mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-01 18:19:08 +00:00
1288 lines
47 KiB
Python
1288 lines
47 KiB
Python
import asyncio
|
|
from typing import Dict, List, Optional
|
|
|
|
from app.agents.researcher.configuration import SearchMode
|
|
from app.db import (
|
|
Chunk,
|
|
Document,
|
|
SearchSourceConnector,
|
|
SearchSourceConnectorType,
|
|
SearchSpace,
|
|
)
|
|
from app.retriver.chunks_hybrid_search import ChucksHybridSearchRetriever
|
|
from app.retriver.documents_hybrid_search import DocumentHybridSearchRetriever
|
|
from linkup import LinkupClient
|
|
from sqlalchemy import func
|
|
from sqlalchemy.ext.asyncio import AsyncSession
|
|
from sqlalchemy.future import select
|
|
from tavily import TavilyClient
|
|
|
|
|
|
class ConnectorService:
|
|
def __init__(self, session: AsyncSession, user_id: str = None):
|
|
self.session = session
|
|
self.chunk_retriever = ChucksHybridSearchRetriever(session)
|
|
self.document_retriever = DocumentHybridSearchRetriever(session)
|
|
self.user_id = user_id
|
|
self.source_id_counter = (
|
|
100000 # High starting value to avoid collisions with existing IDs
|
|
)
|
|
self.counter_lock = (
|
|
asyncio.Lock()
|
|
) # Lock to protect counter in multithreaded environments
|
|
|
|
async def initialize_counter(self):
|
|
"""
|
|
Initialize the source_id_counter based on the total number of chunks for the user.
|
|
This ensures unique IDs across different sessions.
|
|
"""
|
|
if self.user_id:
|
|
try:
|
|
# Count total chunks for documents belonging to this user
|
|
|
|
result = await self.session.execute(
|
|
select(func.count(Chunk.id))
|
|
.join(Document)
|
|
.join(SearchSpace)
|
|
.filter(SearchSpace.user_id == self.user_id)
|
|
)
|
|
chunk_count = result.scalar() or 0
|
|
self.source_id_counter = chunk_count + 1
|
|
print(
|
|
f"Initialized source_id_counter to {self.source_id_counter} for user {self.user_id}"
|
|
)
|
|
except Exception as e:
|
|
print(f"Error initializing source_id_counter: {str(e)}")
|
|
# Fallback to default value
|
|
self.source_id_counter = 1
|
|
|
|
async def search_crawled_urls(
|
|
self,
|
|
user_query: str,
|
|
user_id: str,
|
|
search_space_id: int,
|
|
top_k: int = 20,
|
|
search_mode: SearchMode = SearchMode.CHUNKS,
|
|
) -> tuple:
|
|
"""
|
|
Search for crawled URLs and return both the source information and langchain documents
|
|
|
|
Returns:
|
|
tuple: (sources_info, langchain_documents)
|
|
"""
|
|
if search_mode == SearchMode.CHUNKS:
|
|
crawled_urls_chunks = await self.chunk_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="CRAWLED_URL",
|
|
)
|
|
elif search_mode == SearchMode.DOCUMENTS:
|
|
crawled_urls_chunks = await self.document_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="CRAWLED_URL",
|
|
)
|
|
# Transform document retriever results to match expected format
|
|
crawled_urls_chunks = self._transform_document_results(crawled_urls_chunks)
|
|
|
|
# Early return if no results
|
|
if not crawled_urls_chunks:
|
|
return {
|
|
"id": 1,
|
|
"name": "Crawled URLs",
|
|
"type": "CRAWLED_URL",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each chunk and create sources directly without deduplication
|
|
sources_list = []
|
|
async with self.counter_lock:
|
|
for _i, chunk in enumerate(crawled_urls_chunks):
|
|
# Extract document metadata
|
|
document = chunk.get("document", {})
|
|
metadata = document.get("metadata", {})
|
|
|
|
# Create a source entry
|
|
source = {
|
|
"id": document.get("id", self.source_id_counter),
|
|
"title": document.get("title", "Untitled Document"),
|
|
"description": metadata.get(
|
|
"og:description",
|
|
metadata.get("ogDescription", chunk.get("content", "")[:100]),
|
|
),
|
|
"url": metadata.get("url", ""),
|
|
}
|
|
|
|
self.source_id_counter += 1
|
|
sources_list.append(source)
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 1,
|
|
"name": "Crawled URLs",
|
|
"type": "CRAWLED_URL",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, crawled_urls_chunks
|
|
|
|
async def search_files(
|
|
self,
|
|
user_query: str,
|
|
user_id: str,
|
|
search_space_id: int,
|
|
top_k: int = 20,
|
|
search_mode: SearchMode = SearchMode.CHUNKS,
|
|
) -> tuple:
|
|
"""
|
|
Search for files and return both the source information and langchain documents
|
|
|
|
Returns:
|
|
tuple: (sources_info, langchain_documents)
|
|
"""
|
|
if search_mode == SearchMode.CHUNKS:
|
|
files_chunks = await self.chunk_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="FILE",
|
|
)
|
|
elif search_mode == SearchMode.DOCUMENTS:
|
|
files_chunks = await self.document_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="FILE",
|
|
)
|
|
# Transform document retriever results to match expected format
|
|
files_chunks = self._transform_document_results(files_chunks)
|
|
|
|
# Early return if no results
|
|
if not files_chunks:
|
|
return {
|
|
"id": 2,
