mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-01 18:19:08 +00:00
3375 lines
134 KiB
Python
3375 lines
134 KiB
Python
import asyncio
|
|
import logging
|
|
from datetime import UTC, datetime, timedelta
|
|
|
|
from google.oauth2.credentials import Credentials
|
|
from slack_sdk.errors import SlackApiError
|
|
from sqlalchemy.exc import SQLAlchemyError
|
|
from sqlalchemy.ext.asyncio import AsyncSession
|
|
from sqlalchemy.future import select
|
|
|
|
from app.config import config
|
|
from app.connectors.clickup_connector import ClickUpConnector
|
|
from app.connectors.confluence_connector import ConfluenceConnector
|
|
from app.connectors.discord_connector import DiscordConnector
|
|
from app.connectors.github_connector import GitHubConnector
|
|
from app.connectors.google_calendar_connector import GoogleCalendarConnector
|
|
from app.connectors.jira_connector import JiraConnector
|
|
from app.connectors.linear_connector import LinearConnector
|
|
from app.connectors.notion_history import NotionHistoryConnector
|
|
from app.connectors.slack_history import SlackHistory
|
|
from app.db import (
|
|
Chunk,
|
|
Document,
|
|
DocumentType,
|
|
SearchSourceConnector,
|
|
SearchSourceConnectorType,
|
|
)
|
|
from app.prompts import SUMMARY_PROMPT_TEMPLATE
|
|
from app.services.llm_service import get_user_long_context_llm
|
|
from app.services.task_logging_service import TaskLoggingService
|
|
from app.utils.document_converters import generate_content_hash
|
|
|
|
# Set up logging
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
async def index_slack_messages(
|
|
session: AsyncSession,
|
|
connector_id: int,
|
|
search_space_id: int,
|
|
user_id: str,
|
|
start_date: str | None = None,
|
|
end_date: str | None = None,
|
|
update_last_indexed: bool = True,
|
|
) -> tuple[int, str | None]:
|
|
"""
|
|
Index Slack messages from all accessible channels.
|
|
|
|
Args:
|
|
session: Database session
|
|
connector_id: ID of the Slack connector
|
|
search_space_id: ID of the search space to store documents in
|
|
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
|
|
|
|
Returns:
|
|
Tuple containing (number of documents indexed, error message or None)
|
|
"""
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="slack_messages_indexing",
|
|
source="connector_indexing_task",
|
|
message=f"Starting Slack messages indexing for connector {connector_id}",
|
|
metadata={
|
|
"connector_id": connector_id,
|
|
"user_id": str(user_id),
|
|
"start_date": start_date,
|
|
"end_date": end_date,
|
|
},
|
|
)
|
|
|
|
try:
|
|
# Get the connector
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Retrieving Slack connector {connector_id} from database",
|
|
{"stage": "connector_retrieval"},
|
|
)
|
|
|
|
result = await session.execute(
|
|
select(SearchSourceConnector).filter(
|
|
SearchSourceConnector.id == connector_id,
|
|
SearchSourceConnector.connector_type
|
|
== SearchSourceConnectorType.SLACK_CONNECTOR,
|
|
)
|
|
)
|
|
connector = result.scalars().first()
|
|
|
|
if not connector:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Connector with ID {connector_id} not found or is not a Slack connector",
|
|
"Connector not found",
|
|
{"error_type": "ConnectorNotFound"},
|
|
)
|
|
return (
|
|
0,
|
|
f"Connector with ID {connector_id} not found or is not a Slack connector",
|
|
)
|
|
|
|
# Get the Slack token from the connector config
|
|
slack_token = connector.config.get("SLACK_BOT_TOKEN")
|
|
if not slack_token:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Slack token not found in connector config for connector {connector_id}",
|
|
"Missing Slack token",
|
|
{"error_type": "MissingToken"},
|
|
)
|
|
return 0, "Slack token not found in connector config"
|
|
|
|
# Initialize Slack client
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Initializing Slack client for connector {connector_id}",
|
|
{"stage": "client_initialization"},
|
|
)
|
|
|
|
slack_client = SlackHistory(token=slack_token)
|
|
|
|
# Calculate date range
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
"Calculating date range for Slack indexing",
|
|
{
|
|
"stage": "date_calculation",
|
|
"provided_start_date": start_date,
|
|
"provided_end_date": end_date,
|
|
},
|
|
)
|
|
|
|
if start_date is None or end_date is None:
|
|
# Fall back to calculating dates based on last_indexed_at
|
|
calculated_end_date = datetime.now()
|
|
|
|
# Use last_indexed_at as start date if available, otherwise use 365 days ago
|
|
if connector.last_indexed_at:
|
|
# Convert dates to be comparable (both timezone-naive)
|
|
last_indexed_naive = (
|
|
connector.last_indexed_at.replace(tzinfo=None)
|
|
if connector.last_indexed_at.tzinfo
|
|
else connector.last_indexed_at
|
|
)
|
|
|
|
# Check if last_indexed_at is in the future or after end_date
|
|
if last_indexed_naive > calculated_end_date:
|
|
logger.warning(
|
|
f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead."
|
|
)
|
|
calculated_start_date = calculated_end_date - timedelta(days=365)
|
|
else:
|
|
calculated_start_date = last_indexed_naive
|
|
logger.info(
|
|
f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
|
|
)
|
|
else:
|
|
calculated_start_date = calculated_end_date - timedelta(
|
|
days=365
|
|
) # Use 365 days as default
|
|
logger.info(
|
|
f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
|
|
)
|
|
|
|
# Use calculated dates if not provided
|
|
start_date_str = (
|
|
start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
|
|
)
|
|
end_date_str = (
|
|
end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
|
|
)
|
|
else:
|
|
# Use provided dates
|
|
start_date_str = start_date
|
|
end_date_str = end_date
|
|
|
|
logger.info(f"Indexing Slack messages from {start_date_str} to {end_date_str}")
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Fetching Slack channels from {start_date_str} to {end_date_str}",
|
|
{
|
|
"stage": "fetch_channels",
|
|
"start_date": start_date_str,
|
|
"end_date": end_date_str,
|
|
},
|
|
)
|
|
|
|
# Get all channels
|
|
try:
|
|
channels = slack_client.get_all_channels()
|
|
except Exception as e:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to get Slack channels for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": "ChannelFetchError"},
|
|
)
|
|
return 0, f"Failed to get Slack channels: {e!s}"
|
|
|
|
if not channels:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"No Slack channels found for connector {connector_id}",
|
|
{"channels_found": 0},
|
|
)
|
|
return 0, "No Slack channels found"
|
|
|
|
# Track the number of documents indexed
|
|
documents_indexed = 0
|
|
documents_skipped = 0
|
|
skipped_channels = []
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Starting to process {len(channels)} Slack channels",
|
|
{"stage": "process_channels", "total_channels": len(channels)},
|
|
)
|
|
|
|
# Process each channel
|
|
for (
|
|
channel_obj
|
|
) in channels: # Modified loop to iterate over list of channel objects
|
|
channel_id = channel_obj["id"]
|
|
channel_name = channel_obj["name"]
|
|
is_private = channel_obj["is_private"]
|
|
is_member = channel_obj[
|
|
"is_member"
|
|
] # This might be False for public channels too
|
|
|
|
try:
|
|
# If it's a private channel and the bot is not a member, skip.
|
|
# For public channels, if they are listed by conversations.list, the bot can typically read history.
|
|
# The `not_in_channel` error in get_conversation_history will be the ultimate gatekeeper if history is inaccessible.
|
|
if is_private and not is_member:
|
|
logger.warning(
|
|
f"Bot is not a member of private channel {channel_name} ({channel_id}). Skipping."
|
|
)
|
|
skipped_channels.append(
|
|
f"{channel_name} (private, bot not a member)"
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Get messages for this channel
|
|
# The get_history_by_date_range now uses get_conversation_history,
|
|
# which handles 'not_in_channel' by returning [] and logging.
|
|
messages, error = slack_client.get_history_by_date_range(
|
|
channel_id=channel_id,
|
|
start_date=start_date_str,
|
|
end_date=end_date_str,
|
|
limit=1000, # Limit to 1000 messages per channel
|
|
)
|
|
|
|
if error:
|
|
logger.warning(
|
|
f"Error getting messages from channel {channel_name}: {error}"
|
|
)
|
|
skipped_channels.append(f"{channel_name} (error: {error})")
|
|
documents_skipped += 1
|
|
continue # Skip this channel if there's an error
|
|
|
|
if not messages:
|
|
logger.info(
|
|
f"No messages found in channel {channel_name} for the specified date range."
|
|
)
|
|
documents_skipped += 1
|
|
continue # Skip if no messages
|
|
|
|
# Format messages with user info
|
|
formatted_messages = []
|
|
for msg in messages:
|
|
# Skip bot messages and system messages
|
|
if msg.get("subtype") in [
|
|
"bot_message",
|
|
"channel_join",
|
|
"channel_leave",
|
|
]:
|
|
continue
|
|
|
|
formatted_msg = slack_client.format_message(
|
|
msg, include_user_info=True
|
|
)
|
|
formatted_messages.append(formatted_msg)
|
|
|
|
if not formatted_messages:
|
|
logger.info(
|
|
f"No valid messages found in channel {channel_name} after filtering."
|
|
)
|
|
documents_skipped += 1
|
|
continue # Skip if no valid messages after filtering
|
|
|
|
# Convert messages to markdown format
|
|
channel_content = f"# Slack Channel: {channel_name}\n\n"
|
|
|
|
for msg in formatted_messages:
|
|
user_name = msg.get("user_name", "Unknown User")
|
|
timestamp = msg.get("datetime", "Unknown Time")
|
|
text = msg.get("text", "")
|
|
|
|
channel_content += (
|
|
f"## {user_name} ({timestamp})\n\n{text}\n\n---\n\n"
|
|
)
|
|
|
|
# Format document metadata
|
|
metadata_sections = [
|
|
(
|
|
"METADATA",
|
|
[
|
|
f"CHANNEL_NAME: {channel_name}",
|
|
f"CHANNEL_ID: {channel_id}",
|
|
# f"START_DATE: {start_date_str}",
|
|
# f"END_DATE: {end_date_str}",
|
|
f"MESSAGE_COUNT: {len(formatted_messages)}",
|
|
],
|
|
),
|
|
(
|
|
"CONTENT",
|
|
["FORMAT: markdown", "TEXT_START", channel_content, "TEXT_END"],
|
|
),
|
|
]
|
|
|
|
# Build the document string
|
|
document_parts = []
|
|
document_parts.append("<DOCUMENT>")
|
|
|
|
for section_title, section_content in metadata_sections:
|
|
document_parts.append(f"<{section_title}>")
|
|
document_parts.extend(section_content)
|
|
document_parts.append(f"</{section_title}>")
|
|
|
|
document_parts.append("</DOCUMENT>")
|
|
combined_document_string = "\n".join(document_parts)
|
|
content_hash = generate_content_hash(
|
|
combined_document_string, search_space_id
|
|
)
|
|
|
|
# Check if document with this content hash already exists
|
|
existing_doc_by_hash_result = await session.execute(
|
|
select(Document).where(Document.content_hash == content_hash)
|
|
)
|
|
existing_document_by_hash = (
|
|
existing_doc_by_hash_result.scalars().first()
|
|
)
|
|
|
|
if existing_document_by_hash:
|
|
logger.info(
|
|
f"Document with content hash {content_hash} already exists for channel {channel_name}. Skipping processing."
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Get user's long context LLM
|
|
user_llm = await get_user_long_context_llm(session, user_id)
|
|
if not user_llm:
|
|
logger.error(f"No long context LLM configured for user {user_id}")
|
|
skipped_channels.append(f"{channel_name} (no LLM configured)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Generate summary
|
|
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
|
|
summary_result = await summary_chain.ainvoke(
|
|
{"document": combined_document_string}
|
|
)
|
|
summary_content = summary_result.content
|
|
summary_embedding = config.embedding_model_instance.embed(
|
|
summary_content
|
|
)
|
|
|
|
# Process chunks
|
|
chunks = [
|
|
Chunk(
|
|
content=chunk.text,
|
|
embedding=config.embedding_model_instance.embed(chunk.text),
|
|
)
|
|
for chunk in config.chunker_instance.chunk(channel_content)
|
|
]
|
|
|
|
# Create and store new document
|
|
document = Document(
|
|
search_space_id=search_space_id,
|
|
title=f"Slack - {channel_name}",
|
|
document_type=DocumentType.SLACK_CONNECTOR,
|
|
document_metadata={
|
|
"channel_name": channel_name,
|
|
"channel_id": channel_id,
|
|
"start_date": start_date_str,
|
|
"end_date": end_date_str,
|
|
"message_count": len(formatted_messages),
|
|
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
},
|
|
content=summary_content,
|
|
embedding=summary_embedding,
|
|
chunks=chunks,
|
|
content_hash=content_hash,
|
|
)
|
|
|
|
session.add(document)
|
|
documents_indexed += 1
|
|
logger.info(
|
|
f"Successfully indexed new channel {channel_name} with {len(formatted_messages)} messages"
|
|
)
|
|
|
|
except SlackApiError as slack_error:
|
|
logger.error(
|
|
f"Slack API error for channel {channel_name}: {slack_error!s}"
|
|
)
|
|
skipped_channels.append(f"{channel_name} (Slack API error)")
|
|
documents_skipped += 1
|
|
continue # Skip this channel and continue with others
|
|
except Exception as e:
|
|
logger.error(f"Error processing channel {channel_name}: {e!s}")
|
|
skipped_channels.append(f"{channel_name} (processing error)")
|
|
documents_skipped += 1
|
|
continue # Skip this channel and continue with others
|
|
|
|
# Update the last_indexed_at timestamp for the connector only if requested
|
|
# and if we successfully indexed at least one channel
|
|
total_processed = documents_indexed
|
|
if update_last_indexed and total_processed > 0:
|
|
connector.last_indexed_at = datetime.now()
|
|
|
|
# Commit all changes
|
|
await session.commit()
|
|
|
|
# Prepare result message
|
|
result_message = None
|
|
if skipped_channels:
|
|
result_message = f"Processed {total_processed} channels. Skipped {len(skipped_channels)} channels: {', '.join(skipped_channels)}"
|
|
else:
|
|
result_message = f"Processed {total_processed} channels."
