_service.process_document(file_path, filename)
|
|
|
|
# Clean up the temp file
|
|
import os
|
|
|
|
try:
|
|
os.unlink(file_path)
|
|
except Exception as e:
|
|
print("Error deleting temp file", e)
|
|
pass
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Docling parsing completed, creating document: {filename}",
|
|
{
|
|
"processing_stage": "parsing_complete",
|
|
"content_length": len(result["content"]),
|
|
},
|
|
)
|
|
|
|
# Process the document using our Docling background task
|
|
doc_result = await add_received_file_document_using_docling(
|
|
session,
|
|
filename,
|
|
docling_markdown_document=result["content"],
|
|
search_space_id=search_space_id,
|
|
user_id=user_id,
|
|
)
|
|
|
|
if doc_result:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully processed file with Docling: {filename}",
|
|
{
|
|
"document_id": doc_result.id,
|
|
"content_hash": doc_result.content_hash,
|
|
"file_type": "document",
|
|
"etl_service": "DOCLING",
|
|
},
|
|
)
|
|
else:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Document already exists (duplicate): {filename}",
|
|
{
|
|
"duplicate_detected": True,
|
|
"file_type": "document",
|
|
"etl_service": "DOCLING",
|
|
},
|
|
)
|
|
except Exception as e:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to process file: {filename}",
|
|
str(e),
|
|
{"error_type": type(e).__name__, "filename": filename},
|
|
)
|
|
import logging
|
|
|
|
logging.error(f"Error processing file in background: {e!s}")
|
|
raise # Re-raise so the wrapper can also handle it
|
|
|
|
|
|
@router.get("/documents/", response_model=list[DocumentRead])
|
|
async def read_documents(
|
|
skip: int = 0,
|
|
limit: int = 3000,
|
|
search_space_id: int | None = None,
|
|
session: AsyncSession = Depends(get_async_session),
|
|
user: User = Depends(current_active_user),
|
|
):
|
|
try:
|
|
query = (
|
|
select(Document).join(SearchSpace).filter(SearchSpace.user_id == user.id)
|
|
)
|
|
|
|
# Filter by search_space_id if provided
|
|
if search_space_id is not None:
|
|
query = query.filter(Document.search_space_id == search_space_id)
|
|
|
|
result = await session.execute(query.offset(skip).limit(limit))
|
|
db_documents = result.scalars().all()
|
|
|
|
# Convert database objects to API-friendly format
|
|
api_documents = []
|
|
for doc in db_documents:
|
|
api_documents.append(
|
|
DocumentRead(
|
|
id=doc.id,
|
|
title=doc.title,
|
|
document_type=doc.document_type,
|
|
document_metadata=doc.document_metadata,
|
|
content=doc.content,
|
|
created_at=doc.created_at,
|
|
search_space_id=doc.search_space_id,
|
|
)
|
|
)
|
|
|
|
return api_documents
|
|
except Exception as e:
|
|
raise HTTPException(
|
|
status_code=500, detail=f"Failed to fetch documents: {e!s}"
|
|
) from e
|
|
|
|
|
|
@router.get("/documents/{document_id}", response_model=DocumentRead)
|
|
async def read_document(
|
|
document_id: int,
|
|
session: AsyncSession = Depends(get_async_session),
|
|
user: User = Depends(current_active_user),
|
|
):
|
|
try:
|
|
result = await session.execute(
|
|
select(Document)
|
|
.join(SearchSpace)
|
|
.filter(Document.id == document_id, SearchSpace.user_id == user.id)
|
|
)
|
|
document = result.scalars().first()
|
|
|
|
if not document:
|
|
raise HTTPException(
|
|
status_code=404, detail=f"Document with id {document_id} not found"
|
|
)
|
|
|
|
# Convert database object to API-friendly format
|
|
return DocumentRead(
|
|
id=document.id,
|
|
title=document.title,
|
|
document_type=document.document_type,
|
|
document_metadata=document.document_metadata,
|
|
content=document.content,
|
|
created_at=document.created_at,
|
|
search_space_id=document.search_space_id,
|
|
)
|
|
except Exception as e:
|
|
raise HTTPException(
|
|
status_code=500, detail=f"Failed to fetch document: {e!s}"
|
|
) from e
|
|
|
|
|
|
@router.put("/documents/{document_id}", response_model=DocumentRead)
|
|
async def update_document(
|
|
document_id: int,
|
|
document_update: DocumentUpdate,
|
|
session: AsyncSession = Depends(get_async_session),
|
|
user: User = Depends(current_active_user),
