SurfSense/surfsense_backend/app/utils/connector_service.py
DESKTOP-RTLN3BA\$punk d7bb31f894 feat: Document Selector in Chat.
- Still need improvements but lets use it first.
2025-06-04 21:46:50 -07:00

1058 lines
42 KiB
Python

from typing import List, Dict, Optional
import asyncio
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.future import select
from app.retriver.chunks_hybrid_search import ChucksHybridSearchRetriever
from app.retriver.documents_hybrid_search import DocumentHybridSearchRetriever
from app.db import SearchSourceConnector, SearchSourceConnectorType, Chunk, Document, SearchSpace
from tavily import TavilyClient
from linkup import LinkupClient
from sqlalchemy import func
from app.agents.researcher.configuration import SearchMode
class ConnectorService:
def __init__(self, session: AsyncSession, user_id: str = None):
self.session = session
self.chunk_retriever = ChucksHybridSearchRetriever(session)
self.document_retriever = DocumentHybridSearchRetriever(session)
self.user_id = user_id
self.source_id_counter = 100000 # High starting value to avoid collisions with existing IDs
self.counter_lock = asyncio.Lock() # Lock to protect counter in multithreaded environments
async def initialize_counter(self):
"""
Initialize the source_id_counter based on the total number of chunks for the user.
This ensures unique IDs across different sessions.
"""
if self.user_id:
try:
# Count total chunks for documents belonging to this user
result = await self.session.execute(
select(func.count(Chunk.id))
.join(Document)
.join(SearchSpace)
.filter(SearchSpace.user_id == self.user_id)
)
chunk_count = result.scalar() or 0
self.source_id_counter = chunk_count + 1
print(f"Initialized source_id_counter to {self.source_id_counter} for user {self.user_id}")
except Exception as e:
print(f"Error initializing source_id_counter: {str(e)}")
# Fallback to default value
self.source_id_counter = 1
async def search_crawled_urls(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20, search_mode: SearchMode = SearchMode.CHUNKS) -> tuple:
"""
Search for crawled URLs and return both the source information and langchain documents
Returns:
tuple: (sources_info, langchain_documents)
"""
if search_mode == SearchMode.CHUNKS:
crawled_urls_chunks = await self.chunk_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="CRAWLED_URL"
)
elif search_mode == SearchMode.DOCUMENTS:
crawled_urls_chunks = await self.document_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="CRAWLED_URL"
)
# Transform document retriever results to match expected format
crawled_urls_chunks = self._transform_document_results(crawled_urls_chunks)
# Early return if no results
if not crawled_urls_chunks:
return {
"id": 1,
"name": "Crawled URLs",
"type": "CRAWLED_URL",
"sources": [],
}, []
# Process each chunk and create sources directly without deduplication
sources_list = []
async with self.counter_lock:
for _i, chunk in enumerate(crawled_urls_chunks):
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Create a source entry
source = {
"id": document.get('id', self.source_id_counter),
"title": document.get('title', 'Untitled Document'),
"description": metadata.get('og:description', metadata.get('ogDescription', chunk.get('content', '')[:100])),
"url": metadata.get('url', '')
}
self.source_id_counter += 1
sources_list.append(source)
# Create result object
result_object = {
"id": 1,
"name": "Crawled URLs",
"type": "CRAWLED_URL",
"sources": sources_list,
}
return result_object, crawled_urls_chunks
async def search_files(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20, search_mode: SearchMode = SearchMode.CHUNKS) -> tuple:
"""
Search for files and return both the source information and langchain documents
Returns:
tuple: (sources_info, langchain_documents)
"""
if search_mode == SearchMode.CHUNKS:
files_chunks = await self.chunk_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="FILE"
)
elif search_mode == SearchMode.DOCUMENTS:
files_chunks = await self.document_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="FILE"
)
# Transform document retriever results to match expected format
files_chunks = self._transform_document_results(files_chunks)
# Early return if no results
if not files_chunks:
return {
"id": 2,
"name": "Files",
"type": "FILE",
"sources": [],
}, []
# Process each chunk and create sources directly without deduplication
sources_list = []
async with self.counter_lock:
for _i, chunk in enumerate(files_chunks):
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Create a source entry
source = {
"id": document.get('id', self.source_id_counter),
"title": document.get('title', 'Untitled Document'),
"description": metadata.get('og:description', metadata.get('ogDescription', chunk.get('content', '')[:100])),
"url": metadata.get('url', '')
}
self.source_id_counter += 1
sources_list.append(source)
# Create result object
result_object = {
"id": 2,
"name": "Files",
"type": "FILE",
"sources": sources_list,
}
return result_object, files_chunks
def _transform_document_results(self, document_results: List[Dict]) -> List[Dict]:
"""
Transform results from document_retriever.hybrid_search() to match the format
expected by the processing code.