|
|
|
|
# Log success
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully completed Slack indexing for connector {connector_id}",
|
|
{
|
|
"channels_processed": total_processed,
|
|
"documents_indexed": documents_indexed,
|
|
"documents_skipped": documents_skipped,
|
|
"skipped_channels_count": len(skipped_channels),
|
|
"result_message": result_message,
|
|
},
|
|
)
|
|
|
|
logger.info(
|
|
f"Slack indexing completed: {documents_indexed} new channels, {documents_skipped} skipped"
|
|
)
|
|
return total_processed, result_message
|
|
|
|
except SQLAlchemyError as db_error:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Database error during Slack indexing for connector {connector_id}",
|
|
str(db_error),
|
|
{"error_type": "SQLAlchemyError"},
|
|
)
|
|
logger.error(f"Database error: {db_error!s}")
|
|
return 0, f"Database error: {db_error!s}"
|
|
except Exception as e:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to index Slack messages for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
logger.error(f"Failed to index Slack messages: {e!s}")
|
|
return 0, f"Failed to index Slack messages: {e!s}"
|
|
|
|
|
|
async def index_notion_pages(
|
|
session: AsyncSession,
|
|
connector_id: int,
|
|
search_space_id: int,
|
|
user_id: str,
|
|
start_date: str | None = None,
|
|
end_date: str | None = None,
|
|
update_last_indexed: bool = True,
|
|
) -> tuple[int, str | None]:
|
|
"""
|
|
Index Notion pages from all accessible pages.
|
|
|
|
Args:
|
|
session: Database session
|
|
connector_id: ID of the Notion connector
|
|
search_space_id: ID of the search space to store documents in
|
|
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
|
|
|
|
Returns:
|
|
Tuple containing (number of documents indexed, error message or None)
|
|
"""
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="notion_pages_indexing",
|
|
source="connector_indexing_task",
|
|
message=f"Starting Notion pages indexing for connector {connector_id}",
|
|
metadata={
|
|
"connector_id": connector_id,
|
|
"user_id": str(user_id),
|
|
"start_date": start_date,
|
|
"end_date": end_date,
|
|
},
|
|
)
|
|
|
|
try:
|
|
# Get the connector
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Retrieving Notion connector {connector_id} from database",
|
|
{"stage": "connector_retrieval"},
|
|
)
|
|
|
|
result = await session.execute(
|
|
select(SearchSourceConnector).filter(
|
|
SearchSourceConnector.id == connector_id,
|
|
SearchSourceConnector.connector_type
|
|
== SearchSourceConnectorType.NOTION_CONNECTOR,
|
|
)
|
|
)
|
|
connector = result.scalars().first()
|
|
|
|
if not connector:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Connector with ID {connector_id} not found or is not a Notion connector",
|
|
"Connector not found",
|
|
{"error_type": "ConnectorNotFound"},
|
|
)
|
|
return (
|
|
0,
|
|
f"Connector with ID {connector_id} not found or is not a Notion connector",
|
|
)
|
|
|
|
# Get the Notion token from the connector config
|
|
notion_token = connector.config.get("NOTION_INTEGRATION_TOKEN")
|
|
if not notion_token:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Notion integration token not found in connector config for connector {connector_id}",
|
|
"Missing Notion token",
|
|
{"error_type": "MissingToken"},
|
|
)
|
|
return 0, "Notion integration token not found in connector config"
|
|
|
|
# Initialize Notion client
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Initializing Notion client for connector {connector_id}",
|
|
{"stage": "client_initialization"},
|
|
)
|
|
|
|
logger.info(f"Initializing Notion client for connector {connector_id}")
|
|
notion_client = NotionHistoryConnector(token=notion_token)
|
|
|
|
# Calculate date range
|
|
if start_date is None or end_date is None:
|
|
# Fall back to calculating dates
|
|
calculated_end_date = datetime.now()
|
|
calculated_start_date = calculated_end_date - timedelta(
|
|
days=365
|
|
) # Check for last 1 year of pages
|
|
|
|
# Use calculated dates if not provided
|
|
if start_date is None:
|
|
start_date_iso = calculated_start_date.strftime("%Y-%m-%dT%H:%M:%SZ")
|
|
else:
|
|
# Convert YYYY-MM-DD to ISO format
|
|
start_date_iso = datetime.strptime(start_date, "%Y-%m-%d").strftime(
|
|
"%Y-%m-%dT%H:%M:%SZ"
|
|
)
|
|
|
|
if end_date is None:
|
|
end_date_iso = calculated_end_date.strftime("%Y-%m-%dT%H:%M:%SZ")
|
|
else:
|
|
# Convert YYYY-MM-DD to ISO format
|
|
end_date_iso = datetime.strptime(end_date, "%Y-%m-%d").strftime(
|
|
"%Y-%m-%dT%H:%M:%SZ"
|
|
)
|
|
else:
|
|
# Convert provided dates to ISO format for Notion API
|
|
start_date_iso = datetime.strptime(start_date, "%Y-%m-%d").strftime(
|
|
"%Y-%m-%dT%H:%M:%SZ"
|
|
)
|
|
end_date_iso = datetime.strptime(end_date, "%Y-%m-%d").strftime(
|
|
"%Y-%m-%dT%H:%M:%SZ"
|
|
)
|
|
|
|
logger.info(f"Fetching Notion pages from {start_date_iso} to {end_date_iso}")
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Fetching Notion pages from {start_date_iso} to {end_date_iso}",
|
|
{
|
|
"stage": "fetch_pages",
|
|
"start_date": start_date_iso,
|
|
"end_date": end_date_iso,
|
|
},
|
|
)
|
|
|
|
# Get all pages
|
|
try:
|
|
pages = notion_client.get_all_pages(
|
|
start_date=start_date_iso, end_date=end_date_iso
|
|
)
|
|
logger.info(f"Found {len(pages)} Notion pages")
|
|
except Exception as e:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to get Notion pages for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": "PageFetchError"},
|
|
)
|
|
logger.error(f"Error fetching Notion pages: {e!s}", exc_info=True)
|
|
return 0, f"Failed to get Notion pages: {e!s}"
|
|
|
|
if not pages:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"No Notion pages found for connector {connector_id}",
|
|
{"pages_found": 0},
|
|
)
|
|
logger.info("No Notion pages found to index")
|
|
return 0, "No Notion pages found"
|
|
|
|
# Track the number of documents indexed
|
|
documents_indexed = 0
|
|
documents_skipped = 0
|
|
skipped_pages = []
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Starting to process {len(pages)} Notion pages",
|
|
{"stage": "process_pages", "total_pages": len(pages)},
|
|
)
|
|
|
|
# Process each page
|
|
for page in pages:
|
|
try:
|
|
page_id = page.get("page_id")
|
|
page_title = page.get("title", f"Untitled page ({page_id})")
|
|
page_content = page.get("content", [])
|
|
|
|
logger.info(f"Processing Notion page: {page_title} ({page_id})")
|
|
|
|
if not page_content:
|
|
logger.info(f"No content found in page {page_title}. Skipping.")
|
|
skipped_pages.append(f"{page_title} (no content)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Convert page content to markdown format
|
|
markdown_content = f"# Notion Page: {page_title}\n\n"
|
|
|
|
# Process blocks recursively
|
|
def process_blocks(blocks, level=0):
|
|
result = ""
|
|
for block in blocks:
|
|
block_type = block.get("type")
|
|
block_content = block.get("content", "")
|
|
children = block.get("children", [])
|
|
|
|
# Add indentation based on level
|
|
indent = " " * level
|
|
|
|
# Format based on block type
|
|
if block_type in ["paragraph", "text"]:
|
|
result += f"{indent}{block_content}\n\n"
|
|
elif block_type in ["heading_1", "header"]:
|
|
result += f"{indent}# {block_content}\n\n"
|
|
elif block_type == "heading_2":
|
|
result += f"{indent}## {block_content}\n\n"
|
|
elif block_type == "heading_3":
|
|
result += f"{indent}### {block_content}\n\n"
|
|
elif block_type == "bulleted_list_item":
|
|
result += f"{indent}* {block_content}\n"
|
|
elif block_type == "numbered_list_item":
|
|
result += f"{indent}1. {block_content}\n"
|
|
elif block_type == "to_do":
|
|
result += f"{indent}- [ ] {block_content}\n"
|
|
elif block_type == "toggle":
|
|
result += f"{indent}> {block_content}\n"
|
|
elif block_type == "code":
|
|
result += f"{indent}```\n{block_content}\n```\n\n"
|
|
elif block_type == "quote":
|
|
result += f"{indent}> {block_content}\n\n"
|
|
elif block_type == "callout":
|
|
result += f"{indent}> **Note:** {block_content}\n\n"
|
|
elif block_type == "image":
|
|
result += f"{indent}\n\n"
|
|
else:
|
|
# Default for other block types
|
|
if block_content:
|
|
result += f"{indent}{block_content}\n\n"
|
|
|
|
# Process children recursively
|
|
if children:
|
|
result += process_blocks(children, level + 1)
|
|
|
|
return result
|
|
|
|
logger.debug(
|
|
f"Converting {len(page_content)} blocks to markdown for page {page_title}"
|
|
)
|
|
markdown_content += process_blocks(page_content)
|
|
|
|
# Format document metadata
|
|
metadata_sections = [
|
|
("METADATA", [f"PAGE_TITLE: {page_title}", f"PAGE_ID: {page_id}"]),
|
|
(
|
|
"CONTENT",
|
|
[
|
|
"FORMAT: markdown",
|
|
"TEXT_START",
|
|
markdown_content,
|
|
"TEXT_END",
|
|
],
|
|
),
|
|
]
|
|
|
|
# Build the document string
|
|
document_parts = []
|
|
document_parts.append("<DOCUMENT>")
|
|
|
|
for section_title, section_content in metadata_sections:
|
|
document_parts.append(f"<{section_title}>")
|
|
document_parts.extend(section_content)
|
|
document_parts.append(f"</{section_title}>")
|
|
|
|
document_parts.append("</DOCUMENT>")
|
|
combined_document_string = "\n".join(document_parts)
|
|
content_hash = generate_content_hash(
|
|
combined_document_string, search_space_id
|
|
)
|
|
|
|
# Check if document with this content hash already exists
|
|
existing_doc_by_hash_result = await session.execute(
|
|
select(Document).where(Document.content_hash == content_hash)
|
|
)
|
|
existing_document_by_hash = (
|
|
existing_doc_by_hash_result.scalars().first()
|
|
)
|
|
|
|
if existing_document_by_hash:
|
|
logger.info(
|
|
f"Document with content hash {content_hash} already exists for page {page_title}. Skipping processing."
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Get user's long context LLM
|
|
user_llm = await get_user_long_context_llm(session, user_id)
|
|
if not user_llm:
|
|
logger.error(f"No long context LLM configured for user {user_id}")
|
|
skipped_pages.append(f"{page_title} (no LLM configured)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Generate summary
|
|
logger.debug(f"Generating summary for page {page_title}")
|
|
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
|
|
summary_result = await summary_chain.ainvoke(
|
|
{"document": combined_document_string}
|
|
)
|
|
summary_content = summary_result.content
|
|
summary_embedding = config.embedding_model_instance.embed(
|
|
summary_content
|
|
)
|
|
|
|
# Process chunks
|
|
logger.debug(f"Chunking content for page {page_title}")
|
|
chunks = [
|
|
Chunk(
|
|
content=chunk.text,
|
|
embedding=config.embedding_model_instance.embed(chunk.text),
|
|
)
|
|
for chunk in config.chunker_instance.chunk(markdown_content)
|
|
]
|
|
|
|
# Create and store new document
|
|
document = Document(
|
|
search_space_id=search_space_id,
|
|
title=f"Notion - {page_title}",
|
|
document_type=DocumentType.NOTION_CONNECTOR,
|
|
document_metadata={
|
|
"page_title": page_title,
|
|
"page_id": page_id,
|
|
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
},
|
|
content=summary_content,
|
|
content_hash=content_hash,
|
|
embedding=summary_embedding,
|
|
chunks=chunks,
|
|
)
|
|
|
|
session.add(document)
|
|
documents_indexed += 1
|
|
logger.info(f"Successfully indexed new Notion page: {page_title}")
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error processing Notion page {page.get('title', 'Unknown')}: {e!s}",
|
|
exc_info=True,
|
|
)
|
|
skipped_pages.append(
|
|
f"{page.get('title', 'Unknown')} (processing error)"
|
|
)
|
|
documents_skipped += 1
|
|
continue # Skip this page and continue with others
|
|
|
|
# Update the last_indexed_at timestamp for the connector only if requested
|
|
# and if we successfully indexed at least one page
|
|
total_processed = documents_indexed
|
|
if update_last_indexed and total_processed > 0:
|
|
connector.last_indexed_at = datetime.now()
|
|
logger.info(f"Updated last_indexed_at for connector {connector_id}")
|
|
|
|
# Commit all changes
|
|
await session.commit()
|
|
|
|
# Prepare result message
|
|
result_message = None
|
|
if skipped_pages:
|
|
result_message = f"Processed {total_processed} pages. Skipped {len(skipped_pages)} pages: {', '.join(skipped_pages)}"
|
|
else:
|
|
result_message = f"Processed {total_processed} pages."