|
|
"name": "Files",
|
|
"type": "FILE",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each chunk and create sources directly without deduplication
|
|
sources_list = []
|
|
async with self.counter_lock:
|
|
for _i, chunk in enumerate(files_chunks):
|
|
# Extract document metadata
|
|
document = chunk.get("document", {})
|
|
metadata = document.get("metadata", {})
|
|
|
|
# Create a source entry
|
|
source = {
|
|
"id": document.get("id", self.source_id_counter),
|
|
"title": document.get("title", "Untitled Document"),
|
|
"description": metadata.get(
|
|
"og:description",
|
|
metadata.get("ogDescription", chunk.get("content", "")[:100]),
|
|
),
|
|
"url": metadata.get("url", ""),
|
|
}
|
|
|
|
self.source_id_counter += 1
|
|
sources_list.append(source)
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 2,
|
|
"name": "Files",
|
|
"type": "FILE",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, files_chunks
|
|
|
|
def _transform_document_results(self, document_results: List[Dict]) -> List[Dict]:
|
|
"""
|
|
Transform results from document_retriever.hybrid_search() to match the format
|
|
expected by the processing code.
|
|
|
|
Args:
|
|
document_results: Results from document_retriever.hybrid_search()
|
|
|
|
Returns:
|
|
List of transformed results in the format expected by the processing code
|
|
"""
|
|
transformed_results = []
|
|
for doc in document_results:
|
|
transformed_results.append(
|
|
{
|
|
"document": {
|
|
"id": doc.get("document_id"),
|
|
"title": doc.get("title", "Untitled Document"),
|
|
"document_type": doc.get("document_type"),
|
|
"metadata": doc.get("metadata", {}),
|
|
},
|
|
"content": doc.get("chunks_content", doc.get("content", "")),
|
|
"score": doc.get("score", 0.0),
|
|
}
|
|
)
|
|
return transformed_results
|
|
|
|
async def get_connector_by_type(
|
|
self, user_id: str, connector_type: SearchSourceConnectorType
|
|
) -> Optional[SearchSourceConnector]:
|
|
"""
|
|
Get a connector by type for a specific user
|
|
|
|
Args:
|
|
user_id: The user's ID
|
|
connector_type: The connector type to retrieve
|
|
|
|
Returns:
|
|
Optional[SearchSourceConnector]: The connector if found, None otherwise
|
|
"""
|
|
result = await self.session.execute(
|
|
select(SearchSourceConnector).filter(
|
|
SearchSourceConnector.user_id == user_id,
|
|
SearchSourceConnector.connector_type == connector_type,
|
|
)
|
|
)
|
|
return result.scalars().first()
|
|
|
|
async def search_tavily(
|
|
self, user_query: str, user_id: str, top_k: int = 20
|
|
) -> tuple:
|
|
"""
|
|
Search using Tavily API and return both the source information and documents
|
|
|
|
Args:
|
|
user_query: The user's query
|
|
user_id: The user's ID
|
|
top_k: Maximum number of results to return
|
|
|
|
Returns:
|
|
tuple: (sources_info, documents)
|
|
"""
|
|
# Get Tavily connector configuration
|
|
tavily_connector = await self.get_connector_by_type(
|
|
user_id, SearchSourceConnectorType.TAVILY_API
|
|
)
|
|
|
|
if not tavily_connector:
|
|
# Return empty results if no Tavily connector is configured
|
|
return {
|
|
"id": 3,
|
|
"name": "Tavily Search",
|
|
"type": "TAVILY_API",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Initialize Tavily client with API key from connector config
|
|
tavily_api_key = tavily_connector.config.get("TAVILY_API_KEY")
|
|
tavily_client = TavilyClient(api_key=tavily_api_key)
|
|
|
|
# Perform search with Tavily
|
|
try:
|
|
response = tavily_client.search(
|
|
query=user_query,
|
|
max_results=top_k,
|
|
search_depth="advanced", # Use advanced search for better results
|
|
)
|
|
|
|
# Extract results from Tavily response
|
|
tavily_results = response.get("results", [])
|
|
|
|
# Early return if no results
|
|
if not tavily_results:
|
|
return {
|
|
"id": 3,
|
|
"name": "Tavily Search",
|
|
"type": "TAVILY_API",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each result and create sources directly without deduplication
|
|
sources_list = []
|
|
documents = []
|
|
|
|
async with self.counter_lock:
|
|
for i, result in enumerate(tavily_results):
|
|
# Create a source entry
|
|
source = {
|
|
"id": self.source_id_counter,
|
|
"title": result.get("title", "Tavily Result"),
|
|
"description": result.get("content", "")[:100],
|
|
"url": result.get("url", ""),
|
|
}
|
|
sources_list.append(source)
|
|
|
|
# Create a document entry
|
|
document = {
|
|
"chunk_id": f"tavily_chunk_{i}",
|
|
"content": result.get("content", ""),
|
|
"score": result.get("score", 0.0),
|
|
"document": {
|
|
"id": self.source_id_counter,
|
|
"title": result.get("title", "Tavily Result"),
|
|
"document_type": "TAVILY_API",
|
|
"metadata": {
|
|
"url": result.get("url", ""),
|
|
"published_date": result.get("published_date", ""),
|
|
"source": "TAVILY_API",
|
|
},
|
|
},
|
|
}
|
|
documents.append(document)
|
|
self.source_id_counter += 1