Args:
document_results: Results from document_retriever.hybrid_search()
Returns:
List of transformed results in the format expected by the processing code
"""
transformed_results = []
for doc in document_results:
transformed_results.append({
'document': {
'id': doc.get('document_id'),
'title': doc.get('title', 'Untitled Document'),
'document_type': doc.get('document_type'),
'metadata': doc.get('metadata', {}),
},
'content': doc.get('chunks_content', doc.get('content', '')),
'score': doc.get('score', 0.0)
})
return transformed_results
async def get_connector_by_type(self, user_id: str, connector_type: SearchSourceConnectorType) -> Optional[SearchSourceConnector]:
"""
Get a connector by type for a specific user
Args:
user_id: The user's ID
connector_type: The connector type to retrieve
Returns:
Optional[SearchSourceConnector]: The connector if found, None otherwise
"""
result = await self.session.execute(
select(SearchSourceConnector)
.filter(
SearchSourceConnector.user_id == user_id,
SearchSourceConnector.connector_type == connector_type
)
)
return result.scalars().first()
async def search_tavily(self, user_query: str, user_id: str, top_k: int = 20) -> tuple:
"""
Search using Tavily API and return both the source information and documents
Args:
user_query: The user's query
user_id: The user's ID
top_k: Maximum number of results to return
Returns:
tuple: (sources_info, documents)
"""
# Get Tavily connector configuration
tavily_connector = await self.get_connector_by_type(user_id, SearchSourceConnectorType.TAVILY_API)
if not tavily_connector:
# Return empty results if no Tavily connector is configured
return {
"id": 3,
"name": "Tavily Search",
"type": "TAVILY_API",
"sources": [],
}, []
# Initialize Tavily client with API key from connector config
tavily_api_key = tavily_connector.config.get("TAVILY_API_KEY")
tavily_client = TavilyClient(api_key=tavily_api_key)
# Perform search with Tavily
try:
response = tavily_client.search(
query=user_query,
max_results=top_k,
search_depth="advanced" # Use advanced search for better results
)
# Extract results from Tavily response
tavily_results = response.get("results", [])
# Early return if no results
if not tavily_results:
return {
"id": 3,
"name": "Tavily Search",
"type": "TAVILY_API",
"sources": [],
}, []
# Process each result and create sources directly without deduplication
sources_list = []
documents = []
async with self.counter_lock:
for i, result in enumerate(tavily_results):
# Create a source entry
source = {
"id": self.source_id_counter,
"title": result.get("title", "Tavily Result"),
"description": result.get("content", "")[:100],
"url": result.get("url", "")
}
sources_list.append(source)
# Create a document entry
document = {
"chunk_id": f"tavily_chunk_{i}",
"content": result.get("content", ""),
"score": result.get("score", 0.0),
"document": {
"id": self.source_id_counter,
"title": result.get("title", "Tavily Result"),
"document_type": "TAVILY_API",
"metadata": {
"url": result.get("url", ""),
"published_date": result.get("published_date", ""),
"source": "TAVILY_API"
}
}
}
documents.append(document)
self.source_id_counter += 1
# Create result object
result_object = {
"id": 3,
"name": "Tavily Search",
"type": "TAVILY_API",
"sources": sources_list,
}
return result_object, documents
except Exception as e:
# Log the error and return empty results
print(f"Error searching with Tavily: {str(e)}")
return {
"id": 3,
"name": "Tavily Search",
"type": "TAVILY_API",
"sources": [],
}, []
async def search_slack(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20, search_mode: SearchMode = SearchMode.CHUNKS) -> tuple:
"""
Search for slack and return both the source information and langchain documents
Returns:
tuple: (sources_info, langchain_documents)
"""
if search_mode == SearchMode.CHUNKS:
slack_chunks = await self.chunk_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="SLACK_CONNECTOR"
)
elif search_mode == SearchMode.DOCUMENTS:
slack_chunks = await self.document_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="SLACK_CONNECTOR"
)
# Transform document retriever results to match expected format
slack_chunks = self._transform_document_results(slack_chunks)
# Early return if no results
if not slack_chunks:
return {
"id": 4,
"name": "Slack",
"type": "SLACK_CONNECTOR",
"sources": [],
}, []
# Process each chunk and create sources directly without deduplication
sources_list = []
async with self.counter_lock:
for _i, chunk in enumerate(slack_chunks):
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Create a mapped source entry with Slack-specific metadata
channel_name = metadata.get('channel_name', 'Unknown Channel')
channel_id = metadata.get('channel_id', '')
message_date = metadata.get('start_date', '')
# Create a more descriptive title for Slack messages
title = f"Slack: {channel_name}"
if message_date:
title += f" ({message_date})"
# Create a more descriptive description for Slack messages
description = chunk.get('content', '')[:100]
if len(description) == 100:
description += "..."