|
|
|
|
# Log success
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully completed Notion indexing for connector {connector_id}",
|
|
{
|
|
"pages_processed": total_processed,
|
|
"documents_indexed": documents_indexed,
|
|
"documents_skipped": documents_skipped,
|
|
"skipped_pages_count": len(skipped_pages),
|
|
"result_message": result_message,
|
|
},
|
|
)
|
|
|
|
logger.info(
|
|
f"Notion indexing completed: {documents_indexed} new pages, {documents_skipped} skipped"
|
|
)
|
|
return total_processed, result_message
|
|
|
|
except SQLAlchemyError as db_error:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Database error during Notion indexing for connector {connector_id}",
|
|
str(db_error),
|
|
{"error_type": "SQLAlchemyError"},
|
|
)
|
|
logger.error(
|
|
f"Database error during Notion indexing: {db_error!s}", exc_info=True
|
|
)
|
|
return 0, f"Database error: {db_error!s}"
|
|
except Exception as e:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to index Notion pages for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
logger.error(f"Failed to index Notion pages: {e!s}", exc_info=True)
|
|
return 0, f"Failed to index Notion pages: {e!s}"
|
|
|
|
|
|
async def index_github_repos(
|
|
session: AsyncSession,
|
|
connector_id: int,
|
|
search_space_id: int,
|
|
user_id: str,
|
|
start_date: str | None = None,
|
|
end_date: str | None = None,
|
|
update_last_indexed: bool = True,
|
|
) -> tuple[int, str | None]:
|
|
"""
|
|
Index code and documentation files from accessible GitHub repositories.
|
|
|
|
Args:
|
|
session: Database session
|
|
connector_id: ID of the GitHub connector
|
|
search_space_id: ID of the search space to store documents in
|
|
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
|
|
|
|
Returns:
|
|
Tuple containing (number of documents indexed, error message or None)
|
|
"""
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="github_repos_indexing",
|
|
source="connector_indexing_task",
|
|
message=f"Starting GitHub repositories indexing for connector {connector_id}",
|
|
metadata={
|
|
"connector_id": connector_id,
|
|
"user_id": str(user_id),
|
|
"start_date": start_date,
|
|
"end_date": end_date,
|
|
},
|
|
)
|
|
|
|
documents_processed = 0
|
|
errors = []
|
|
|
|
try:
|
|
# 1. Get the GitHub connector from the database
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Retrieving GitHub connector {connector_id} from database",
|
|
{"stage": "connector_retrieval"},
|
|
)
|
|
|
|
result = await session.execute(
|
|
select(SearchSourceConnector).filter(
|
|
SearchSourceConnector.id == connector_id,
|
|
SearchSourceConnector.connector_type
|
|
== SearchSourceConnectorType.GITHUB_CONNECTOR,
|
|
)
|
|
)
|
|
connector = result.scalars().first()
|
|
|
|
if not connector:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Connector with ID {connector_id} not found or is not a GitHub connector",
|
|
"Connector not found",
|
|
{"error_type": "ConnectorNotFound"},
|
|
)
|
|
return (
|
|
0,
|
|
f"Connector with ID {connector_id} not found or is not a GitHub connector",
|
|
)
|
|
|
|
# 2. Get the GitHub PAT and selected repositories from the connector config
|
|
github_pat = connector.config.get("GITHUB_PAT")
|
|
repo_full_names_to_index = connector.config.get("repo_full_names")
|
|
|
|
if not github_pat:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"GitHub Personal Access Token (PAT) not found in connector config for connector {connector_id}",
|
|
"Missing GitHub PAT",
|
|
{"error_type": "MissingToken"},
|
|
)
|
|
return 0, "GitHub Personal Access Token (PAT) not found in connector config"
|
|
|
|
if not repo_full_names_to_index or not isinstance(
|
|
repo_full_names_to_index, list
|
|
):
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"'repo_full_names' not found or is not a list in connector config for connector {connector_id}",
|
|
"Invalid repo configuration",
|
|
{"error_type": "InvalidConfiguration"},
|
|
)
|
|
return 0, "'repo_full_names' not found or is not a list in connector config"
|
|
|
|
# 3. Initialize GitHub connector client
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Initializing GitHub client for connector {connector_id}",
|
|
{
|
|
"stage": "client_initialization",
|
|
"repo_count": len(repo_full_names_to_index),
|
|
},
|
|
)
|
|
|
|
try:
|
|
github_client = GitHubConnector(token=github_pat)
|
|
except ValueError as e:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to initialize GitHub client for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": "ClientInitializationError"},
|
|
)
|
|
return 0, f"Failed to initialize GitHub client: {e!s}"
|
|
|
|
# 4. Validate selected repositories
|
|
# For simplicity, we'll proceed with the list provided.
|
|
# If a repo is inaccessible, get_repository_files will likely fail gracefully later.
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Starting indexing for {len(repo_full_names_to_index)} selected repositories",
|
|
{
|
|
"stage": "repo_processing",
|
|
"repo_count": len(repo_full_names_to_index),
|
|
"start_date": start_date,
|
|
"end_date": end_date,
|
|
},
|
|
)
|
|
|
|
logger.info(
|
|
f"Starting indexing for {len(repo_full_names_to_index)} selected repositories."
|
|
)
|
|
if start_date and end_date:
|
|
logger.info(
|
|
f"Date range requested: {start_date} to {end_date} (Note: GitHub indexing processes all files regardless of dates)"
|
|
)
|
|
|
|
# 6. Iterate through selected repositories and index files
|
|
for repo_full_name in repo_full_names_to_index:
|
|
if not repo_full_name or not isinstance(repo_full_name, str):
|
|
logger.warning(f"Skipping invalid repository entry: {repo_full_name}")
|
|
continue
|
|
|
|
logger.info(f"Processing repository: {repo_full_name}")
|
|
try:
|
|
files_to_index = github_client.get_repository_files(repo_full_name)
|
|
if not files_to_index:
|
|
logger.info(
|
|
f"No indexable files found in repository: {repo_full_name}"
|
|
)
|
|
continue
|
|
|
|
logger.info(
|
|
f"Found {len(files_to_index)} files to process in {repo_full_name}"
|
|
)
|
|
|
|
for file_info in files_to_index:
|
|
file_path = file_info.get("path")
|
|
file_url = file_info.get("url")
|
|
file_sha = file_info.get("sha")
|
|
file_type = file_info.get("type") # 'code' or 'doc'
|
|
full_path_key = f"{repo_full_name}/{file_path}"
|
|
|
|
if not file_path or not file_url or not file_sha:
|
|
logger.warning(
|
|
f"Skipping file with missing info in {repo_full_name}: {file_info}"
|
|
)
|
|
continue
|
|
|
|
# Get file content
|
|
file_content = github_client.get_file_content(
|
|
repo_full_name, file_path
|
|
)
|
|
|
|
if file_content is None:
|
|
logger.warning(
|
|
f"Could not retrieve content for {full_path_key}. Skipping."
|
|
)
|
|
continue # Skip if content fetch failed
|
|
|
|
content_hash = generate_content_hash(file_content, search_space_id)
|
|
|
|
# Check if document with this content hash already exists
|
|
existing_doc_by_hash_result = await session.execute(
|
|
select(Document).where(Document.content_hash == content_hash)
|
|
)
|
|
existing_document_by_hash = (
|
|
existing_doc_by_hash_result.scalars().first()
|
|
)
|
|
|
|
if existing_document_by_hash:
|
|
logger.info(
|
|
f"Document with content hash {content_hash} already exists for file {full_path_key}. Skipping processing."
|
|
)
|
|
continue
|
|
|
|
# Use file_content directly for chunking, maybe summary for main content?
|
|
# For now, let's use the full content for both, might need refinement
|
|
summary_content = f"GitHub file: {full_path_key}\n\n{file_content[:1000]}..." # Simple summary
|
|
summary_embedding = config.embedding_model_instance.embed(
|
|
summary_content
|
|
)
|
|
|
|
# Chunk the content
|
|
try:
|
|
chunks_data = [
|
|
Chunk(
|
|
content=chunk.text,
|
|
embedding=config.embedding_model_instance.embed(
|
|
chunk.text
|
|
),
|
|
)
|
|
for chunk in config.code_chunker_instance.chunk(
|
|
file_content
|
|
)
|
|
]
|
|
except Exception as chunk_err:
|
|
logger.error(
|
|
f"Failed to chunk file {full_path_key}: {chunk_err}"
|
|
)
|
|
errors.append(
|
|
f"Chunking failed for {full_path_key}: {chunk_err}"
|
|
)
|
|
continue # Skip this file if chunking fails
|
|
|
|
doc_metadata = {
|
|
"repository_full_name": repo_full_name,
|
|
"file_path": file_path,
|
|
"full_path": full_path_key, # For easier lookup
|
|
"url": file_url,
|
|
"sha": file_sha,
|
|
"type": file_type,
|
|
"indexed_at": datetime.now(UTC).isoformat(),
|
|
}
|
|
|
|
# Create new document
|
|
logger.info(f"Creating new document for file: {full_path_key}")
|
|
document = Document(
|
|
title=f"GitHub - {file_path}",
|
|
document_type=DocumentType.GITHUB_CONNECTOR,
|
|
document_metadata=doc_metadata,
|
|
content=summary_content, # Store summary
|
|
content_hash=content_hash,
|
|
embedding=summary_embedding,
|
|
search_space_id=search_space_id,
|
|
chunks=chunks_data, # Associate chunks directly
|
|
)
|
|
session.add(document)
|
|
documents_processed += 1
|
|
|
|
except Exception as repo_err:
|
|
logger.error(
|
|
f"Failed to process repository {repo_full_name}: {repo_err}"
|
|
)
|
|
errors.append(f"Failed processing {repo_full_name}: {repo_err}")
|
|
|
|
# Commit all changes at the end
|
|
await session.commit()
|
|
logger.info(
|
|
f"Finished GitHub indexing for connector {connector_id}. Processed {documents_processed} files."
|
|
)
|
|
|
|
# Log success
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully completed GitHub indexing for connector {connector_id}",
|
|
{
|
|
"documents_processed": documents_processed,
|
|
"errors_count": len(errors),
|
|
"repo_count": len(repo_full_names_to_index),
|
|
},
|
|
)
|
|
|
|
except SQLAlchemyError as db_err:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Database error during GitHub indexing for connector {connector_id}",
|
|
str(db_err),
|
|
{"error_type": "SQLAlchemyError"},
|
|
)
|
|
logger.error(
|
|
f"Database error during GitHub indexing for connector {connector_id}: {db_err}"
|
|
)
|
|
errors.append(f"Database error: {db_err}")
|
|
return documents_processed, "; ".join(errors) if errors else str(db_err)
|
|
except Exception as e:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Unexpected error during GitHub indexing for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
logger.error(
|
|
f"Unexpected error during GitHub indexing for connector {connector_id}: {e}",
|
|
exc_info=True,
|
|
)
|
|
errors.append(f"Unexpected error: {e}")
|
|
return documents_processed, "; ".join(errors) if errors else str(e)
|
|
|
|
error_message = "; ".join(errors) if errors else None
|
|
return documents_processed, error_message
|
|
|
|
|
|
async def index_linear_issues(
|
|
session: AsyncSession,
|
|
connector_id: int,
|
|
search_space_id: int,
|
|
user_id: str,
|
|
start_date: str | None = None,
|
|
end_date: str | None = None,
|
|
update_last_indexed: bool = True,
|
|
) -> tuple[int, str | None]:
|
|
"""
|
|
Index Linear issues and comments.
|
|
|
|
Args:
|
|
session: Database session
|
|
connector_id: ID of the Linear connector
|
|
search_space_id: ID of the search space to store documents in
|
|
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
|
|
|
|
Returns:
|
|
Tuple containing (number of documents indexed, error message or None)
|
|
"""
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="linear_issues_indexing",
|
|
source="connector_indexing_task",
|
|
message=f"Starting Linear issues indexing for connector {connector_id}",
|
|
metadata={
|
|
"connector_id": connector_id,
|
|
"user_id": str(user_id),
|
|
"start_date": start_date,
|
|
"end_date": end_date,
|
|
},
|
|
)
|
|
|
|
try:
|
|
# Get the connector
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Retrieving Linear connector {connector_id} from database",
|
|
{"stage": "connector_retrieval"},
|
|
)
|
|
|
|
result = await session.execute(
|
|
select(SearchSourceConnector).filter(
|
|
SearchSourceConnector.id == connector_id,
|
|
SearchSourceConnector.connector_type
|
|
== SearchSourceConnectorType.LINEAR_CONNECTOR,
|
|
)
|
|
)
|
|
connector = result.scalars().first()
|
|
|
|
if not connector:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Connector with ID {connector_id} not found or is not a Linear connector",
|
|
"Connector not found",
|
|
{"error_type": "ConnectorNotFound"},
|
|
)
|
|
return (
|
|
0,
|
|
f"Connector with ID {connector_id} not found or is not a Linear connector",
|
|
)
|
|
|
|
# Get the Linear token from the connector config
|
|
linear_token = connector.config.get("LINEAR_API_KEY")
|
|
if not linear_token:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Linear API token not found in connector config for connector {connector_id}",
|
|
"Missing Linear token",
|
|
{"error_type": "MissingToken"},
|
|
)
|
|
return 0, "Linear API token not found in connector config"
|
|
|
|
# Initialize Linear client
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Initializing Linear client for connector {connector_id}",
|
|
{"stage": "client_initialization"},
|
|
)
|
|
|
|
linear_client = LinearConnector(token=linear_token)
|
|
|
|
# Calculate date range
|
|
if start_date is None or end_date is None:
|
|
# Fall back to calculating dates based on last_indexed_at
|
|
calculated_end_date = datetime.now()
|
|
|
|
# Use last_indexed_at as start date if available, otherwise use 365 days ago
|
|
if connector.last_indexed_at:
|
|
# Convert dates to be comparable (both timezone-naive)
|
|
last_indexed_naive = (
|
|
connector.last_indexed_at.replace(tzinfo=None)
|
|
if connector.last_indexed_at.tzinfo
|
|
else connector.last_indexed_at
|
|
)
|
|
|
|
# Check if last_indexed_at is in the future or after end_date
|
|
if last_indexed_naive > calculated_end_date:
|
|
logger.warning(
|
|
f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead."
