mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-02 02:29:08 +00:00
181 lines
7.3 KiB
Python
181 lines
7.3 KiB
Python
from .configuration import Configuration
|
|
from langchain_core.runnables import RunnableConfig
|
|
from .state import State
|
|
from typing import Any, Dict
|
|
from app.config import config as app_config
|
|
from .prompts import get_citation_system_prompt
|
|
from langchain_core.messages import HumanMessage, SystemMessage
|
|
from .configuration import SubSectionType
|
|
|
|
async def rerank_documents(state: State, config: RunnableConfig) -> Dict[str, Any]:
|
|
"""
|
|
Rerank the documents based on relevance to the sub-section title.
|
|
|
|
This node takes the relevant documents provided in the configuration,
|
|
reranks them using the reranker service based on the sub-section title,
|
|
and updates the state with the reranked documents.
|
|
|
|
Returns:
|
|
Dict containing the reranked documents.
|
|
"""
|
|
# Get configuration and relevant documents
|
|
configuration = Configuration.from_runnable_config(config)
|
|
documents = configuration.relevant_documents
|
|
sub_section_questions = configuration.sub_section_questions
|
|
|
|
# If no documents were provided, return empty list
|
|
if not documents or len(documents) == 0:
|
|
return {
|
|
"reranked_documents": []
|
|
}
|
|
|
|
# Get reranker service from app config
|
|
reranker_service = getattr(app_config, "reranker_service", None)
|
|
|
|
# Use documents as is if no reranker service is available
|
|
reranked_docs = documents
|
|
|
|
if reranker_service:
|
|
try:
|
|
# Use the sub-section questions for reranking context
|
|
# rerank_query = "\n".join(sub_section_questions)
|
|
# rerank_query = configuration.user_query
|
|
|
|
rerank_query = configuration.user_query + "\n" + "\n".join(sub_section_questions)
|
|
|
|
# Convert documents to format expected by reranker if needed
|
|
reranker_input_docs = [
|
|
{
|
|
"chunk_id": doc.get("chunk_id", f"chunk_{i}"),
|
|
"content": doc.get("content", ""),
|
|
"score": doc.get("score", 0.0),
|
|
"document": {
|
|
"id": doc.get("document", {}).get("id", ""),
|
|
"title": doc.get("document", {}).get("title", ""),
|
|
"document_type": doc.get("document", {}).get("document_type", ""),
|
|
"metadata": doc.get("document", {}).get("metadata", {})
|
|
}
|
|
} for i, doc in enumerate(documents)
|
|
]
|
|
|
|
# Rerank documents using the section title
|
|
reranked_docs = reranker_service.rerank_documents(rerank_query, reranker_input_docs)
|
|
|
|
# Sort by score in descending order
|
|
reranked_docs.sort(key=lambda x: x.get("score", 0), reverse=True)
|
|
|
|
print(f"Reranked {len(reranked_docs)} documents for section: {configuration.sub_section_title}")
|
|
except Exception as e:
|
|
print(f"Error during reranking: {str(e)}")
|
|
# Use original docs if reranking fails
|
|
|
|
return {
|
|
"reranked_documents": reranked_docs
|
|
}
|
|
|
|
async def write_sub_section(state: State, config: RunnableConfig) -> Dict[str, Any]:
|
|
"""
|
|
Write the sub-section using the provided documents.
|
|
|
|
This node takes the relevant documents provided in the configuration and uses
|
|
an LLM to generate a comprehensive answer to the sub-section title with
|
|
proper citations. The citations follow IEEE format using source IDs from the
|
|
documents.
|
|
|
|
Returns:
|
|
Dict containing the final answer in the "final_answer" key.
|
|
"""
|
|
|
|
# Get configuration and relevant documents from configuration
|
|
configuration = Configuration.from_runnable_config(config)
|
|
documents = configuration.relevant_documents
|
|
|
|
# Initialize LLM
|
|
llm = app_config.fast_llm_instance
|
|
|
|
# If no documents were provided, return a message indicating this
|
|
if not documents or len(documents) == 0:
|
|
return {
|
|
"final_answer": "No relevant documents were provided to answer this question. Please provide documents or try a different approach."
|
|
}
|
|
|
|
# Prepare documents for citation formatting
|
|
formatted_documents = []
|
|
for i, doc in enumerate(documents):
|
|
# Extract content and metadata
|
|
content = doc.get("content", "")
|
|
doc_info = doc.get("document", {})
|
|
document_id = doc_info.get("id") # Use document ID
|
|
|
|
# Format document according to the citation system prompt's expected format
|
|
formatted_doc = f"""
|
|
<document>
|
|
<metadata>
|
|
<source_id>{document_id}</source_id>
|
|
</metadata>
|
|
<content>
|
|
{content}
|
|
</content>
|
|
</document>
|
|
"""
|
|
formatted_documents.append(formatted_doc)
|
|
|
|
# Create the query that uses the section title and questions
|
|
section_title = configuration.sub_section_title
|
|
sub_section_questions = configuration.sub_section_questions
|
|
user_query = configuration.user_query # Get the original user query
|
|
documents_text = "\n".join(formatted_documents)
|
|
sub_section_type = configuration.sub_section_type
|
|
|
|
# Format the questions as bullet points for clarity
|
|
questions_text = "\n".join([f"- {question}" for question in sub_section_questions])
|
|
|
|
# Provide more context based on the subsection type
|
|
section_position_context = ""
|
|
if sub_section_type == SubSectionType.START:
|
|
section_position_context = "This is the INTRODUCTION section. Focus on providing an overview of the topic, setting the context, and introducing key concepts that will be discussed in later sections. Do not provide any conclusions in this section, as conclusions should only appear in the final section."
|
|
elif sub_section_type == SubSectionType.MIDDLE:
|
|
section_position_context = "This is a MIDDLE section. Ensure this content flows naturally from previous sections and into subsequent ones. This could be any middle section in the document, so maintain coherence with the overall structure while addressing the specific topic of this section. Do not provide any conclusions in this section, as conclusions should only appear in the final section."
|
|
elif sub_section_type == SubSectionType.END:
|
|
section_position_context = "This is the CONCLUSION section. Focus on summarizing key points, providing closure, and possibly suggesting implications or future directions related to the topic."
|
|
|
|
# Construct a clear, structured query for the LLM
|
|
human_message_content = f"""
|
|
Source material:
|
|
<documents>
|
|
{documents_text}
|
|
</documents>
|
|
|
|
Now user's query is:
|
|
<user_query>
|
|
{user_query}
|
|
</user_query>
|
|
|
|
The sub-section title is:
|
|
<sub_section_title>
|
|
{section_title}
|
|
</sub_section_title>
|
|
|
|
<section_position>
|
|
{section_position_context}
|
|
</section_position>
|
|
|
|
<guiding_questions>
|
|
{questions_text}
|
|
</guiding_questions>
|
|
"""
|
|
|
|
# Create messages for the LLM
|
|
messages_with_chat_history = state.chat_history + [
|
|
SystemMessage(content=get_citation_system_prompt()),
|
|
HumanMessage(content=human_message_content)
|
|
]
|
|
|
|
# Call the LLM and get the response
|
|
response = await llm.ainvoke(messages_with_chat_history)
|
|
final_answer = response.content
|
|
|
|
return {
|
|
"final_answer": final_answer
|
|
}
|
|
|