# For URL, we can use a placeholder or construct a URL to the Slack channel if available
url = ""
if channel_id:
url = f"https://slack.com/app_redirect?channel={channel_id}"
source = {
"id": document.get('id', self.source_id_counter),
"title": title,
"description": description,
"url": url,
}
self.source_id_counter += 1
sources_list.append(source)
# Create result object
result_object = {
"id": 4,
"name": "Slack",
"type": "SLACK_CONNECTOR",
"sources": sources_list,
}
return result_object, slack_chunks
async def search_notion(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20, search_mode: SearchMode = SearchMode.CHUNKS) -> tuple:
"""
Search for Notion pages and return both the source information and langchain documents
Args:
user_query: The user's query
user_id: The user's ID
search_space_id: The search space ID to search in
top_k: Maximum number of results to return
Returns:
tuple: (sources_info, langchain_documents)
"""
if search_mode == SearchMode.CHUNKS:
notion_chunks = await self.chunk_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="NOTION_CONNECTOR"
)
elif search_mode == SearchMode.DOCUMENTS:
notion_chunks = await self.document_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="NOTION_CONNECTOR"
)
# Transform document retriever results to match expected format
notion_chunks = self._transform_document_results(notion_chunks)
# Early return if no results
if not notion_chunks:
return {
"id": 5,
"name": "Notion",
"type": "NOTION_CONNECTOR",
"sources": [],
}, []
# Process each chunk and create sources directly without deduplication
sources_list = []
async with self.counter_lock:
for _i, chunk in enumerate(notion_chunks):
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Create a mapped source entry with Notion-specific metadata
page_title = metadata.get('page_title', 'Untitled Page')
page_id = metadata.get('page_id', '')
indexed_at = metadata.get('indexed_at', '')
# Create a more descriptive title for Notion pages
title = f"Notion: {page_title}"
if indexed_at:
title += f" (indexed: {indexed_at})"
# Create a more descriptive description for Notion pages
description = chunk.get('content', '')[:100]
if len(description) == 100:
description += "..."
# For URL, we can use a placeholder or construct a URL to the Notion page if available
url = ""
if page_id:
# Notion page URLs follow this format
url = f"https://notion.so/{page_id.replace('-', '')}"
source = {
"id": document.get('id', self.source_id_counter),
"title": title,
"description": description,
"url": url,
}
self.source_id_counter += 1
sources_list.append(source)
# Create result object
result_object = {
"id": 5,
"name": "Notion",
"type": "NOTION_CONNECTOR",
"sources": sources_list,
}
return result_object, notion_chunks
async def search_extension(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20, search_mode: SearchMode = SearchMode.CHUNKS) -> tuple:
"""
Search for extension data and return both the source information and langchain documents
Args:
user_query: The user's query
user_id: The user's ID
search_space_id: The search space ID to search in
top_k: Maximum number of results to return
Returns:
tuple: (sources_info, langchain_documents)
"""
if search_mode == SearchMode.CHUNKS:
extension_chunks = await self.chunk_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="EXTENSION"
)
elif search_mode == SearchMode.DOCUMENTS:
extension_chunks = await self.document_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="EXTENSION"
)
# Transform document retriever results to match expected format
extension_chunks = self._transform_document_results(extension_chunks)
# Early return if no results
if not extension_chunks:
return {
"id": 6,
"name": "Extension",
"type": "EXTENSION",
"sources": [],
}, []
# Process each chunk and create sources directly without deduplication
sources_list = []
async with self.counter_lock:
for i, chunk in enumerate(extension_chunks):
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Extract extension-specific metadata
webpage_title = metadata.get('VisitedWebPageTitle', 'Untitled Page')
webpage_url = metadata.get('VisitedWebPageURL', '')
visit_date = metadata.get('VisitedWebPageDateWithTimeInISOString', '')
visit_duration = metadata.get('VisitedWebPageVisitDurationInMilliseconds', '')
browsing_session_id = metadata.get('BrowsingSessionId', '')
# Create a more descriptive title for extension data
title = webpage_title
if visit_date:
# Format the date for display (simplified)
try:
# Just extract the date part for display
formatted_date = visit_date.split('T')[0] if 'T' in visit_date else visit_date
title += f" (visited: {formatted_date})"
except:
# Fallback if date parsing fails
title += f" (visited: {visit_date})"
# Create a more descriptive description for extension data
description = chunk.get('content', '')[:100]
if len(description) == 100:
description += "..."