|
|
)
|
|
calculated_start_date = calculated_end_date - timedelta(days=365)
|
|
else:
|
|
calculated_start_date = last_indexed_naive
|
|
logger.info(
|
|
f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
|
|
)
|
|
else:
|
|
calculated_start_date = calculated_end_date - timedelta(
|
|
days=365
|
|
) # Use 365 days as default
|
|
logger.info(
|
|
f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
|
|
)
|
|
|
|
# Use calculated dates if not provided
|
|
start_date_str = (
|
|
start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
|
|
)
|
|
end_date_str = (
|
|
end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
|
|
)
|
|
else:
|
|
# Use provided dates
|
|
start_date_str = start_date
|
|
end_date_str = end_date
|
|
|
|
logger.info(f"Fetching Linear issues from {start_date_str} to {end_date_str}")
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Fetching Linear issues from {start_date_str} to {end_date_str}",
|
|
{
|
|
"stage": "fetch_issues",
|
|
"start_date": start_date_str,
|
|
"end_date": end_date_str,
|
|
},
|
|
)
|
|
|
|
# Get issues within date range
|
|
try:
|
|
issues, error = linear_client.get_issues_by_date_range(
|
|
start_date=start_date_str, end_date=end_date_str, include_comments=True
|
|
)
|
|
|
|
if error:
|
|
logger.error(f"Failed to get Linear issues: {error}")
|
|
|
|
# Don't treat "No issues found" as an error that should stop indexing
|
|
if "No issues found" in error:
|
|
logger.info(
|
|
"No issues found is not a critical error, continuing with update"
|
|
)
|
|
if update_last_indexed:
|
|
connector.last_indexed_at = datetime.now()
|
|
await session.commit()
|
|
logger.info(
|
|
f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found"
|
|
)
|
|
return 0, None
|
|
else:
|
|
return 0, f"Failed to get Linear issues: {error}"
|
|
|
|
logger.info(f"Retrieved {len(issues)} issues from Linear API")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Exception when calling Linear API: {e!s}", exc_info=True)
|
|
return 0, f"Failed to get Linear issues: {e!s}"
|
|
|
|
if not issues:
|
|
logger.info("No Linear issues found for the specified date range")
|
|
if update_last_indexed:
|
|
connector.last_indexed_at = datetime.now()
|
|
await session.commit()
|
|
logger.info(
|
|
f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found"
|
|
)
|
|
return 0, None # Return None instead of error message when no issues found
|
|
|
|
# Log issue IDs and titles for debugging
|
|
logger.info("Issues retrieved from Linear API:")
|
|
for idx, issue in enumerate(issues[:10]): # Log first 10 issues
|
|
logger.info(
|
|
f" {idx + 1}. {issue.get('identifier', 'Unknown')} - {issue.get('title', 'Unknown')} - Created: {issue.get('createdAt', 'Unknown')} - Updated: {issue.get('updatedAt', 'Unknown')}"
|
|
)
|
|
if len(issues) > 10:
|
|
logger.info(f" ...and {len(issues) - 10} more issues")
|
|
|
|
# Track the number of documents indexed
|
|
documents_indexed = 0
|
|
documents_skipped = 0
|
|
skipped_issues = []
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Starting to process {len(issues)} Linear issues",
|
|
{"stage": "process_issues", "total_issues": len(issues)},
|
|
)
|
|
|
|
# Process each issue
|
|
for issue in issues:
|
|
try:
|
|
issue_id = issue.get("key")
|
|
issue_identifier = issue.get("id", "")
|
|
issue_title = issue.get("key", "")
|
|
|
|
if not issue_id or not issue_title:
|
|
logger.warning(
|
|
f"Skipping issue with missing ID or title: {issue_id or 'Unknown'}"
|
|
)
|
|
skipped_issues.append(
|
|
f"{issue_identifier or 'Unknown'} (missing data)"
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Format the issue first to get well-structured data
|
|
formatted_issue = linear_client.format_issue(issue)
|
|
|
|
# Convert issue to markdown format
|
|
issue_content = linear_client.format_issue_to_markdown(formatted_issue)
|
|
|
|
if not issue_content:
|
|
logger.warning(
|
|
f"Skipping issue with no content: {issue_identifier} - {issue_title}"
|
|
)
|
|
skipped_issues.append(f"{issue_identifier} (no content)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Create a short summary for the embedding
|
|
# This avoids using the LLM and just uses the issue data directly
|
|
state = formatted_issue.get("state", "Unknown")
|
|
description = formatted_issue.get("description", "")
|
|
# Truncate description if it's too long for the summary
|
|
if description and len(description) > 500:
|
|
description = description[:497] + "..."
|
|
|
|
# Create a simple summary from the issue data
|
|
summary_content = f"Linear Issue {issue_identifier}: {issue_title}\n\nStatus: {state}\n\n"
|
|
if description:
|
|
summary_content += f"Description: {description}\n\n"
|
|
|
|
# Add comment count
|
|
comment_count = len(formatted_issue.get("comments", []))
|
|
summary_content += f"Comments: {comment_count}"
|
|
|
|
content_hash = generate_content_hash(issue_content, search_space_id)
|
|
|
|
# Check if document with this content hash already exists
|
|
existing_doc_by_hash_result = await session.execute(
|
|
select(Document).where(Document.content_hash == content_hash)
|
|
)
|
|
existing_document_by_hash = (
|
|
existing_doc_by_hash_result.scalars().first()
|
|
)
|
|
|
|
if existing_document_by_hash:
|
|
logger.info(
|
|
f"Document with content hash {content_hash} already exists for issue {issue_identifier}. Skipping processing."
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Generate embedding for the summary
|
|
summary_embedding = config.embedding_model_instance.embed(
|
|
summary_content
|
|
)
|
|
|
|
# Process chunks - using the full issue content with comments
|
|
chunks = [
|
|
Chunk(
|
|
content=chunk.text,
|
|
embedding=config.embedding_model_instance.embed(chunk.text),
|
|
)
|
|
for chunk in config.chunker_instance.chunk(issue_content)
|
|
]
|
|
|
|
# Create and store new document
|
|
logger.info(
|
|
f"Creating new document for issue {issue_identifier} - {issue_title}"
|
|
)
|
|
document = Document(
|
|
search_space_id=search_space_id,
|
|
title=f"Linear - {issue_identifier}: {issue_title}",
|
|
document_type=DocumentType.LINEAR_CONNECTOR,
|
|
document_metadata={
|
|
"issue_id": issue_id,
|
|
"issue_identifier": issue_identifier,
|
|
"issue_title": issue_title,
|
|
"state": state,
|
|
"comment_count": comment_count,
|
|
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
},
|
|
content=summary_content,
|
|
content_hash=content_hash,
|
|
embedding=summary_embedding,
|
|
chunks=chunks,
|
|
)
|
|
|
|
session.add(document)
|
|
documents_indexed += 1
|
|
logger.info(
|
|
f"Successfully indexed new issue {issue_identifier} - {issue_title}"
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error processing issue {issue.get('identifier', 'Unknown')}: {e!s}",
|
|
exc_info=True,
|
|
)
|
|
skipped_issues.append(
|
|
f"{issue.get('identifier', 'Unknown')} (processing error)"
|
|
)
|
|
documents_skipped += 1
|
|
continue # Skip this issue and continue with others
|
|
|
|
# Update the last_indexed_at timestamp for the connector only if requested
|
|
total_processed = documents_indexed
|
|
if update_last_indexed:
|
|
connector.last_indexed_at = datetime.now()
|
|
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
|
|
|
|
# Commit all changes
|
|
await session.commit()
|
|
logger.info("Successfully committed all Linear document changes to database")
|
|
|
|
# Log success
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully completed Linear indexing for connector {connector_id}",
|
|
{
|
|
"issues_processed": total_processed,
|
|
"documents_indexed": documents_indexed,
|
|
"documents_skipped": documents_skipped,
|
|
"skipped_issues_count": len(skipped_issues),
|
|
},
|
|
)
|
|
|
|
logger.info(
|
|
f"Linear indexing completed: {documents_indexed} new issues, {documents_skipped} skipped"
|
|
)
|
|
return (
|
|
total_processed,
|
|
None,
|
|
) # Return None as the error message to indicate success
|
|
|
|
except SQLAlchemyError as db_error:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Database error during Linear indexing for connector {connector_id}",
|
|
str(db_error),
|
|
{"error_type": "SQLAlchemyError"},
|
|
)
|
|
logger.error(f"Database error: {db_error!s}", exc_info=True)
|
|
return 0, f"Database error: {db_error!s}"
|
|
except Exception as e:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to index Linear issues for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
logger.error(f"Failed to index Linear issues: {e!s}", exc_info=True)
|
|
return 0, f"Failed to index Linear issues: {e!s}"
|
|
|
|
|
|
async def index_discord_messages(
|
|
session: AsyncSession,
|
|
connector_id: int,
|
|
search_space_id: int,
|
|
user_id: str,
|
|
start_date: str | None = None,
|
|
end_date: str | None = None,
|
|
update_last_indexed: bool = True,
|
|
) -> tuple[int, str | None]:
|
|
"""
|
|
Index Discord messages from all accessible channels.
|
|
|
|
Args:
|
|
session: Database session
|
|
connector_id: ID of the Discord connector
|
|
search_space_id: ID of the search space to store documents in
|
|
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
|
|
|
|
Returns:
|
|
Tuple containing (number of documents indexed, error message or None)
|
|
"""
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="discord_messages_indexing",
|
|
source="connector_indexing_task",
|
|
message=f"Starting Discord messages indexing for connector {connector_id}",
|
|
metadata={
|
|
"connector_id": connector_id,
|
|
"user_id": str(user_id),
|
|
"start_date": start_date,
|
|
"end_date": end_date,
|
|
},
|
|
)
|
|
|
|
try:
|
|
# Get the connector
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Retrieving Discord connector {connector_id} from database",
|
|
{"stage": "connector_retrieval"},
|
|
)
|
|
|
|
result = await session.execute(
|
|
select(SearchSourceConnector).filter(
|
|
SearchSourceConnector.id == connector_id,
|
|
SearchSourceConnector.connector_type
|
|
== SearchSourceConnectorType.DISCORD_CONNECTOR,
|
|
)
|
|
)
|
|
connector = result.scalars().first()
|
|
|
|
if not connector:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Connector with ID {connector_id} not found or is not a Discord connector",
|
|
"Connector not found",
|
|
{"error_type": "ConnectorNotFound"},
|
|
)
|
|
return (
|
|
0,
|
|
f"Connector with ID {connector_id} not found or is not a Discord connector",
|
|
)
|
|
|
|
# Get the Discord token from the connector config
|
|
discord_token = connector.config.get("DISCORD_BOT_TOKEN")
|
|
if not discord_token:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Discord token not found in connector config for connector {connector_id}",
|
|
"Missing Discord token",
|
|
{"error_type": "MissingToken"},
|
|
)
|
|
return 0, "Discord token not found in connector config"
|
|
|
|
logger.info(f"Starting Discord indexing for connector {connector_id}")
|
|
|
|
# Initialize Discord client
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Initializing Discord client for connector {connector_id}",
|
|
{"stage": "client_initialization"},
|
|
)
|
|
|
|
discord_client = DiscordConnector(token=discord_token)
|
|
|
|
# Calculate date range
|
|
if start_date is None or end_date is None:
|
|
# Fall back to calculating dates based on last_indexed_at
|
|
calculated_end_date = datetime.now(UTC)
|
|
|
|
# Use last_indexed_at as start date if available, otherwise use 365 days ago
|
|
if connector.last_indexed_at:
|
|
calculated_start_date = connector.last_indexed_at.replace(tzinfo=UTC)
|
|
logger.info(
|
|
f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
|
|
)
|
|
else:
|
|
calculated_start_date = calculated_end_date - timedelta(days=365)
|
|
logger.info(
|
|
f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
|
|
)
|
|
|
|
# Use calculated dates if not provided, convert to ISO format for Discord API
|
|
if start_date is None:
|
|
start_date_iso = calculated_start_date.isoformat()
|
|
else:
|
|
# Convert YYYY-MM-DD to ISO format
|
|
start_date_iso = (
|
|
datetime.strptime(start_date, "%Y-%m-%d")
|
|
.replace(tzinfo=UTC)
|
|
.isoformat()
|
|
)
|
|
|
|
if end_date is None:
|
|
end_date_iso = calculated_end_date.isoformat()
|
|
else:
|
|
# Convert YYYY-MM-DD to ISO format
|
|
end_date_iso = (
|
|
datetime.strptime(end_date, "%Y-%m-%d")
|
|
.replace(tzinfo=UTC)
|
|
.isoformat()
|
|
)
|
|
else:
|
|
# Convert provided dates to ISO format for Discord API
|
|
start_date_iso = (
|
|
datetime.strptime(start_date, "%Y-%m-%d")
|
|
.replace(tzinfo=UTC)
|
|
.isoformat()
|
|
)
|
|
end_date_iso = (
|
|
datetime.strptime(end_date, "%Y-%m-%d").replace(tzinfo=UTC).isoformat()
|
|
)
|
|
|
|
logger.info(
|
|
f"Indexing Discord messages from {start_date_iso} to {end_date_iso}"
|
|
)
|
|
|
|
documents_indexed = 0
|
|
documents_skipped = 0
|
|
skipped_channels = []
|
|
|
|
try:
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Starting Discord bot and fetching guilds for connector {connector_id}",
|
|
{"stage": "fetch_guilds"},
|
|
)
|
|
|
|
logger.info("Starting Discord bot to fetch guilds")
|
|
discord_client._bot_task = asyncio.create_task(discord_client.start_bot())
|
|
await discord_client._wait_until_ready()
|
|
|
|
logger.info("Fetching Discord guilds")
|
|
guilds = await discord_client.get_guilds()
|
|
logger.info(f"Found {len(guilds)} guilds")
|
|
except Exception as e:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to get Discord guilds for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": "GuildFetchError"},
|
|
)
|
|
logger.error(f"Failed to get Discord guilds: {e!s}", exc_info=True)
|
|
await discord_client.close_bot()
|
|
return 0, f"Failed to get Discord guilds: {e!s}"
|
|
if not guilds:
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"No Discord guilds found for connector {connector_id}",
|
|
{"guilds_found": 0},
|
|
)
|
|
logger.info("No Discord guilds found to index")
|
|
await discord_client.close_bot()
|
|
return 0, "No Discord guilds found"
|
|
|
|
# Process each guild and channel
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Starting to process {len(guilds)} Discord guilds",
|
|
{"stage": "process_guilds", "total_guilds": len(guilds)},
|
|
)
|
|
|
|
for guild in guilds:
|
|
guild_id = guild["id"]
|
|
guild_name = guild["name"]
|
|
logger.info(f"Processing guild: {guild_name} ({guild_id})")
|
|
try:
|
|
channels = await discord_client.get_text_channels(guild_id)
|
|
if not channels:
|
|
logger.info(f"No channels found in guild {guild_name}. Skipping.")