|
|
):
|
|
try:
|
|
# Query the document directly instead of using read_document function
|
|
result = await session.execute(
|
|
select(Document)
|
|
.join(SearchSpace)
|
|
.filter(Document.id == document_id, SearchSpace.user_id == user.id)
|
|
)
|
|
db_document = result.scalars().first()
|
|
|
|
if not db_document:
|
|
raise HTTPException(
|
|
status_code=404, detail=f"Document with id {document_id} not found"
|
|
)
|
|
|
|
update_data = document_update.model_dump(exclude_unset=True)
|
|
for key, value in update_data.items():
|
|
setattr(db_document, key, value)
|
|
await session.commit()
|
|
await session.refresh(db_document)
|
|
|
|
# Convert to DocumentRead for response
|
|
return DocumentRead(
|
|
id=db_document.id,
|
|
title=db_document.title,
|
|
document_type=db_document.document_type,
|
|
document_metadata=db_document.document_metadata,
|
|
content=db_document.content,
|
|
created_at=db_document.created_at,
|
|
search_space_id=db_document.search_space_id,
|
|
)
|
|
except HTTPException:
|
|
raise
|
|
except Exception as e:
|
|
await session.rollback()
|
|
raise HTTPException(
|
|
status_code=500, detail=f"Failed to update document: {e!s}"
|
|
) from e
|
|
|
|
|
|
@router.delete("/documents/{document_id}", response_model=dict)
|
|
async def delete_document(
|
|
document_id: int,
|
|
session: AsyncSession = Depends(get_async_session),
|
|
user: User = Depends(current_active_user),
|
|
):
|
|
try:
|
|
# Query the document directly instead of using read_document function
|
|
result = await session.execute(
|
|
select(Document)
|
|
.join(SearchSpace)
|
|
.filter(Document.id == document_id, SearchSpace.user_id == user.id)
|
|
)
|
|
document = result.scalars().first()
|
|
|
|
if not document:
|
|
raise HTTPException(
|
|
status_code=404, detail=f"Document with id {document_id} not found"
|
|
)
|
|
|
|
await session.delete(document)
|
|
await session.commit()
|
|
return {"message": "Document deleted successfully"}
|
|
except HTTPException:
|
|
raise
|
|
except Exception as e:
|
|
await session.rollback()
|
|
raise HTTPException(
|
|
status_code=500, detail=f"Failed to delete document: {e!s}"
|
|
) from e
|
|
|
|
|
|
async def process_extension_document_with_new_session(
|
|
individual_document, search_space_id: int, user_id: str
|
|
):
|
|
"""Create a new session and process extension document."""
|
|
from app.db import async_session_maker
|
|
from app.services.task_logging_service import TaskLoggingService
|
|
|
|
async with async_session_maker() as session:
|
|
# Initialize task logging service
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="process_extension_document",
|
|
source="document_processor",
|
|
message=f"Starting processing of extension document from {individual_document.metadata.VisitedWebPageTitle}",
|
|
metadata={
|
|
"document_type": "EXTENSION",
|
|
"url": individual_document.metadata.VisitedWebPageURL,
|
|
"title": individual_document.metadata.VisitedWebPageTitle,
|
|
"user_id": user_id,
|
|
},
|
|
)
|
|
|
|
try:
|
|
result = await add_extension_received_document(
|
|
session, individual_document, search_space_id, user_id
|
|
)
|
|
|
|
if result:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully processed extension document: {individual_document.metadata.VisitedWebPageTitle}",
|
|
{"document_id": result.id, "content_hash": result.content_hash},
|
|
)
|
|
else:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Extension document already exists (duplicate): {individual_document.metadata.VisitedWebPageTitle}",
|
|
{"duplicate_detected": True},
|
|
)
|
|
except Exception as e:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to process extension document: {individual_document.metadata.VisitedWebPageTitle}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
import logging
|
|
|
|
logging.error(f"Error processing extension document: {e!s}")
|
|
|
|
|
|
async def process_crawled_url_with_new_session(
|
|
url: str, search_space_id: int, user_id: str
|
|
):
|
|
"""Create a new session and process crawled URL."""