# Add visit duration if available
if visit_duration:
try:
duration_seconds = int(visit_duration) / 1000
if duration_seconds < 60:
duration_text = f"{duration_seconds:.1f} seconds"
else:
duration_text = f"{duration_seconds/60:.1f} minutes"
if description:
description += f" | Duration: {duration_text}"
except:
# Fallback if duration parsing fails
pass
source = {
"id": document.get('id', self.source_id_counter),
"title": title,
"description": description,
"url": webpage_url
}
self.source_id_counter += 1
sources_list.append(source)
# Create result object
result_object = {
"id": 6,
"name": "Extension",
"type": "EXTENSION",
"sources": sources_list,
}
return result_object, extension_chunks
async def search_youtube(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20, search_mode: SearchMode = SearchMode.CHUNKS) -> tuple:
"""
Search for YouTube videos and return both the source information and langchain documents
Args:
user_query: The user's query
user_id: The user's ID
search_space_id: The search space ID to search in
top_k: Maximum number of results to return
Returns:
tuple: (sources_info, langchain_documents)
"""
if search_mode == SearchMode.CHUNKS:
youtube_chunks = await self.chunk_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="YOUTUBE_VIDEO"
)
elif search_mode == SearchMode.DOCUMENTS:
youtube_chunks = await self.document_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="YOUTUBE_VIDEO"
)
# Transform document retriever results to match expected format
youtube_chunks = self._transform_document_results(youtube_chunks)
# Early return if no results
if not youtube_chunks:
return {
"id": 7,
"name": "YouTube Videos",
"type": "YOUTUBE_VIDEO",
"sources": [],
}, []
# Process each chunk and create sources directly without deduplication
sources_list = []
async with self.counter_lock:
for _i, chunk in enumerate(youtube_chunks):
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Extract YouTube-specific metadata
video_title = metadata.get('video_title', 'Untitled Video')
video_id = metadata.get('video_id', '')
channel_name = metadata.get('channel_name', '')
# published_date = metadata.get('published_date', '')
# Create a more descriptive title for YouTube videos
title = video_title
if channel_name:
title += f" - {channel_name}"
# Create a more descriptive description for YouTube videos
description = metadata.get('description', chunk.get('content', '')[:100])
if len(description) == 100:
description += "..."