|
|
skipped_channels.append(f"{guild_name} (no channels)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
for channel in channels:
|
|
channel_id = channel["id"]
|
|
channel_name = channel["name"]
|
|
|
|
try:
|
|
messages = await discord_client.get_channel_history(
|
|
channel_id=channel_id,
|
|
start_date=start_date_iso,
|
|
end_date=end_date_iso,
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Failed to get messages for channel {channel_name}: {e!s}"
|
|
)
|
|
skipped_channels.append(
|
|
f"{guild_name}#{channel_name} (fetch error)"
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
if not messages:
|
|
logger.info(
|
|
f"No messages found in channel {channel_name} for the specified date range."
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Format messages
|
|
formatted_messages = []
|
|
for msg in messages:
|
|
# Skip system messages if needed (Discord has some types)
|
|
if msg.get("type") in ["system"]:
|
|
continue
|
|
formatted_messages.append(msg)
|
|
|
|
if not formatted_messages:
|
|
logger.info(
|
|
f"No valid messages found in channel {channel_name} after filtering."
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Convert messages to markdown format
|
|
channel_content = (
|
|
f"# Discord Channel: {guild_name} / {channel_name}\n\n"
|
|
)
|
|
for msg in formatted_messages:
|
|
user_name = msg.get("author_name", "Unknown User")
|
|
timestamp = msg.get("created_at", "Unknown Time")
|
|
text = msg.get("content", "")
|
|
channel_content += (
|
|
f"## {user_name} ({timestamp})\n\n{text}\n\n---\n\n"
|
|
)
|
|
|
|
# Format document metadata
|
|
metadata_sections = [
|
|
(
|
|
"METADATA",
|
|
[
|
|
f"GUILD_NAME: {guild_name}",
|
|
f"GUILD_ID: {guild_id}",
|
|
f"CHANNEL_NAME: {channel_name}",
|
|
f"CHANNEL_ID: {channel_id}",
|
|
f"MESSAGE_COUNT: {len(formatted_messages)}",
|
|
],
|
|
),
|
|
(
|
|
"CONTENT",
|
|
[
|
|
"FORMAT: markdown",
|
|
"TEXT_START",
|
|
channel_content,
|
|
"TEXT_END",
|
|
],
|
|
),
|
|
]
|
|
|
|
# Build the document string
|
|
document_parts = []
|
|
document_parts.append("<DOCUMENT>")
|
|
for section_title, section_content in metadata_sections:
|
|
document_parts.append(f"<{section_title}>")
|
|
document_parts.extend(section_content)
|
|
document_parts.append(f"</{section_title}>")
|
|
document_parts.append("</DOCUMENT>")
|
|
combined_document_string = "\n".join(document_parts)
|
|
content_hash = generate_content_hash(
|
|
combined_document_string, search_space_id
|
|
)
|
|
|
|
# Check if document with this content hash already exists
|
|
existing_doc_by_hash_result = await session.execute(
|
|
select(Document).where(Document.content_hash == content_hash)
|
|
)
|
|
existing_document_by_hash = (
|
|
existing_doc_by_hash_result.scalars().first()
|
|
)
|
|
|
|
if existing_document_by_hash:
|
|
logger.info(
|
|
f"Document with content hash {content_hash} already exists for channel {guild_name}#{channel_name}. Skipping processing."
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Get user's long context LLM
|
|
user_llm = await get_user_long_context_llm(session, user_id)
|
|
if not user_llm:
|
|
logger.error(
|
|
f"No long context LLM configured for user {user_id}"
|
|
)
|
|
skipped_channels.append(
|
|
f"{guild_name}#{channel_name} (no LLM configured)"
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Generate summary using summary_chain
|
|
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
|
|
summary_result = await summary_chain.ainvoke(
|
|
{"document": combined_document_string}
|
|
)
|
|
summary_content = summary_result.content
|
|
summary_embedding = await asyncio.to_thread(
|
|
config.embedding_model_instance.embed, summary_content
|
|
)
|
|
|
|
# Process chunks
|
|
raw_chunks = await asyncio.to_thread(
|
|
config.chunker_instance.chunk, channel_content
|
|
)
|
|
|
|
chunk_texts = [
|
|
chunk.text for chunk in raw_chunks if chunk.text.strip()
|
|
]
|
|
chunk_embeddings = await asyncio.to_thread(
|
|
lambda texts: [
|
|
config.embedding_model_instance.embed(t) for t in texts
|
|
],
|
|
chunk_texts,
|
|
)
|
|
|
|
chunks = [
|
|
Chunk(content=raw_chunk.text, embedding=embedding)
|
|
for raw_chunk, embedding in zip(
|
|
raw_chunks, chunk_embeddings, strict=False
|
|
)
|
|
]
|
|
|
|
# Create and store new document
|
|
document = Document(
|
|
search_space_id=search_space_id,
|
|
title=f"Discord - {guild_name}#{channel_name}",
|
|
document_type=DocumentType.DISCORD_CONNECTOR,
|
|
document_metadata={
|
|
"guild_name": guild_name,
|
|
"guild_id": guild_id,
|
|
"channel_name": channel_name,
|
|
"channel_id": channel_id,
|
|
"message_count": len(formatted_messages),
|
|
"start_date": start_date_iso,
|
|
"end_date": end_date_iso,
|
|
"indexed_at": datetime.now(UTC).strftime(
|
|
"%Y-%m-%d %H:%M:%S"
|
|
),
|
|
},
|
|
content=summary_content,
|
|
content_hash=content_hash,
|
|
embedding=summary_embedding,
|
|
chunks=chunks,
|
|
)
|
|
|
|
session.add(document)
|
|
documents_indexed += 1
|
|
logger.info(
|
|
f"Successfully indexed new channel {guild_name}#{channel_name} with {len(formatted_messages)} messages"
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error processing guild {guild_name}: {e!s}", exc_info=True
|
|
)
|
|
skipped_channels.append(f"{guild_name} (processing error)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
if update_last_indexed and documents_indexed > 0:
|
|
connector.last_indexed_at = datetime.now(UTC)
|
|
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
|
|
|
|
await session.commit()
|
|
await discord_client.close_bot()
|
|
|
|
# Prepare result message
|
|
result_message = None
|
|
if skipped_channels:
|
|
result_message = f"Processed {documents_indexed} channels. Skipped {len(skipped_channels)} channels: {', '.join(skipped_channels)}"
|
|
else:
|
|
result_message = f"Processed {documents_indexed} channels."
|
|
|
|
# Log success
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully completed Discord indexing for connector {connector_id}",
|
|
{
|
|
"channels_processed": documents_indexed,
|
|
"documents_indexed": documents_indexed,
|
|
"documents_skipped": documents_skipped,
|
|
"skipped_channels_count": len(skipped_channels),
|
|
"guilds_processed": len(guilds),
|
|
"result_message": result_message,
|
|
},
|
|
)
|
|
|
|
logger.info(
|
|
f"Discord indexing completed: {documents_indexed} new channels, {documents_skipped} skipped"
|
|
)
|
|
return documents_indexed, result_message
|
|
|
|
except SQLAlchemyError as db_error:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Database error during Discord indexing for connector {connector_id}",
|
|
str(db_error),
|
|
{"error_type": "SQLAlchemyError"},
|
|
)
|
|
logger.error(
|
|
f"Database error during Discord indexing: {db_error!s}", exc_info=True
|
|
)
|
|
return 0, f"Database error: {db_error!s}"
|
|
except Exception as e:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to index Discord messages for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
logger.error(f"Failed to index Discord messages: {e!s}", exc_info=True)
|
|
return 0, f"Failed to index Discord messages: {e!s}"
|
|
|
|
|
|
async def index_jira_issues(
|
|
session: AsyncSession,
|
|
connector_id: int,
|
|
search_space_id: int,
|
|
user_id: str,
|
|
start_date: str | None = None,
|
|
end_date: str | None = None,
|
|
update_last_indexed: bool = True,
|
|
) -> tuple[int, str | None]:
|
|
"""
|
|
Index Jira issues and comments.
|
|
|
|
Args:
|
|
session: Database session
|
|
connector_id: ID of the Jira connector
|
|
search_space_id: ID of the search space to store documents in
|
|
user_id: User ID
|
|
start_date: Start date for indexing (YYYY-MM-DD format)
|
|
end_date: End date for indexing (YYYY-MM-DD format)
|
|
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
|
|
|
|
Returns:
|
|
Tuple containing (number of documents indexed, error message or None)
|
|
"""
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="jira_issues_indexing",
|
|
source="connector_indexing_task",
|
|
message=f"Starting Jira issues indexing for connector {connector_id}",
|
|
metadata={
|
|
"connector_id": connector_id,
|
|
"user_id": str(user_id),
|
|
"start_date": start_date,
|
|
"end_date": end_date,
|
|
},
|
|
)
|
|
|
|
try:
|
|
# Get the connector from the database
|
|
result = await session.execute(
|
|
select(SearchSourceConnector).filter(
|
|
SearchSourceConnector.id == connector_id,
|
|
SearchSourceConnector.connector_type
|
|
== SearchSourceConnectorType.JIRA_CONNECTOR,
|
|
)
|
|
)
|
|
connector = result.scalars().first()
|
|
|
|
if not connector:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Connector with ID {connector_id} not found",
|
|
"Connector not found",
|
|
{"error_type": "ConnectorNotFound"},
|
|
)
|
|
return 0, f"Connector with ID {connector_id} not found"
|
|
|
|
# Get the Jira credentials from the connector config
|
|
jira_email = connector.config.get("JIRA_EMAIL")
|
|
jira_api_token = connector.config.get("JIRA_API_TOKEN")
|
|
jira_base_url = connector.config.get("JIRA_BASE_URL")
|
|
|
|
if not jira_email or not jira_api_token or not jira_base_url:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Jira credentials not found in connector config for connector {connector_id}",
|
|
"Missing Jira credentials",
|
|
{"error_type": "MissingCredentials"},
|
|
)
|
|
return 0, "Jira credentials not found in connector config"
|
|
|
|
# Initialize Jira client
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Initializing Jira client for connector {connector_id}",
|
|
{"stage": "client_initialization"},
|
|
)
|
|
|
|
jira_client = JiraConnector(
|
|
base_url=jira_base_url, email=jira_email, api_token=jira_api_token
|
|
)
|
|
|
|
# Calculate date range
|
|
if start_date is None or end_date is None:
|
|
# Fall back to calculating dates based on last_indexed_at
|
|
calculated_end_date = datetime.now()
|
|
|
|
# Use last_indexed_at as start date if available, otherwise use 365 days ago
|
|
if connector.last_indexed_at:
|
|
# Convert dates to be comparable (both timezone-naive)
|
|
last_indexed_naive = (
|
|
connector.last_indexed_at.replace(tzinfo=None)
|
|
if connector.last_indexed_at.tzinfo
|
|
else connector.last_indexed_at
|
|
)
|
|
|
|
# Check if last_indexed_at is in the future or after end_date
|
|
if last_indexed_naive > calculated_end_date:
|
|
logger.warning(
|
|
f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead."