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 3,
|
|
"name": "Tavily Search",
|
|
"type": "TAVILY_API",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, documents
|
|
|
|
except Exception as e:
|
|
# Log the error and return empty results
|
|
print(f"Error searching with Tavily: {str(e)}")
|
|
return {
|
|
"id": 3,
|
|
"name": "Tavily Search",
|
|
"type": "TAVILY_API",
|
|
"sources": [],
|
|
}, []
|
|
|
|
async def search_slack(
|
|
self,
|
|
user_query: str,
|
|
user_id: str,
|
|
search_space_id: int,
|
|
top_k: int = 20,
|
|
search_mode: SearchMode = SearchMode.CHUNKS,
|
|
) -> tuple:
|
|
"""
|
|
Search for slack and return both the source information and langchain documents
|
|
|
|
Returns:
|
|
tuple: (sources_info, langchain_documents)
|
|
"""
|
|
if search_mode == SearchMode.CHUNKS:
|
|
slack_chunks = await self.chunk_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="SLACK_CONNECTOR",
|
|
)
|
|
elif search_mode == SearchMode.DOCUMENTS:
|
|
slack_chunks = await self.document_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="SLACK_CONNECTOR",
|
|
)
|
|
# Transform document retriever results to match expected format
|
|
slack_chunks = self._transform_document_results(slack_chunks)
|
|
|
|
# Early return if no results
|
|
if not slack_chunks:
|
|
return {
|
|
"id": 4,
|
|
"name": "Slack",
|
|
"type": "SLACK_CONNECTOR",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each chunk and create sources directly without deduplication
|
|
sources_list = []
|
|
async with self.counter_lock:
|
|
for _i, chunk in enumerate(slack_chunks):
|
|
# Extract document metadata
|
|
document = chunk.get("document", {})
|
|
metadata = document.get("metadata", {})
|
|
|
|
# Create a mapped source entry with Slack-specific metadata
|
|
channel_name = metadata.get("channel_name", "Unknown Channel")
|
|
channel_id = metadata.get("channel_id", "")
|
|
message_date = metadata.get("start_date", "")
|
|
|
|
# Create a more descriptive title for Slack messages
|
|
title = f"Slack: {channel_name}"
|
|
if message_date:
|
|
title += f" ({message_date})"
|
|
|
|
# Create a more descriptive description for Slack messages
|
|
description = chunk.get("content", "")[:100]
|
|
if len(description) == 100:
|
|
description += "..."
|
|
|
|
# For URL, we can use a placeholder or construct a URL to the Slack channel if available
|
|
url = ""
|
|
if channel_id:
|
|
url = f"https://slack.com/app_redirect?channel={channel_id}"
|
|
|
|
source = {
|
|
"id": document.get("id", self.source_id_counter),
|
|
"title": title,
|
|
"description": description,
|
|
"url": url,
|
|
}
|
|
|
|
self.source_id_counter += 1
|
|
sources_list.append(source)
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 4,
|
|
"name": "Slack",
|
|
"type": "SLACK_CONNECTOR",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, slack_chunks
|
|
|
|
async def search_notion(
|
|
self,
|
|
user_query: str,
|
|
user_id: str,
|
|
search_space_id: int,
|
|
top_k: int = 20,
|
|
search_mode: SearchMode = SearchMode.CHUNKS,
|
|
) -> tuple:
|
|
"""
|
|
Search for Notion pages and return both the source information and langchain documents
|
|
|
|
Args:
|
|
user_query: The user's query
|
|
user_id: The user's ID
|
|
search_space_id: The search space ID to search in
|
|
top_k: Maximum number of results to return
|
|
|
|
Returns:
|
|
tuple: (sources_info, langchain_documents)
|
|
"""
|
|
if search_mode == SearchMode.CHUNKS:
|
|
notion_chunks = await self.chunk_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="NOTION_CONNECTOR",
|
|
)
|
|
elif search_mode == SearchMode.DOCUMENTS:
|
|
notion_chunks = await self.document_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="NOTION_CONNECTOR",
|
|
)
|
|
# Transform document retriever results to match expected format
|
|
notion_chunks = self._transform_document_results(notion_chunks)
|
|
|
|
# Early return if no results
|
|
if not notion_chunks:
|
|
return {
|
|
"id": 5,
|
|
"name": "Notion",
|
|
"type": "NOTION_CONNECTOR",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each chunk and create sources directly without deduplication
|
|
sources_list = []
|
|
async with self.counter_lock:
|
|
for _i, chunk in enumerate(notion_chunks):
|
|
# Extract document metadata
|
|
document = chunk.get("document", {})
|
|
metadata = document.get("metadata", {})
|
|
|
|
# Create a mapped source entry with Notion-specific metadata
|
|
page_title = metadata.get("page_title", "Untitled Page")
|
|
page_id = metadata.get("page_id", "")
|
|
indexed_at = metadata.get("indexed_at", "")
|
|
|
|
# Create a more descriptive title for Notion pages
|
|
title = f"Notion: {page_title}"
|
|
if indexed_at:
|
|
title += f" (indexed: {indexed_at})"
|
|
|
|
# Create a more descriptive description for Notion pages
|
|
description = chunk.get("content", "")[:100]
|
|
if len(description) == 100:
|
|
description += "..."