# For URL, construct a URL to the YouTube video
url = f"https://www.youtube.com/watch?v={video_id}" if video_id else ""
source = {
"id": document.get('id', self.source_id_counter),
"title": title,
"description": description,
"url": url,
"video_id": video_id, # Additional field for YouTube videos
"channel_name": channel_name # Additional field for YouTube videos
}
self.source_id_counter += 1
sources_list.append(source)
# Create result object
result_object = {
"id": 7, # Assign a unique ID for the YouTube connector
"name": "YouTube Videos",
"type": "YOUTUBE_VIDEO",
"sources": sources_list,
}
return result_object, youtube_chunks
async def search_github(self, user_query: str, user_id: int, search_space_id: int, top_k: int = 20, search_mode: SearchMode = SearchMode.CHUNKS) -> tuple:
"""
Search for GitHub documents and return both the source information and langchain documents
Returns:
tuple: (sources_info, langchain_documents)
"""
if search_mode == SearchMode.CHUNKS:
github_chunks = await self.chunk_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="GITHUB_CONNECTOR"
)
elif search_mode == SearchMode.DOCUMENTS:
github_chunks = await self.document_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="GITHUB_CONNECTOR"
)
# Transform document retriever results to match expected format
github_chunks = self._transform_document_results(github_chunks)
# Early return if no results
if not github_chunks:
return {
"id": 8,
"name": "GitHub",
"type": "GITHUB_CONNECTOR",
"sources": [],
}, []
# Process each chunk and create sources directly without deduplication
sources_list = []
async with self.counter_lock:
for _i, chunk in enumerate(github_chunks):
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Create a source entry
source = {
"id": document.get('id', self.source_id_counter),
"title": document.get('title', 'GitHub Document'), # Use specific title if available
"description": metadata.get('description', chunk.get('content', '')[:100]), # Use description or content preview
"url": metadata.get('url', '') # Use URL if available in metadata
}
self.source_id_counter += 1
sources_list.append(source)
# Create result object
result_object = {
"id": 8,
"name": "GitHub",
"type": "GITHUB_CONNECTOR",
"sources": sources_list,
}
return result_object, github_chunks
async def search_linear(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20, search_mode: SearchMode = SearchMode.CHUNKS) -> tuple:
"""
Search for Linear issues and comments and return both the source information and langchain documents
Args:
user_query: The user's query
user_id: The user's ID
search_space_id: The search space ID to search in
top_k: Maximum number of results to return
Returns:
tuple: (sources_info, langchain_documents)
"""
if search_mode == SearchMode.CHUNKS:
linear_chunks = await self.chunk_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="LINEAR_CONNECTOR"
)
elif search_mode == SearchMode.DOCUMENTS:
linear_chunks = await self.document_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="LINEAR_CONNECTOR"
)
# Transform document retriever results to match expected format
linear_chunks = self._transform_document_results(linear_chunks)
# Early return if no results
if not linear_chunks:
return {
"id": 9,
"name": "Linear Issues",
"type": "LINEAR_CONNECTOR",
"sources": [],
}, []
# Process each chunk and create sources directly without deduplication
sources_list = []
async with self.counter_lock:
for _i, chunk in enumerate(linear_chunks):
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Extract Linear-specific metadata
issue_identifier = metadata.get('issue_identifier', '')
issue_title = metadata.get('issue_title', 'Untitled Issue')
issue_state = metadata.get('state', '')
comment_count = metadata.get('comment_count', 0)
# Create a more descriptive title for Linear issues
title = f"Linear: {issue_identifier} - {issue_title}"
if issue_state:
title += f" ({issue_state})"
# Create a more descriptive description for Linear issues
description = chunk.get('content', '')[:100]
if len(description) == 100:
description += "..."
# Add comment count info to description
if comment_count:
if description:
description += f" | Comments: {comment_count}"
else:
description = f"Comments: {comment_count}"
# For URL, we could construct a URL to the Linear issue if we have the workspace info
# For now, use a generic placeholder
url = ""
if issue_identifier:
# This is a generic format, may need to be adjusted based on actual Linear workspace
url = f"https://linear.app/issue/{issue_identifier}"
source = {
"id": document.get('id', self.source_id_counter),
"title": title,
"description": description,
"url": url,
"issue_identifier": issue_identifier,
"state": issue_state,
"comment_count": comment_count
}
self.source_id_counter += 1
sources_list.append(source)
# Create result object
result_object = {
"id": 9, # Assign a unique ID for the Linear connector
"name": "Linear Issues",
"type": "LINEAR_CONNECTOR",
"sources": sources_list,
}
return result_object, linear_chunks
async def search_linkup(self, user_query: str, user_id: str, mode: str = "standard") -> tuple:
"""
Search using Linkup API and return both the source information and documents