|
|
from app.db import async_session_maker
|
|
from app.services.task_logging_service import TaskLoggingService
|
|
|
|
async with async_session_maker() as session:
|
|
# Initialize task logging service
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="process_crawled_url",
|
|
source="document_processor",
|
|
message=f"Starting URL crawling and processing for: {url}",
|
|
metadata={"document_type": "CRAWLED_URL", "url": url, "user_id": user_id},
|
|
)
|
|
|
|
try:
|
|
result = await add_crawled_url_document(
|
|
session, url, search_space_id, user_id
|
|
)
|
|
|
|
if result:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully crawled and processed URL: {url}",
|
|
{
|
|
"document_id": result.id,
|
|
"title": result.title,
|
|
"content_hash": result.content_hash,
|
|
},
|
|
)
|
|
else:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"URL document already exists (duplicate): {url}",
|
|
{"duplicate_detected": True},
|
|
)
|
|
except Exception as e:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to crawl URL: {url}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
import logging
|
|
|
|
logging.error(f"Error processing crawled URL: {e!s}")
|
|
|
|
|
|
async def process_file_in_background_with_new_session(
|
|
file_path: str, filename: str, search_space_id: int, user_id: str
|
|
):
|
|
"""Create a new session and process file."""
|
|
from app.db import async_session_maker
|
|
from app.services.task_logging_service import TaskLoggingService
|
|
|
|
async with async_session_maker() as session:
|
|
# Initialize task logging service
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="process_file_upload",
|
|
source="document_processor",
|
|
message=f"Starting file processing for: {filename}",
|
|
metadata={
|
|
"document_type": "FILE",
|
|
"filename": filename,
|
|
"file_path": file_path,
|
|
"user_id": user_id,
|
|
},
|
|
)
|
|
|
|
try:
|
|
await process_file_in_background(
|
|
file_path,
|
|
filename,
|
|
search_space_id,
|
|
user_id,
|
|
session,
|
|
task_logger,
|
|
log_entry,
|
|
)
|
|
|
|
# Note: success/failure logging is handled within process_file_in_background
|
|
except Exception as e:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to process file: {filename}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
import logging
|
|
|
|
logging.error(f"Error processing file: {e!s}")
|
|
|
|
|
|
async def process_youtube_video_with_new_session(
|
|
url: str, search_space_id: int, user_id: str
|
|
):
|
|
"""Create a new session and process YouTube video."""
|
|
from app.db import async_session_maker
|
|
from app.services.task_logging_service import TaskLoggingService
|
|
|
|
async with async_session_maker() as session:
|
|
# Initialize task logging service
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="process_youtube_video",
|
|
source="document_processor",
|
|
message=f"Starting YouTube video processing for: {url}",
|
|
metadata={"document_type": "YOUTUBE_VIDEO", "url": url, "user_id": user_id},
|
|
)
|
|
|
|
try:
|
|
result = await add_youtube_video_document(
|
|
session, url, search_space_id, user_id
|
|
)
|
|
|
|
if result:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully processed YouTube video: {result.title}",
|
|
{
|
|
"document_id": result.id,
|
|
"video_id": result.document_metadata.get("video_id"),
|
|
"content_hash": result.content_hash,
|
|
},
|
|
)
|
|
else:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"YouTube video document already exists (duplicate): {url}",
|
|
{"duplicate_detected": True},
|
|
)
|
|
except Exception as e:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to process YouTube video: {url}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
import logging
|
|
|
|
logging.error(f"Error processing YouTube video: {e!s}")
|