|
|
)
|
|
calculated_start_date = calculated_end_date - timedelta(days=365)
|
|
else:
|
|
calculated_start_date = last_indexed_naive
|
|
logger.info(
|
|
f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
|
|
)
|
|
else:
|
|
calculated_start_date = calculated_end_date - timedelta(
|
|
days=365
|
|
) # Use 365 days as default
|
|
logger.info(
|
|
f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
|
|
)
|
|
|
|
# Use calculated dates if not provided
|
|
start_date_str = (
|
|
start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
|
|
)
|
|
end_date_str = (
|
|
end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
|
|
)
|
|
else:
|
|
# Use provided dates
|
|
start_date_str = start_date
|
|
end_date_str = end_date
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Fetching Jira issues from {start_date_str} to {end_date_str}",
|
|
{
|
|
"stage": "fetching_issues",
|
|
"start_date": start_date_str,
|
|
"end_date": end_date_str,
|
|
},
|
|
)
|
|
|
|
# Get issues within date range
|
|
try:
|
|
issues, error = jira_client.get_issues_by_date_range(
|
|
start_date=start_date_str, end_date=end_date_str, include_comments=True
|
|
)
|
|
|
|
if error:
|
|
logger.error(f"Failed to get Jira issues: {error}")
|
|
|
|
# Don't treat "No issues found" as an error that should stop indexing
|
|
if "No issues found" in error:
|
|
logger.info(
|
|
"No issues found is not a critical error, continuing with update"
|
|
)
|
|
if update_last_indexed:
|
|
connector.last_indexed_at = datetime.now()
|
|
await session.commit()
|
|
logger.info(
|
|
f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found"
|
|
)
|
|
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"No Jira issues found in date range {start_date_str} to {end_date_str}",
|
|
{"issues_found": 0},
|
|
)
|
|
return 0, None
|
|
else:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to get Jira issues: {error}",
|
|
"API Error",
|
|
{"error_type": "APIError"},
|
|
)
|
|
return 0, f"Failed to get Jira issues: {error}"
|
|
|
|
logger.info(f"Retrieved {len(issues)} issues from Jira API")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error fetching Jira issues: {e!s}", exc_info=True)
|
|
return 0, f"Error fetching Jira issues: {e!s}"
|
|
|
|
# Process and index each issue
|
|
documents_indexed = 0
|
|
skipped_issues = []
|
|
documents_skipped = 0
|
|
|
|
for issue in issues:
|
|
try:
|
|
issue_id = issue.get("key")
|
|
issue_identifier = issue.get("key", "")
|
|
issue_title = issue.get("id", "")
|
|
|
|
if not issue_id or not issue_title:
|
|
logger.warning(
|
|
f"Skipping issue with missing ID or title: {issue_id or 'Unknown'}"
|
|
)
|
|
skipped_issues.append(
|
|
f"{issue_identifier or 'Unknown'} (missing data)"
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Format the issue for better readability
|
|
formatted_issue = jira_client.format_issue(issue)
|
|
|
|
# Convert to markdown
|
|
issue_content = jira_client.format_issue_to_markdown(formatted_issue)
|
|
|
|
if not issue_content:
|
|
logger.warning(
|
|
f"Skipping issue with no content: {issue_identifier} - {issue_title}"
|
|
)
|
|
skipped_issues.append(f"{issue_identifier} (no content)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Create a simple summary
|
|
summary_content = f"Jira Issue {issue_identifier}: {issue_title}\n\nStatus: {formatted_issue.get('status', 'Unknown')}\n\n"
|
|
if formatted_issue.get("description"):
|
|
summary_content += (
|
|
f"Description: {formatted_issue.get('description')}\n\n"
|
|
)
|
|
|
|
# Add comment count
|
|
comment_count = len(formatted_issue.get("comments", []))
|
|
summary_content += f"Comments: {comment_count}"
|
|
|
|
# Generate content hash
|
|
content_hash = generate_content_hash(issue_content, search_space_id)
|
|
|
|
# Check if document already exists
|
|
existing_doc_by_hash_result = await session.execute(
|
|
select(Document).where(Document.content_hash == content_hash)
|
|
)
|
|
existing_document_by_hash = (
|
|
existing_doc_by_hash_result.scalars().first()
|
|
)
|
|
|
|
if existing_document_by_hash:
|
|
logger.info(
|
|
f"Document with content hash {content_hash} already exists for issue {issue_identifier}. Skipping processing."
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Generate embedding for the summary
|
|
summary_embedding = config.embedding_model_instance.embed(
|
|
summary_content
|
|
)
|
|
|
|
# Process chunks - using the full issue content with comments
|
|
chunks = [
|
|
Chunk(
|
|
content=chunk.text,
|
|
embedding=config.embedding_model_instance.embed(chunk.text),
|
|
)
|
|
for chunk in config.chunker_instance.chunk(issue_content)
|
|
]
|
|
|
|
# Create and store new document
|
|
logger.info(
|
|
f"Creating new document for issue {issue_identifier} - {issue_title}"
|
|
)
|
|
document = Document(
|
|
search_space_id=search_space_id,
|
|
title=f"Jira - {issue_identifier}: {issue_title}",
|
|
document_type=DocumentType.JIRA_CONNECTOR,
|
|
document_metadata={
|
|
"issue_id": issue_id,
|
|
"issue_identifier": issue_identifier,
|
|
"issue_title": issue_title,
|
|
"state": formatted_issue.get("status", "Unknown"),
|
|
"comment_count": comment_count,
|
|
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
},
|
|
content=summary_content,
|
|
content_hash=content_hash,
|
|
embedding=summary_embedding,
|
|
chunks=chunks,
|
|
)
|
|
|
|
session.add(document)
|
|
documents_indexed += 1
|
|
logger.info(
|
|
f"Successfully indexed new issue {issue_identifier} - {issue_title}"
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error processing issue {issue.get('identifier', 'Unknown')}: {e!s}",
|
|
exc_info=True,
|
|
)
|
|
skipped_issues.append(
|
|
f"{issue.get('identifier', 'Unknown')} (processing error)"
|
|
)
|
|
documents_skipped += 1
|
|
continue # Skip this issue and continue with others
|
|
|
|
# Update the last_indexed_at timestamp for the connector only if requested
|
|
total_processed = documents_indexed
|
|
if update_last_indexed:
|
|
connector.last_indexed_at = datetime.now()
|
|
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
|
|
|
|
# Commit all changes
|
|
await session.commit()
|
|
logger.info("Successfully committed all JIRA document changes to database")
|
|
|
|
# Log success
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully completed JIRA indexing for connector {connector_id}",
|
|
{
|
|
"issues_processed": total_processed,
|
|
"documents_indexed": documents_indexed,
|
|
"documents_skipped": documents_skipped,
|
|
"skipped_issues_count": len(skipped_issues),
|
|
},
|
|
)
|
|
|
|
logger.info(
|
|
f"JIRA indexing completed: {documents_indexed} new issues, {documents_skipped} skipped"
|
|
)
|
|
return (
|
|
total_processed,
|
|
None,
|
|
) # Return None as the error message to indicate success
|
|
|
|
except SQLAlchemyError as db_error:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Database error during JIRA indexing for connector {connector_id}",
|
|
str(db_error),
|
|
{"error_type": "SQLAlchemyError"},
|
|
)
|
|
logger.error(f"Database error: {db_error!s}", exc_info=True)
|
|
return 0, f"Database error: {db_error!s}"
|
|
except Exception as e:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to index JIRA issues for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
logger.error(f"Failed to index JIRA issues: {e!s}", exc_info=True)
|
|
return 0, f"Failed to index JIRA issues: {e!s}"
|
|
|
|
|
|
async def index_confluence_pages(
|
|
session: AsyncSession,
|
|
connector_id: int,
|
|
search_space_id: int,
|
|
user_id: str,
|
|
start_date: str | None = None,
|
|
end_date: str | None = None,
|
|
update_last_indexed: bool = True,
|
|
) -> tuple[int, str | None]:
|
|
"""
|
|
Index Confluence pages and comments.
|
|
|
|
Args:
|
|
session: Database session
|
|
connector_id: ID of the Confluence connector
|
|
search_space_id: ID of the search space to store documents in
|
|
user_id: User ID
|
|
start_date: Start date for indexing (YYYY-MM-DD format)
|
|
end_date: End date for indexing (YYYY-MM-DD format)
|
|
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
|
|
|
|
Returns:
|
|
Tuple containing (number of documents indexed, error message or None)
|
|
"""
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="confluence_pages_indexing",
|
|
source="connector_indexing_task",
|
|
message=f"Starting Confluence pages indexing for connector {connector_id}",
|
|
metadata={
|
|
"connector_id": connector_id,
|
|
"user_id": str(user_id),
|
|
"start_date": start_date,
|
|
"end_date": end_date,
|
|
},
|
|
)
|
|
|
|
try:
|
|
# Get the connector from the database
|
|
result = await session.execute(
|
|
select(SearchSourceConnector).filter(
|
|
SearchSourceConnector.id == connector_id,
|
|
SearchSourceConnector.connector_type
|
|
== SearchSourceConnectorType.CONFLUENCE_CONNECTOR,
|
|
)
|
|
)
|
|
connector = result.scalars().first()
|
|
|
|
if not connector:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Connector with ID {connector_id} not found",
|
|
"Connector not found",
|
|
{"error_type": "ConnectorNotFound"},
|
|
)
|
|
return 0, f"Connector with ID {connector_id} not found"
|
|
|
|
# Get the Confluence credentials from the connector config
|
|
confluence_email = connector.config.get("CONFLUENCE_EMAIL")
|
|
confluence_api_token = connector.config.get("CONFLUENCE_API_TOKEN")
|
|
confluence_base_url = connector.config.get("CONFLUENCE_BASE_URL")
|
|
|
|
if not confluence_email or not confluence_api_token or not confluence_base_url:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Confluence credentials not found in connector config for connector {connector_id}",
|
|
"Missing Confluence credentials",
|
|
{"error_type": "MissingCredentials"},
|
|
)
|
|
return 0, "Confluence credentials not found in connector config"
|
|
|
|
# Initialize Confluence client
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Initializing Confluence client for connector {connector_id}",
|
|
{"stage": "client_initialization"},
|
|
)
|
|
|
|
confluence_client = ConfluenceConnector(
|
|
base_url=confluence_base_url,
|
|
email=confluence_email,
|
|
api_token=confluence_api_token,
|
|
)
|
|
|
|
# Calculate date range
|
|
if start_date is None or end_date is None:
|
|
# Fall back to calculating dates based on last_indexed_at
|
|
calculated_end_date = datetime.now()
|
|
|
|
# Use last_indexed_at as start date if available, otherwise use 365 days ago
|
|
if connector.last_indexed_at:
|
|
# Convert dates to be comparable (both timezone-naive)
|
|
last_indexed_naive = (
|
|
connector.last_indexed_at.replace(tzinfo=None)
|
|
if connector.last_indexed_at.tzinfo
|
|
else connector.last_indexed_at
|
|
)
|
|
|
|
# Check if last_indexed_at is in the future or after end_date
|
|
if last_indexed_naive > calculated_end_date:
|
|
logger.warning(
|
|
f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead."
|
|
)
|
|
calculated_start_date = calculated_end_date - timedelta(days=365)
|
|
else:
|
|
calculated_start_date = last_indexed_naive
|
|
logger.info(
|
|
f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
|
|
)
|
|
else:
|
|
calculated_start_date = calculated_end_date - timedelta(
|
|
days=365
|
|
) # Use 365 days as default
|
|
logger.info(
|
|
f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (365 days ago) as start date"
|
|
)
|
|
|
|
# Use calculated dates if not provided
|
|
start_date_str = (
|
|
start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
|
|
)
|
|
end_date_str = (
|
|
end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
|
|
)
|
|
else:
|
|
# Use provided dates
|
|
start_date_str = start_date
|
|
end_date_str = end_date
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Fetching Confluence pages from {start_date_str} to {end_date_str}",
|
|
{
|
|
"stage": "fetching_pages",
|
|
"start_date": start_date_str,
|
|
"end_date": end_date_str,
|
|
},
|
|
)
|
|
|
|
# Get pages within date range
|
|
try:
|
|
pages, error = confluence_client.get_pages_by_date_range(
|
|
start_date=start_date_str, end_date=end_date_str, include_comments=True
|
|
)
|
|
|
|
if error:
|
|
logger.error(f"Failed to get Confluence pages: {error}")
|
|
|
|
# Don't treat "No pages found" as an error that should stop indexing
|
|
if "No pages found" in error:
|
|
logger.info(
|
|
"No pages found is not a critical error, continuing with update"
|
|
)
|
|
if update_last_indexed:
|
|
connector.last_indexed_at = datetime.now()
|
|
await session.commit()
|
|
logger.info(
|
|
f"Updated last_indexed_at to {connector.last_indexed_at} despite no pages found"
|
|
)
|
|
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"No Confluence pages found in date range {start_date_str} to {end_date_str}",
|
|
{"pages_found": 0},
|
|
)
|
|
return 0, None
|
|
else:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to get Confluence pages: {error}",
|
|
"API Error",
|
|
{"error_type": "APIError"},
|
|
)
|
|
return 0, f"Failed to get Confluence pages: {error}"
|
|
|
|
logger.info(f"Retrieved {len(pages)} pages from Confluence API")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error fetching Confluence pages: {e!s}", exc_info=True)
|
|
return 0, f"Error fetching Confluence pages: {e!s}"
|
|
|
|
# Process and index each page
|
|
documents_indexed = 0
|
|
skipped_pages = []
|
|
documents_skipped = 0
|
|
|
|
for page in pages:
|
|
try:
|
|
page_id = page.get("id")
|
|
page_title = page.get("title", "")
|
|
space_id = page.get("spaceId", "")
|
|
|
|
if not page_id or not page_title:
|
|
logger.warning(
|
|
f"Skipping page with missing ID or title: {page_id or 'Unknown'}"
|
|
)
|
|
skipped_pages.append(f"{page_title or 'Unknown'} (missing data)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Extract page content
|
|
page_content = ""
|
|
if page.get("body") and page["body"].get("storage"):
|
|
page_content = page["body"]["storage"].get("value", "")
|
|
|
|
# Add comments to content
|
|
comments = page.get("comments", [])
|
|
comments_content = ""
|
|
if comments:
|
|
comments_content = "\n\n## Comments\n\n"
|
|
for comment in comments:
|
|
comment_body = ""
|
|
if comment.get("body") and comment["body"].get("storage"):
|
|
comment_body = comment["body"]["storage"].get("value", "")
|
|
|
|
comment_author = comment.get("version", {}).get(
|
|
"authorId", "Unknown"
|
|
)
|
|
comment_date = comment.get("version", {}).get("createdAt", "")
|
|
|
|
comments_content += f"**Comment by {comment_author}** ({comment_date}):\n{comment_body}\n\n"
|
|
|
|
# Combine page content with comments
|
|
full_content = f"# {page_title}\n\n{page_content}{comments_content}"
|
|
|
|
if not full_content.strip():
|
|
logger.warning(f"Skipping page with no content: {page_title}")
|
|
skipped_pages.append(f"{page_title} (no content)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Create a simple summary
|
|
summary_content = (
|
|
f"Confluence Page: {page_title}\n\nSpace ID: {space_id}\n\n"
|
|
)
|
|
if page_content:
|
|
# Take first 500 characters of content for summary
|
|
content_preview = page_content[:500]
|
|
if len(page_content) > 500:
|
|
content_preview += "..."