|
|
|
|
# For URL, we can use a placeholder or construct a URL to the Notion page if available
|
|
url = ""
|
|
if page_id:
|
|
# Notion page URLs follow this format
|
|
url = f"https://notion.so/{page_id.replace('-', '')}"
|
|
|
|
source = {
|
|
"id": document.get("id", self.source_id_counter),
|
|
"title": title,
|
|
"description": description,
|
|
"url": url,
|
|
}
|
|
|
|
self.source_id_counter += 1
|
|
sources_list.append(source)
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 5,
|
|
"name": "Notion",
|
|
"type": "NOTION_CONNECTOR",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, notion_chunks
|
|
|
|
async def search_extension(
|
|
self,
|
|
user_query: str,
|
|
user_id: str,
|
|
search_space_id: int,
|
|
top_k: int = 20,
|
|
search_mode: SearchMode = SearchMode.CHUNKS,
|
|
) -> tuple:
|
|
"""
|
|
Search for extension data and return both the source information and langchain documents
|
|
|
|
Args:
|
|
user_query: The user's query
|
|
user_id: The user's ID
|
|
search_space_id: The search space ID to search in
|
|
top_k: Maximum number of results to return
|
|
|
|
Returns:
|
|
tuple: (sources_info, langchain_documents)
|
|
"""
|
|
if search_mode == SearchMode.CHUNKS:
|
|
extension_chunks = await self.chunk_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="EXTENSION",
|
|
)
|
|
elif search_mode == SearchMode.DOCUMENTS:
|
|
extension_chunks = await self.document_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="EXTENSION",
|
|
)
|
|
# Transform document retriever results to match expected format
|
|
extension_chunks = self._transform_document_results(extension_chunks)
|
|
|
|
# Early return if no results
|
|
if not extension_chunks:
|
|
return {
|
|
"id": 6,
|
|
"name": "Extension",
|
|
"type": "EXTENSION",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each chunk and create sources directly without deduplication
|
|
sources_list = []
|
|
async with self.counter_lock:
|
|
for i, chunk in enumerate(extension_chunks):
|
|
# Extract document metadata
|
|
document = chunk.get("document", {})
|
|
metadata = document.get("metadata", {})
|
|
|
|
# Extract extension-specific metadata
|
|
webpage_title = metadata.get("VisitedWebPageTitle", "Untitled Page")
|
|
webpage_url = metadata.get("VisitedWebPageURL", "")
|
|
visit_date = metadata.get("VisitedWebPageDateWithTimeInISOString", "")
|
|
visit_duration = metadata.get(
|
|
"VisitedWebPageVisitDurationInMilliseconds", ""
|
|
)
|
|
browsing_session_id = metadata.get("BrowsingSessionId", "")
|
|
|
|
# Create a more descriptive title for extension data
|
|
title = webpage_title
|
|
if visit_date:
|
|
# Format the date for display (simplified)
|
|
try:
|
|
# Just extract the date part for display
|
|
formatted_date = (
|
|
visit_date.split("T")[0]
|
|
if "T" in visit_date
|
|
else visit_date
|
|
)
|
|
title += f" (visited: {formatted_date})"
|
|
except:
|
|
# Fallback if date parsing fails
|
|
title += f" (visited: {visit_date})"
|
|
|
|
# Create a more descriptive description for extension data
|
|
description = chunk.get("content", "")[:100]
|
|
if len(description) == 100:
|
|
description += "..."