Args:
user_query: The user's query
user_id: The user's ID
mode: Search depth mode, can be "standard" or "deep"
Returns:
tuple: (sources_info, documents)
"""
# Get Linkup connector configuration
linkup_connector = await self.get_connector_by_type(user_id, SearchSourceConnectorType.LINKUP_API)
if not linkup_connector:
# Return empty results if no Linkup connector is configured
return {
"id": 10,
"name": "Linkup Search",
"type": "LINKUP_API",
"sources": [],
}, []
# Initialize Linkup client with API key from connector config
linkup_api_key = linkup_connector.config.get("LINKUP_API_KEY")
linkup_client = LinkupClient(api_key=linkup_api_key)
# Perform search with Linkup
try:
response = linkup_client.search(
query=user_query,
depth=mode, # Use the provided mode ("standard" or "deep")
output_type="searchResults", # Default to search results
)
# Extract results from Linkup response - access as attribute instead of using .get()
linkup_results = response.results if hasattr(response, 'results') else []
# Only proceed if we have results
if not linkup_results:
return {
"id": 10,
"name": "Linkup Search",
"type": "LINKUP_API",
"sources": [],
}, []
# Process each result and create sources directly without deduplication
sources_list = []
documents = []
async with self.counter_lock:
for i, result in enumerate(linkup_results):
# Only process results that have content
if not hasattr(result, 'content') or not result.content:
continue
# Create a source entry
source = {
"id": self.source_id_counter,
"title": result.name if hasattr(result, 'name') else "Linkup Result",
"description": result.content[:100] if hasattr(result, 'content') else "",
"url": result.url if hasattr(result, 'url') else ""
}
sources_list.append(source)
# Create a document entry
document = {
"chunk_id": f"linkup_chunk_{i}",
"content": result.content if hasattr(result, 'content') else "",
"score": 1.0, # Default score since not provided by Linkup
"document": {
"id": self.source_id_counter,
"title": result.name if hasattr(result, 'name') else "Linkup Result",
"document_type": "LINKUP_API",
"metadata": {
"url": result.url if hasattr(result, 'url') else "",
"type": result.type if hasattr(result, 'type') else "",
"source": "LINKUP_API"
}
}
}
documents.append(document)
self.source_id_counter += 1
# Create result object
result_object = {
"id": 10,
"name": "Linkup Search",
"type": "LINKUP_API",
"sources": sources_list,
}
return result_object, documents
except Exception as e:
# Log the error and return empty results
print(f"Error searching with Linkup: {str(e)}")
return {
"id": 10,
"name": "Linkup Search",
"type": "LINKUP_API",
"sources": [],
}, []
async def search_discord(self, user_query: str, user_id: str, search_space_id: int, top_k: int = 20, search_mode: SearchMode = SearchMode.CHUNKS) -> tuple:
"""
Search for Discord messages and return both the source information and langchain documents
Args:
user_query: The user's query
user_id: The user's ID
search_space_id: The search space ID to search in
top_k: Maximum number of results to return
Returns:
tuple: (sources_info, langchain_documents)
"""
if search_mode == SearchMode.CHUNKS:
discord_chunks = await self.chunk_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="DISCORD_CONNECTOR"
)
elif search_mode == SearchMode.DOCUMENTS:
discord_chunks = await self.document_retriever.hybrid_search(
query_text=user_query,
top_k=top_k,
user_id=user_id,
search_space_id=search_space_id,
document_type="DISCORD_CONNECTOR"
)
# Transform document retriever results to match expected format
discord_chunks = self._transform_document_results(discord_chunks)
# Early return if no results
if not discord_chunks:
return {
"id": 11,
"name": "Discord",
"type": "DISCORD_CONNECTOR",
"sources": [],
}, []
# Process each chunk and create sources directly without deduplication
sources_list = []
async with self.counter_lock:
for i, chunk in enumerate(discord_chunks):
# Extract document metadata
document = chunk.get('document', {})
metadata = document.get('metadata', {})
# Create a mapped source entry with Discord-specific metadata
channel_name = metadata.get('channel_name', 'Unknown Channel')
channel_id = metadata.get('channel_id', '')
message_date = metadata.get('start_date', '')
# Create a more descriptive title for Discord messages
title = f"Discord: {channel_name}"
if message_date:
title += f" ({message_date})"
# Create a more descriptive description for Discord messages
description = chunk.get('content', '')[:100]
if len(description) == 100:
description += "..."
url = ""
guild_id = metadata.get('guild_id', '')
if guild_id and channel_id:
url = f"https://discord.com/channels/{guild_id}/{channel_id}"
elif channel_id:
# Fallback for DM channels or when guild_id is not available
url = f"https://discord.com/channels/@me/{channel_id}"
source = {
"id": document.get('id', self.source_id_counter),
"title": title,
"description": description,
"url": url,
}
self.source_id_counter += 1
sources_list.append(source)
# Create result object
result_object = {
"id": 11,
"name": "Discord",
"type": "DISCORD_CONNECTOR",
"sources": sources_list,
}
return result_object, discord_chunks