|
|
summary_content += f"Content Preview: {content_preview}\n\n"
|
|
|
|
# Add comment count
|
|
comment_count = len(comments)
|
|
summary_content += f"Comments: {comment_count}"
|
|
|
|
# Generate content hash
|
|
content_hash = generate_content_hash(full_content, search_space_id)
|
|
|
|
# Check if document already exists
|
|
existing_doc_by_hash_result = await session.execute(
|
|
select(Document).where(Document.content_hash == content_hash)
|
|
)
|
|
existing_document_by_hash = (
|
|
existing_doc_by_hash_result.scalars().first()
|
|
)
|
|
|
|
if existing_document_by_hash:
|
|
logger.info(
|
|
f"Document with content hash {content_hash} already exists for page {page_title}. Skipping processing."
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Generate embedding for the summary
|
|
summary_embedding = config.embedding_model_instance.embed(
|
|
summary_content
|
|
)
|
|
|
|
# Process chunks - using the full page content with comments
|
|
chunks = [
|
|
Chunk(
|
|
content=chunk.text,
|
|
embedding=config.embedding_model_instance.embed(chunk.text),
|
|
)
|
|
for chunk in config.chunker_instance.chunk(full_content)
|
|
]
|
|
|
|
# Create and store new document
|
|
logger.info(f"Creating new document for page {page_title}")
|
|
document = Document(
|
|
search_space_id=search_space_id,
|
|
title=f"Confluence - {page_title}",
|
|
document_type=DocumentType.CONFLUENCE_CONNECTOR,
|
|
document_metadata={
|
|
"page_id": page_id,
|
|
"page_title": page_title,
|
|
"space_id": space_id,
|
|
"comment_count": comment_count,
|
|
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
},
|
|
content=summary_content,
|
|
content_hash=content_hash,
|
|
embedding=summary_embedding,
|
|
chunks=chunks,
|
|
)
|
|
|
|
session.add(document)
|
|
documents_indexed += 1
|
|
logger.info(f"Successfully indexed new page {page_title}")
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error processing page {page.get('title', 'Unknown')}: {e!s}",
|
|
exc_info=True,
|
|
)
|
|
skipped_pages.append(
|
|
f"{page.get('title', 'Unknown')} (processing error)"
|
|
)
|
|
documents_skipped += 1
|
|
continue # Skip this page and continue with others
|
|
|
|
# Update the last_indexed_at timestamp for the connector only if requested
|
|
total_processed = documents_indexed
|
|
if update_last_indexed:
|
|
connector.last_indexed_at = datetime.now()
|
|
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
|
|
|
|
# Commit all changes
|
|
await session.commit()
|
|
logger.info(
|
|
"Successfully committed all Confluence document changes to database"
|
|
)
|
|
|
|
# Log success
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully completed Confluence indexing for connector {connector_id}",
|
|
{
|
|
"pages_processed": total_processed,
|
|
"documents_indexed": documents_indexed,
|
|
"documents_skipped": documents_skipped,
|
|
"skipped_pages_count": len(skipped_pages),
|
|
},
|
|
)
|
|
|
|
logger.info(
|
|
f"Confluence indexing completed: {documents_indexed} new pages, {documents_skipped} skipped"
|
|
)
|
|
return (
|
|
total_processed,
|
|
None,
|
|
) # Return None as the error message to indicate success
|
|
|
|
except SQLAlchemyError as db_error:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Database error during Confluence indexing for connector {connector_id}",
|
|
str(db_error),
|
|
{"error_type": "SQLAlchemyError"},
|
|
)
|
|
logger.error(f"Database error: {db_error!s}", exc_info=True)
|
|
return 0, f"Database error: {db_error!s}"
|
|
except Exception as e:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to index Confluence pages for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
logger.error(f"Failed to index Confluence pages: {e!s}", exc_info=True)
|
|
return 0, f"Failed to index Confluence pages: {e!s}"
|
|
|
|
|
|
async def index_clickup_tasks(
|
|
session: AsyncSession,
|
|
connector_id: int,
|
|
search_space_id: int,
|
|
user_id: str,
|
|
start_date: str | None = None,
|
|
end_date: str | None = None,
|
|
update_last_indexed: bool = True,
|
|
) -> tuple[int, str | None]:
|
|
"""
|
|
Index tasks from ClickUp workspace.
|
|
|
|
Args:
|
|
session: Database session
|
|
connector_id: ID of the ClickUp connector
|
|
search_space_id: ID of the search space
|
|
user_id: ID of the user
|
|
start_date: Start date for filtering tasks (YYYY-MM-DD format)
|
|
end_date: End date for filtering tasks (YYYY-MM-DD format)
|
|
update_last_indexed: Whether to update the last_indexed_at timestamp
|
|
|
|
Returns:
|
|
Tuple of (number of indexed tasks, error message if any)
|
|
"""
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="clickup_tasks_indexing",
|
|
source="connector_indexing_task",
|
|
message=f"Starting ClickUp tasks indexing for connector {connector_id}",
|
|
metadata={
|
|
"connector_id": connector_id,
|
|
"start_date": start_date,
|
|
"end_date": end_date,
|
|
},
|
|
)
|
|
|
|
try:
|
|
# Get connector configuration
|
|
result = await session.execute(
|
|
select(SearchSourceConnector).filter(
|
|
SearchSourceConnector.id == connector_id
|
|
)
|
|
)
|
|
connector = result.scalars().first()
|
|
|
|
if not connector:
|
|
error_msg = f"ClickUp connector with ID {connector_id} not found"
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Connector with ID {connector_id} not found or is not a ClickUp connector",
|
|
"Connector not found",
|
|
{"error_type": "ConnectorNotFound"},
|
|
)
|
|
return 0, error_msg
|
|
|
|
# Extract ClickUp configuration
|
|
clickup_api_token = connector.config.get("CLICKUP_API_TOKEN")
|
|
|
|
if not clickup_api_token:
|
|
error_msg = "ClickUp API token not found in connector configuration"
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"ClickUp API token not found in connector config for connector {connector_id}",
|
|
"Missing ClickUp token",
|
|
{"error_type": "MissingToken"},
|
|
)
|
|
return 0, error_msg
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Initializing ClickUp client for connector {connector_id}",
|
|
{"stage": "client_initialization"},
|
|
)
|
|
|
|
clickup_client = ClickUpConnector(api_token=clickup_api_token)
|
|
|
|
# Get authorized workspaces
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
"Fetching authorized ClickUp workspaces",
|
|
{"stage": "workspace_fetching"},
|
|
)
|
|
|
|
workspaces_response = clickup_client.get_authorized_workspaces()
|
|
workspaces = workspaces_response.get("teams", [])
|
|
|
|
if not workspaces:
|
|
error_msg = "No authorized ClickUp workspaces found"
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"No authorized ClickUp workspaces found for connector {connector_id}",
|
|
"No workspaces found",
|
|
{"error_type": "NoWorkspacesFound"},
|
|
)
|
|
return 0, error_msg
|
|
|
|
# Process and index each task
|
|
documents_indexed = 0
|
|
documents_skipped = 0
|
|
|
|
for workspace in workspaces:
|
|
workspace_id = workspace.get("id")
|
|
workspace_name = workspace.get("name", "Unknown Workspace")
|
|
|
|
if not workspace_id:
|
|
continue
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Processing workspace: {workspace_name}",
|
|
{"stage": "workspace_processing", "workspace_id": workspace_id},
|
|
)
|
|
|
|
# Fetch tasks from workspace
|
|
if start_date and end_date:
|
|
tasks, error = clickup_client.get_tasks_in_date_range(
|
|
workspace_id=workspace_id,
|
|
start_date=start_date,
|
|
end_date=end_date,
|
|
include_closed=True,
|
|
)
|
|
if error:
|
|
logger.warning(
|
|
f"Error fetching tasks from workspace {workspace_name}: {error}"
|
|
)
|
|
continue
|
|
else:
|
|
tasks = clickup_client.get_workspace_tasks(
|
|
workspace_id=workspace_id, include_closed=True
|
|
)
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Found {len(tasks)} tasks in workspace {workspace_name}",
|
|
{"stage": "tasks_found", "task_count": len(tasks)},
|
|
)
|
|
|
|
# Process each task
|
|
for task in tasks:
|
|
try:
|
|
task_id = task.get("id")
|
|
task_name = task.get("name", "Untitled Task")
|
|
task_description = task.get("description", "")
|
|
task_status = task.get("status", {}).get("status", "Unknown")
|
|
task_priority = (
|
|
task.get("priority", {}).get("priority", "Unknown")
|
|
if task.get("priority")
|
|
else "None"
|
|
)
|
|
task_assignees = task.get("assignees", [])
|
|
task_due_date = task.get("due_date")
|
|
task_created = task.get("date_created")
|
|
task_updated = task.get("date_updated")
|
|
|
|
# Get list and space information
|
|
task_list = task.get("list", {})
|
|
task_list_name = task_list.get("name", "Unknown List")
|
|
task_space = task.get("space", {})
|
|
task_space_name = task_space.get("name", "Unknown Space")
|
|
|
|
# Create task content
|
|
content_parts = [f"Task: {task_name}"]
|
|
|
|
if task_description:
|
|
content_parts.append(f"Description: {task_description}")
|
|
|
|
content_parts.extend(
|
|
[
|
|
f"Status: {task_status}",
|
|
f"Priority: {task_priority}",
|
|
f"List: {task_list_name}",
|
|
f"Space: {task_space_name}",
|
|
]
|
|
)
|
|
|
|
if task_assignees:
|
|
assignee_names = [
|
|
assignee.get("username", "Unknown")
|
|
for assignee in task_assignees
|
|
]
|
|
content_parts.append(f"Assignees: {', '.join(assignee_names)}")
|
|
|
|
if task_due_date:
|
|
content_parts.append(f"Due Date: {task_due_date}")
|
|
|
|
task_content = "\n".join(content_parts)
|
|
|
|
if not task_content.strip():
|
|
logger.warning(f"Skipping task with no content: {task_name}")
|
|
continue
|
|
|
|
# Generate content hash
|
|
content_hash = generate_content_hash(task_content, search_space_id)
|
|
|
|
# Check if document already exists
|
|
existing_doc_by_hash_result = await session.execute(
|
|
select(Document).where(Document.content_hash == content_hash)
|
|
)
|
|
existing_document_by_hash = (
|
|
existing_doc_by_hash_result.scalars().first()
|
|
)
|
|
|
|
if existing_document_by_hash:
|
|
logger.info(
|
|
f"Document with content hash {content_hash} already exists for task {task_name}. Skipping processing."