|
|
|
|
# Add visit duration if available
|
|
if visit_duration:
|
|
try:
|
|
duration_seconds = int(visit_duration) / 1000
|
|
if duration_seconds < 60:
|
|
duration_text = f"{duration_seconds:.1f} seconds"
|
|
else:
|
|
duration_text = f"{duration_seconds / 60:.1f} minutes"
|
|
|
|
if description:
|
|
description += f" | Duration: {duration_text}"
|
|
except:
|
|
# Fallback if duration parsing fails
|
|
pass
|
|
|
|
source = {
|
|
"id": document.get("id", self.source_id_counter),
|
|
"title": title,
|
|
"description": description,
|
|
"url": webpage_url,
|
|
}
|
|
|
|
self.source_id_counter += 1
|
|
sources_list.append(source)
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 6,
|
|
"name": "Extension",
|
|
"type": "EXTENSION",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, extension_chunks
|
|
|
|
async def search_youtube(
|
|
self,
|
|
user_query: str,
|
|
user_id: str,
|
|
search_space_id: int,
|
|
top_k: int = 20,
|
|
search_mode: SearchMode = SearchMode.CHUNKS,
|
|
) -> tuple:
|
|
"""
|
|
Search for YouTube videos and return both the source information and langchain documents
|
|
|
|
Args:
|
|
user_query: The user's query
|
|
user_id: The user's ID
|
|
search_space_id: The search space ID to search in
|
|
top_k: Maximum number of results to return
|
|
|
|
Returns:
|
|
tuple: (sources_info, langchain_documents)
|
|
"""
|
|
if search_mode == SearchMode.CHUNKS:
|
|
youtube_chunks = await self.chunk_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="YOUTUBE_VIDEO",
|
|
)
|
|
elif search_mode == SearchMode.DOCUMENTS:
|
|
youtube_chunks = await self.document_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="YOUTUBE_VIDEO",
|
|
)
|
|
# Transform document retriever results to match expected format
|
|
youtube_chunks = self._transform_document_results(youtube_chunks)
|
|
|
|
# Early return if no results
|
|
if not youtube_chunks:
|
|
return {
|
|
"id": 7,
|
|
"name": "YouTube Videos",
|
|
"type": "YOUTUBE_VIDEO",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each chunk and create sources directly without deduplication
|
|
sources_list = []
|
|
async with self.counter_lock:
|
|
for _i, chunk in enumerate(youtube_chunks):
|
|
# Extract document metadata
|
|
document = chunk.get("document", {})
|
|
metadata = document.get("metadata", {})
|
|
|
|
# Extract YouTube-specific metadata
|
|
video_title = metadata.get("video_title", "Untitled Video")
|
|
video_id = metadata.get("video_id", "")
|
|
channel_name = metadata.get("channel_name", "")
|
|
# published_date = metadata.get('published_date', '')
|
|
|
|
# Create a more descriptive title for YouTube videos
|
|
title = video_title
|
|
if channel_name:
|
|
title += f" - {channel_name}"
|
|
|
|
# Create a more descriptive description for YouTube videos
|
|
description = metadata.get(
|
|
"description", chunk.get("content", "")[:100]
|
|
)
|
|
if len(description) == 100:
|
|
description += "..."
|
|
|
|
# For URL, construct a URL to the YouTube video
|
|
url = f"https://www.youtube.com/watch?v={video_id}" if video_id else ""
|
|
|
|
source = {
|
|
"id": document.get("id", self.source_id_counter),
|
|
"title": title,
|
|
"description": description,
|
|
"url": url,
|
|
"video_id": video_id, # Additional field for YouTube videos
|
|
"channel_name": channel_name, # Additional field for YouTube videos
|
|
}
|
|
|
|
self.source_id_counter += 1
|
|
sources_list.append(source)
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 7, # Assign a unique ID for the YouTube connector
|
|
"name": "YouTube Videos",
|
|
"type": "YOUTUBE_VIDEO",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, youtube_chunks
|
|
|
|
async def search_github(
|
|
self,
|
|
user_query: str,
|
|
user_id: int,
|
|
search_space_id: int,
|
|
top_k: int = 20,
|
|
search_mode: SearchMode = SearchMode.CHUNKS,
|
|
) -> tuple:
|
|
"""
|
|
Search for GitHub documents and return both the source information and langchain documents
|
|
|
|
Returns:
|
|
tuple: (sources_info, langchain_documents)
|
|
"""
|
|
if search_mode == SearchMode.CHUNKS:
|
|
github_chunks = await self.chunk_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="GITHUB_CONNECTOR",
|
|
)
|
|
elif search_mode == SearchMode.DOCUMENTS:
|
|
github_chunks = await self.document_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="GITHUB_CONNECTOR",
|
|
)
|
|
# Transform document retriever results to match expected format
|
|
github_chunks = self._transform_document_results(github_chunks)
|
|
|
|
# Early return if no results
|
|
if not github_chunks:
|
|
return {
|
|
"id": 8,
|
|
"name": "GitHub",
|
|
"type": "GITHUB_CONNECTOR",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each chunk and create sources directly without deduplication
|
|
sources_list = []
|
|
async with self.counter_lock:
|
|
for _i, chunk in enumerate(github_chunks):
|
|
# Extract document metadata
|
|
document = chunk.get("document", {})
|
|
metadata = document.get("metadata", {})
|
|
|
|
# Create a source entry
|
|
source = {
|
|
"id": document.get("id", self.source_id_counter),
|
|
"title": document.get(
|
|
"title", "GitHub Document"
|
|
), # Use specific title if available
|
|
"description": metadata.get(
|
|
"description", chunk.get("content", "")[:100]
|
|
), # Use description or content preview
|
|
"url": metadata.get("url", ""), # Use URL if available in metadata
|
|
}
|
|
|
|
self.source_id_counter += 1
|
|
sources_list.append(source)
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 8,
|
|
"name": "GitHub",
|
|
"type": "GITHUB_CONNECTOR",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, github_chunks
|
|
|
|
async def search_linear(
|
|
self,
|
|
user_query: str,
|
|
user_id: str,
|
|
search_space_id: int,
|
|
top_k: int = 20,
|
|
search_mode: SearchMode = SearchMode.CHUNKS,
|
|
) -> tuple:
|
|
"""
|
|
Search for Linear issues and comments and return both the source information and langchain documents
|
|
|
|
Args:
|
|
user_query: The user's query
|
|
user_id: The user's ID
|
|
search_space_id: The search space ID to search in
|
|
top_k: Maximum number of results to return
|
|
|
|
Returns:
|
|
tuple: (sources_info, langchain_documents)
|
|
"""
|
|
if search_mode == SearchMode.CHUNKS:
|
|
linear_chunks = await self.chunk_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="LINEAR_CONNECTOR",
|
|
)
|
|
elif search_mode == SearchMode.DOCUMENTS:
|
|
linear_chunks = await self.document_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="LINEAR_CONNECTOR",
|
|
)
|
|
# Transform document retriever results to match expected format
|
|
linear_chunks = self._transform_document_results(linear_chunks)
|
|
|
|
# Early return if no results
|
|
if not linear_chunks:
|
|
return {
|
|
"id": 9,
|
|
"name": "Linear Issues",
|
|
"type": "LINEAR_CONNECTOR",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each chunk and create sources directly without deduplication
|
|
sources_list = []
|
|
async with self.counter_lock:
|
|
for _i, chunk in enumerate(linear_chunks):
|
|
# Extract document metadata
|
|
document = chunk.get("document", {})
|
|
metadata = document.get("metadata", {})
|
|
|
|
# Extract Linear-specific metadata
|
|
issue_identifier = metadata.get("issue_identifier", "")
|
|
issue_title = metadata.get("issue_title", "Untitled Issue")
|
|
issue_state = metadata.get("state", "")
|
|
comment_count = metadata.get("comment_count", 0)
|
|
|
|
# Create a more descriptive title for Linear issues
|
|
title = f"Linear: {issue_identifier} - {issue_title}"
|
|
if issue_state:
|
|
title += f" ({issue_state})"
|
|
|
|
# Create a more descriptive description for Linear issues
|
|
description = chunk.get("content", "")[:100]
|
|
if len(description) == 100:
|
|
description += "..."
|
|
|
|
# Add comment count info to description
|
|
if comment_count:
|
|
if description:
|
|
description += f" | Comments: {comment_count}"
|
|
else:
|
|
description = f"Comments: {comment_count}"
|
|
|
|
# For URL, we could construct a URL to the Linear issue if we have the workspace info
|
|
# For now, use a generic placeholder
|
|
url = ""
|
|
if issue_identifier:
|
|
# This is a generic format, may need to be adjusted based on actual Linear workspace
|
|
url = f"https://linear.app/issue/{issue_identifier}"
|
|
|
|
source = {
|
|
"id": document.get("id", self.source_id_counter),
|
|
"title": title,
|
|
"description": description,
|
|
"url": url,
|
|
"issue_identifier": issue_identifier,
|
|
"state": issue_state,
|
|
"comment_count": comment_count,
|
|
}
|
|
|
|
self.source_id_counter += 1
|
|
sources_list.append(source)
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 9, # Assign a unique ID for the Linear connector
|
|
"name": "Linear Issues",
|
|
"type": "LINEAR_CONNECTOR",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, linear_chunks
|
|
|
|
async def search_jira(
|
|
self,
|
|
user_query: str,
|
|
user_id: str,
|
|
search_space_id: int,
|
|
top_k: int = 20,
|
|
search_mode: SearchMode = SearchMode.CHUNKS,
|
|
) -> tuple:
|
|
"""
|
|
Search for Jira issues and comments and return both the source information and langchain documents
|
|
|
|
Args:
|
|
user_query: The user's query
|
|
user_id: The user's ID
|
|
search_space_id: The search space ID to search in
|
|
top_k: Maximum number of results to return
|
|
search_mode: Search mode (CHUNKS or DOCUMENTS)
|
|
|
|
Returns:
|
|
tuple: (sources_info, langchain_documents)
|
|
"""
|
|
if search_mode == SearchMode.CHUNKS:
|
|
jira_chunks = await self.chunk_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="JIRA_CONNECTOR",
|
|
)
|
|
elif search_mode == SearchMode.DOCUMENTS:
|
|
jira_chunks = await self.document_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="JIRA_CONNECTOR",
|
|
)
|
|
# Transform document retriever results to match expected format
|
|
jira_chunks = self._transform_document_results(jira_chunks)
|
|
|
|
# Early return if no results
|
|
if not jira_chunks:
|
|
return {
|
|
"id": 10,
|
|
"name": "Jira Issues",
|
|
"type": "JIRA_CONNECTOR",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each chunk and create sources directly without deduplication
|
|
sources_list = []
|
|
async with self.counter_lock:
|
|
for _i, chunk in enumerate(jira_chunks):
|
|
# Extract document metadata
|
|
document = chunk.get("document", {})
|
|
metadata = document.get("metadata", {})
|
|
|
|
# Extract Jira-specific metadata
|
|
issue_key = metadata.get("issue_key", "")
|
|
issue_title = metadata.get("issue_title", "Untitled Issue")
|
|
status = metadata.get("status", "")
|
|
priority = metadata.get("priority", "")
|
|
issue_type = metadata.get("issue_type", "")
|
|
comment_count = metadata.get("comment_count", 0)
|
|
|
|
# Create a more descriptive title for Jira issues
|
|
title = f"Jira: {issue_key} - {issue_title}"
|
|
if status:
|
|
title += f" ({status})"
|
|
|
|
# Create a more descriptive description for Jira issues
|
|
description = chunk.get("content", "")[:100]
|
|
if len(description) == 100:
|
|
description += "..."