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Generate embedding for the summary
|
|
summary_embedding = config.embedding_model_instance.embed(
|
|
task_content
|
|
)
|
|
|
|
# Process chunks - using the full page content with comments
|
|
chunks = [
|
|
Chunk(
|
|
content=chunk.text,
|
|
embedding=config.embedding_model_instance.embed(chunk.text),
|
|
)
|
|
for chunk in config.chunker_instance.chunk(task_content)
|
|
]
|
|
|
|
# Create and store new document
|
|
logger.info(f"Creating new document for task {task_name}")
|
|
|
|
document = Document(
|
|
search_space_id=search_space_id,
|
|
title=f"Task - {task_name}",
|
|
document_type=DocumentType.CLICKUP_CONNECTOR,
|
|
document_metadata={
|
|
"task_id": task_id,
|
|
"task_name": task_name,
|
|
"task_status": task_status,
|
|
"task_priority": task_priority,
|
|
"task_assignees": task_assignees,
|
|
"task_due_date": task_due_date,
|
|
"task_created": task_created,
|
|
"task_updated": task_updated,
|
|
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
},
|
|
content=task_content,
|
|
content_hash=content_hash,
|
|
embedding=summary_embedding,
|
|
chunks=chunks,
|
|
)
|
|
|
|
session.add(document)
|
|
documents_indexed += 1
|
|
logger.info(f"Successfully indexed new task {task_name}")
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error processing task {task.get('name', 'Unknown')}: {e!s}",
|
|
exc_info=True,
|
|
)
|
|
documents_skipped += 1
|
|
|
|
# Update the last_indexed_at timestamp for the connector only if requested
|
|
total_processed = documents_indexed
|
|
if update_last_indexed:
|
|
connector.last_indexed_at = datetime.now()
|
|
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
|
|
|
|
# Commit all changes
|
|
await session.commit()
|
|
logger.info(
|
|
"Successfully committed all clickup document changes to database"
|
|
)
|
|
|
|
# Log success
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully completed clickup indexing for connector {connector_id}",
|
|
{
|
|
"pages_processed": total_processed,
|
|
"documents_indexed": documents_indexed,
|
|
"documents_skipped": documents_skipped,
|
|
},
|
|
)
|
|
|
|
logger.info(
|
|
f"clickup indexing completed: {documents_indexed} new tasks, {documents_skipped} skipped"
|
|
)
|
|
return (
|
|
total_processed,
|
|
None,
|
|
) # Return None as the error message to indicate success
|
|
|
|
except SQLAlchemyError as db_error:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Database error during Cickup indexing for connector {connector_id}",
|
|
str(db_error),
|
|
{"error_type": "SQLAlchemyError"},
|
|
)
|
|
logger.error(f"Database error: {db_error!s}", exc_info=True)
|
|
return 0, f"Database error: {db_error!s}"
|
|
except Exception as e:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to index ClickUp tasks for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
logger.error(f"Failed to index ClickUp tasks: {e!s}", exc_info=True)
|
|
return 0, f"Failed to index ClickUp tasks: {e!s}"
|
|
|
|
|
|
async def index_google_calendar_events(
|
|
session: AsyncSession,
|
|
connector_id: int,
|
|
search_space_id: int,
|
|
user_id: str,
|
|
start_date: str | None = None,
|
|
end_date: str | None = None,
|
|
update_last_indexed: bool = True,
|
|
) -> tuple[int, str | None]:
|
|
"""
|
|
Index Google Calendar events.
|
|
|
|
Args:
|
|
session: Database session
|
|
connector_id: ID of the Google Calendar connector
|
|
search_space_id: ID of the search space to store documents in
|
|
user_id: User ID
|
|
start_date: Start date for indexing (YYYY-MM-DD format)
|
|
end_date: End date for indexing (YYYY-MM-DD format)
|
|
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
|
|
|
|
Returns:
|
|
Tuple containing (number of documents indexed, error message or None)
|
|
"""
|
|
task_logger = TaskLoggingService(session, search_space_id)
|
|
|
|
# Log task start
|
|
log_entry = await task_logger.log_task_start(
|
|
task_name="google_calendar_events_indexing",
|
|
source="connector_indexing_task",
|
|
message=f"Starting Google Calendar events indexing for connector {connector_id}",
|
|
metadata={
|
|
"connector_id": connector_id,
|
|
"user_id": str(user_id),
|
|
"start_date": start_date,
|
|
"end_date": end_date,
|
|
},
|
|
)
|
|
|
|
try:
|
|
# Get the connector from the database
|
|
result = await session.execute(
|
|
select(SearchSourceConnector).filter(
|
|
SearchSourceConnector.id == connector_id,
|
|
SearchSourceConnector.connector_type
|
|
== SearchSourceConnectorType.GOOGLE_CALENDAR_CONNECTOR,
|
|
)
|
|
)
|
|
connector = result.scalars().first()
|
|
|
|
if not connector:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Connector with ID {connector_id} not found",
|
|
"Connector not found",
|
|
{"error_type": "ConnectorNotFound"},
|
|
)
|
|
return 0, f"Connector with ID {connector_id} not found"
|
|
|
|
# Get the Google Calendar credentials from the connector config
|
|
credentials = Credentials(
|
|
token=connector.config.get("token"),
|
|
refresh_token=connector.config.get("refresh_token"),
|
|
token_uri=connector.config.get("token_uri"),
|
|
client_id=connector.config.get("client_id"),
|
|
client_secret=connector.config.get("client_secret"),
|
|
scopes=connector.config.get("scopes"),
|
|
)
|
|
|
|
if (
|
|
not credentials.client_id
|
|
or not credentials.client_secret
|
|
or not credentials.refresh_token
|
|
):
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Google Calendar credentials not found in connector config for connector {connector_id}",
|
|
"Missing Google Calendar credentials",
|
|
{"error_type": "MissingCredentials"},
|
|
)
|
|
return 0, "Google Calendar credentials not found in connector config"
|
|
|
|
# Initialize Google Calendar client
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Initializing Google Calendar client for connector {connector_id}",
|
|
{"stage": "client_initialization"},
|
|
)
|
|
|
|
calendar_client = GoogleCalendarConnector(credentials=credentials)
|
|
|
|
# Calculate date range
|
|
if start_date is None or end_date is None:
|
|
# Fall back to calculating dates based on last_indexed_at
|
|
calculated_end_date = datetime.now()
|
|
|
|
# Use last_indexed_at as start date if available, otherwise use 30 days ago
|
|
if connector.last_indexed_at:
|
|
# Convert dates to be comparable (both timezone-naive)
|
|
last_indexed_naive = (
|
|
connector.last_indexed_at.replace(tzinfo=None)
|
|
if connector.last_indexed_at.tzinfo
|
|
else connector.last_indexed_at
|
|
)
|
|
|
|
# Check if last_indexed_at is in the future or after end_date
|
|
if last_indexed_naive > calculated_end_date:
|
|
logger.warning(
|
|
f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 30 days ago instead."
|
|
)
|
|
calculated_start_date = calculated_end_date - timedelta(days=30)
|
|
else:
|
|
calculated_start_date = last_indexed_naive
|
|
logger.info(
|
|
f"Using last_indexed_at ({calculated_start_date.strftime('%Y-%m-%d')}) as start date"
|
|
)
|
|
else:
|
|
calculated_start_date = calculated_end_date - timedelta(
|
|
days=30
|
|
) # Use 30 days as default for calendar events
|
|
logger.info(
|
|
f"No last_indexed_at found, using {calculated_start_date.strftime('%Y-%m-%d')} (30 days ago) as start date"
|
|
)
|
|
|
|
# Use calculated dates if not provided
|
|
start_date_str = (
|
|
start_date if start_date else calculated_start_date.strftime("%Y-%m-%d")
|
|
)
|
|
end_date_str = (
|
|
end_date if end_date else calculated_end_date.strftime("%Y-%m-%d")
|
|
)
|
|
else:
|
|
# Use provided dates
|
|
start_date_str = start_date
|
|
end_date_str = end_date
|
|
|
|
await task_logger.log_task_progress(
|
|
log_entry,
|
|
f"Fetching Google Calendar events from {start_date_str} to {end_date_str}",
|
|
{
|
|
"stage": "fetching_events",
|
|
"start_date": start_date_str,
|
|
"end_date": end_date_str,
|
|
},
|
|
)
|
|
|
|
# Get events within date range from primary calendar
|
|
try:
|
|
events, error = calendar_client.get_all_primary_calendar_events(
|
|
start_date=start_date_str, end_date=end_date_str
|
|
)
|
|
|
|
if error:
|
|
logger.error(f"Failed to get Google Calendar events: {error}")
|
|
|
|
# Don't treat "No events found" as an error that should stop indexing
|
|
if "No events found" in error:
|
|
logger.info(
|
|
"No events found is not a critical error, continuing with update"
|
|
)
|
|
if update_last_indexed:
|
|
connector.last_indexed_at = datetime.now()
|
|
await session.commit()
|
|
logger.info(
|
|
f"Updated last_indexed_at to {connector.last_indexed_at} despite no events found"
|
|
)
|
|
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"No Google Calendar events found in date range {start_date_str} to {end_date_str}",
|
|
{"events_found": 0},
|
|
)
|
|
return 0, None
|
|
else:
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to get Google Calendar events: {error}",
|
|
"API Error",
|
|
{"error_type": "APIError"},
|
|
)
|
|
return 0, f"Failed to get Google Calendar events: {error}"
|
|
|
|
logger.info(f"Retrieved {len(events)} events from Google Calendar API")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error fetching Google Calendar events: {e!s}", exc_info=True)
|
|
return 0, f"Error fetching Google Calendar events: {e!s}"
|
|
|
|
# Process and index each event
|
|
documents_indexed = 0
|
|
skipped_events = []
|
|
documents_skipped = 0
|
|
|
|
for event in events:
|
|
try:
|
|
event_id = event.get("id")
|
|
event_summary = event.get("summary", "No Title")
|
|
calendar_id = event.get("calendarId", "")
|
|
|
|
if not event_id:
|
|
logger.warning(f"Skipping event with missing ID: {event_summary}")
|
|
skipped_events.append(f"{event_summary} (missing ID)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Format event as markdown
|
|
event_markdown = calendar_client.format_event_to_markdown(event)
|
|
|
|
if not event_markdown.strip():
|
|
logger.warning(f"Skipping event with no content: {event_summary}")
|
|
skipped_events.append(f"{event_summary} (no content)")
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Create a simple summary for the document
|
|
start = event.get("start", {})
|
|
end = event.get("end", {})
|
|
start_time = start.get("dateTime") or start.get("date", "")
|
|
end_time = end.get("dateTime") or end.get("date", "")
|
|
location = event.get("location", "")
|
|
description = event.get("description", "")
|
|
|
|
summary_content = f"Google Calendar Event: {event_summary}\n\n"
|
|
summary_content += f"Calendar: {calendar_id}\n"
|
|
summary_content += f"Start: {start_time}\n"
|
|
summary_content += f"End: {end_time}\n"
|
|
|
|
if location:
|
|
summary_content += f"Location: {location}\n"
|
|
|
|
if description:
|
|
# Take first 300 characters of description for summary
|
|
desc_preview = description[:300]
|
|
if len(description) > 300:
|
|
desc_preview += "..."
|
|
summary_content += f"Description: {desc_preview}\n"
|
|
|
|
# Generate content hash
|
|
content_hash = generate_content_hash(event_markdown, search_space_id)
|
|
|
|
# Check if document already exists
|
|
existing_doc_by_hash_result = await session.execute(
|
|
select(Document).where(Document.content_hash == content_hash)
|
|
)
|
|
existing_document_by_hash = (
|
|
existing_doc_by_hash_result.scalars().first()
|
|
)
|
|
|
|
if existing_document_by_hash:
|
|
logger.info(
|
|
f"Document with content hash {content_hash} already exists for event {event_summary}. Skipping processing."
|
|
)
|
|
documents_skipped += 1
|
|
continue
|
|
|
|
# Generate embedding for the summary
|
|
summary_embedding = config.embedding_model_instance.embed(
|
|
summary_content
|
|
)
|
|
|
|
# Process chunks - using the full event markdown
|
|
chunks = [
|
|
Chunk(
|
|
content=chunk.text,
|
|
embedding=config.embedding_model_instance.embed(chunk.text),
|
|
)
|
|
for chunk in config.chunker_instance.chunk(event_markdown)
|
|
]
|
|
|
|
# Create and store new document
|
|
logger.info(f"Creating new document for event {event_summary}")
|
|
document = Document(
|
|
search_space_id=search_space_id,
|
|
title=f"Calendar Event - {event_summary}",
|
|
document_type=DocumentType.GOOGLE_CALENDAR_CONNECTOR,
|
|
document_metadata={
|
|
"event_id": event_id,
|
|
"event_summary": event_summary,
|
|
"calendar_id": calendar_id,
|
|
"start_time": start_time,
|
|
"end_time": end_time,
|
|
"location": location,
|
|
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
},
|
|
content=summary_content,
|
|
content_hash=content_hash,
|
|
embedding=summary_embedding,
|
|
chunks=chunks,
|
|
)
|
|
|
|
session.add(document)
|
|
documents_indexed += 1
|
|
logger.info(f"Successfully indexed new event {event_summary}")
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error processing event {event.get('summary', 'Unknown')}: {e!s}",
|
|
exc_info=True,
|
|
)
|
|
skipped_events.append(
|
|
f"{event.get('summary', 'Unknown')} (processing error)"
|
|
)
|
|
documents_skipped += 1
|
|
continue # Skip this event and continue with others
|
|
|
|
# Update the last_indexed_at timestamp for the connector only if requested
|
|
total_processed = documents_indexed
|
|
if update_last_indexed:
|
|
connector.last_indexed_at = datetime.now()
|
|
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
|
|
|
|
# Commit all changes
|
|
await session.commit()
|
|
logger.info(
|
|
"Successfully committed all Google Calendar document changes to database"
|
|
)
|
|
|
|
# Log success
|
|
await task_logger.log_task_success(
|
|
log_entry,
|
|
f"Successfully completed Google Calendar indexing for connector {connector_id}",
|
|
{
|
|
"events_processed": total_processed,
|
|
"documents_indexed": documents_indexed,
|
|
"documents_skipped": documents_skipped,
|
|
"skipped_events_count": len(skipped_events),
|
|
},
|
|
)
|
|
|
|
logger.info(
|
|
f"Google Calendar indexing completed: {documents_indexed} new events, {documents_skipped} skipped"
|
|
)
|
|
return (
|
|
total_processed,
|
|
None,
|
|
) # Return None as the error message to indicate success
|
|
|
|
except SQLAlchemyError as db_error:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Database error during Google Calendar indexing for connector {connector_id}",
|
|
str(db_error),
|
|
{"error_type": "SQLAlchemyError"},
|
|
)
|
|
logger.error(f"Database error: {db_error!s}", exc_info=True)
|
|
return 0, f"Database error: {db_error!s}"
|
|
except Exception as e:
|
|
await session.rollback()
|
|
await task_logger.log_task_failure(
|
|
log_entry,
|
|
f"Failed to index Google Calendar events for connector {connector_id}",
|
|
str(e),
|
|
{"error_type": type(e).__name__},
|
|
)
|
|
logger.error(f"Failed to index Google Calendar events: {e!s}", exc_info=True)
|
|
return 0, f"Failed to index Google Calendar events: {e!s}"
|