|
|
|
|
# Add priority and type info to description
|
|
info_parts = []
|
|
if priority:
|
|
info_parts.append(f"Priority: {priority}")
|
|
if issue_type:
|
|
info_parts.append(f"Type: {issue_type}")
|
|
if comment_count:
|
|
info_parts.append(f"Comments: {comment_count}")
|
|
|
|
if info_parts:
|
|
if description:
|
|
description += f" | {' | '.join(info_parts)}"
|
|
else:
|
|
description = " | ".join(info_parts)
|
|
|
|
# For URL, we could construct a URL to the Jira issue if we have the base URL
|
|
# For now, use a generic placeholder
|
|
url = ""
|
|
if issue_key and metadata.get("base_url"):
|
|
url = f"{metadata.get('base_url')}/browse/{issue_key}"
|
|
|
|
source = {
|
|
"id": document.get("id", self.source_id_counter),
|
|
"title": title,
|
|
"description": description,
|
|
"url": url,
|
|
"issue_key": issue_key,
|
|
"status": status,
|
|
"priority": priority,
|
|
"issue_type": issue_type,
|
|
"comment_count": comment_count,
|
|
}
|
|
|
|
self.source_id_counter += 1
|
|
sources_list.append(source)
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 10, # Assign a unique ID for the Jira connector
|
|
"name": "Jira Issues",
|
|
"type": "JIRA_CONNECTOR",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, jira_chunks
|
|
|
|
async def search_linkup(
|
|
self, user_query: str, user_id: str, mode: str = "standard"
|
|
) -> tuple:
|
|
"""
|
|
Search using Linkup API and return both the source information and documents
|
|
|
|
Args:
|
|
user_query: The user's query
|
|
user_id: The user's ID
|
|
mode: Search depth mode, can be "standard" or "deep"
|
|
|
|
Returns:
|
|
tuple: (sources_info, documents)
|
|
"""
|
|
# Get Linkup connector configuration
|
|
linkup_connector = await self.get_connector_by_type(
|
|
user_id, SearchSourceConnectorType.LINKUP_API
|
|
)
|
|
|
|
if not linkup_connector:
|
|
# Return empty results if no Linkup connector is configured
|
|
return {
|
|
"id": 10,
|
|
"name": "Linkup Search",
|
|
"type": "LINKUP_API",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Initialize Linkup client with API key from connector config
|
|
linkup_api_key = linkup_connector.config.get("LINKUP_API_KEY")
|
|
linkup_client = LinkupClient(api_key=linkup_api_key)
|
|
|
|
# Perform search with Linkup
|
|
try:
|
|
response = linkup_client.search(
|
|
query=user_query,
|
|
depth=mode, # Use the provided mode ("standard" or "deep")
|
|
output_type="searchResults", # Default to search results
|
|
)
|
|
|
|
# Extract results from Linkup response - access as attribute instead of using .get()
|
|
linkup_results = response.results if hasattr(response, "results") else []
|
|
|
|
# Only proceed if we have results
|
|
if not linkup_results:
|
|
return {
|
|
"id": 10,
|
|
"name": "Linkup Search",
|
|
"type": "LINKUP_API",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each result and create sources directly without deduplication
|
|
sources_list = []
|
|
documents = []
|
|
|
|
async with self.counter_lock:
|
|
for i, result in enumerate(linkup_results):
|
|
# Only process results that have content
|
|
if not hasattr(result, "content") or not result.content:
|
|
continue
|
|
|
|
# Create a source entry
|
|
source = {
|
|
"id": self.source_id_counter,
|
|
"title": (
|
|
result.name if hasattr(result, "name") else "Linkup Result"
|
|
),
|
|
"description": (
|
|
result.content[:100] if hasattr(result, "content") else ""
|
|
),
|
|
"url": result.url if hasattr(result, "url") else "",
|
|
}
|
|
sources_list.append(source)
|
|
|
|
# Create a document entry
|
|
document = {
|
|
"chunk_id": f"linkup_chunk_{i}",
|
|
"content": result.content if hasattr(result, "content") else "",
|
|
"score": 1.0, # Default score since not provided by Linkup
|
|
"document": {
|
|
"id": self.source_id_counter,
|
|
"title": (
|
|
result.name
|
|
if hasattr(result, "name")
|
|
else "Linkup Result"
|
|
),
|
|
"document_type": "LINKUP_API",
|
|
"metadata": {
|
|
"url": result.url if hasattr(result, "url") else "",
|
|
"type": result.type if hasattr(result, "type") else "",
|
|
"source": "LINKUP_API",
|
|
},
|
|
},
|
|
}
|
|
documents.append(document)
|
|
self.source_id_counter += 1
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 10,
|
|
"name": "Linkup Search",
|
|
"type": "LINKUP_API",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, documents
|
|
|
|
except Exception as e:
|
|
# Log the error and return empty results
|
|
print(f"Error searching with Linkup: {str(e)}")
|
|
return {
|
|
"id": 10,
|
|
"name": "Linkup Search",
|
|
"type": "LINKUP_API",
|
|
"sources": [],
|
|
}, []
|
|
|
|
async def search_discord(
|
|
self,
|
|
user_query: str,
|
|
user_id: str,
|
|
search_space_id: int,
|
|
top_k: int = 20,
|
|
search_mode: SearchMode = SearchMode.CHUNKS,
|
|
) -> tuple:
|
|
"""
|
|
Search for Discord messages and return both the source information and langchain documents
|
|
|
|
Args:
|
|
user_query: The user's query
|
|
user_id: The user's ID
|
|
search_space_id: The search space ID to search in
|
|
top_k: Maximum number of results to return
|
|
|
|
Returns:
|
|
tuple: (sources_info, langchain_documents)
|
|
"""
|
|
if search_mode == SearchMode.CHUNKS:
|
|
discord_chunks = await self.chunk_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="DISCORD_CONNECTOR",
|
|
)
|
|
elif search_mode == SearchMode.DOCUMENTS:
|
|
discord_chunks = await self.document_retriever.hybrid_search(
|
|
query_text=user_query,
|
|
top_k=top_k,
|
|
user_id=user_id,
|
|
search_space_id=search_space_id,
|
|
document_type="DISCORD_CONNECTOR",
|
|
)
|
|
# Transform document retriever results to match expected format
|
|
discord_chunks = self._transform_document_results(discord_chunks)
|
|
|
|
# Early return if no results
|
|
if not discord_chunks:
|
|
return {
|
|
"id": 11,
|
|
"name": "Discord",
|
|
"type": "DISCORD_CONNECTOR",
|
|
"sources": [],
|
|
}, []
|
|
|
|
# Process each chunk and create sources directly without deduplication
|
|
sources_list = []
|
|
async with self.counter_lock:
|
|
for i, chunk in enumerate(discord_chunks):
|
|
# Extract document metadata
|
|
document = chunk.get("document", {})
|
|
metadata = document.get("metadata", {})
|
|
|
|
# Create a mapped source entry with Discord-specific metadata
|
|
channel_name = metadata.get("channel_name", "Unknown Channel")
|
|
channel_id = metadata.get("channel_id", "")
|
|
message_date = metadata.get("start_date", "")
|
|
|
|
# Create a more descriptive title for Discord messages
|
|
title = f"Discord: {channel_name}"
|
|
if message_date:
|
|
title += f" ({message_date})"
|
|
|
|
# Create a more descriptive description for Discord messages
|
|
description = chunk.get("content", "")[:100]
|
|
if len(description) == 100:
|
|
description += "..."
|
|
|
|
url = ""
|
|
guild_id = metadata.get("guild_id", "")
|
|
if guild_id and channel_id:
|
|
url = f"https://discord.com/channels/{guild_id}/{channel_id}"
|
|
elif channel_id:
|
|
# Fallback for DM channels or when guild_id is not available
|
|
url = f"https://discord.com/channels/@me/{channel_id}"
|
|
|
|
source = {
|
|
"id": document.get("id", self.source_id_counter),
|
|
"title": title,
|
|
"description": description,
|
|
"url": url,
|
|
}
|
|
|
|
self.source_id_counter += 1
|
|
sources_list.append(source)
|
|
|
|
# Create result object
|
|
result_object = {
|
|
"id": 11,
|
|
"name": "Discord",
|
|
"type": "DISCORD_CONNECTOR",
|
|
"sources": sources_list,
|
|
}
|
|
|
|
return result_object, discord_chunks
|