SurfSense/surfsense_web/content/docs/manual-installation.mdx
2025-05-08 19:31:47 -07:00

293 lines
10 KiB
Text

---
title: Manual Installation
description: Setting up SurfSense manually for customized deployments (Preferred)
full: true
---
# Manual Installation (Preferred)
This guide provides step-by-step instructions for setting up SurfSense without Docker. This approach gives you more control over the installation process and allows for customization of the environment.
## Prerequisites
Before beginning the manual installation, ensure you have completed all the [prerequisite setup steps](/docs), including:
- PGVector installation
- Google OAuth setup
- Unstructured.io API key
- LLM observability (optional)
- Crawler setup (if needed)
## Backend Setup
The backend is the core of SurfSense. Follow these steps to set it up:
### 1. Environment Configuration
First, create and configure your environment variables by copying the example file:
**Linux/macOS:**
```bash
cd surfsense_backend
cp .env.example .env
```
**Windows (Command Prompt):**
```cmd
cd surfsense_backend
copy .env.example .env
```
**Windows (PowerShell):**
```powershell
cd surfsense_backend
Copy-Item -Path .env.example -Destination .env
```
Edit the `.env` file and set the following variables:
| ENV VARIABLE | DESCRIPTION |
| -------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DATABASE_URL | PostgreSQL connection string (e.g., `postgresql+asyncpg://postgres:postgres@localhost:5432/surfsense`) |
| SECRET_KEY | JWT Secret key for authentication (should be a secure random string) |
| GOOGLE_OAUTH_CLIENT_ID | Google OAuth client ID |
| GOOGLE_OAUTH_CLIENT_SECRET | Google OAuth client secret |
| NEXT_FRONTEND_URL | Frontend application URL (e.g., `http://localhost:3000`) |
| EMBEDDING_MODEL | Name of the embedding model (e.g., `openai://text-embedding-ada-002`, `anthropic://claude-v1`, `mixedbread-ai/mxbai-embed-large-v1`) |
| RERANKERS_MODEL_NAME | Name of the reranker model (e.g., `ms-marco-MiniLM-L-12-v2`) |
| RERANKERS_MODEL_TYPE | Type of reranker model (e.g., `flashrank`) |
| FAST_LLM | LiteLLM routed faster LLM (e.g., `openai/gpt-4o-mini`, `ollama/deepseek-r1:8b`) |
| STRATEGIC_LLM | LiteLLM routed advanced LLM (e.g., `openai/gpt-4o`, `ollama/gemma3:12b`) |
| LONG_CONTEXT_LLM | LiteLLM routed long-context LLM (e.g., `gemini/gemini-2.0-flash`, `ollama/deepseek-r1:8b`) |
| UNSTRUCTURED_API_KEY | API key for Unstructured.io service |
| FIRECRAWL_API_KEY | API key for Firecrawl service (if using crawler) |
| TTS_SERVICE | Text-to-Speech API provider for Podcasts (e.g., `openai/tts-1`, `azure/neural`, `vertex_ai/`). See [supported providers](https://docs.litellm.ai/docs/text_to_speech#supported-providers) |
**Important**: Since LLM calls are routed through LiteLLM, include API keys for the LLM providers you're using:
- For OpenAI models: `OPENAI_API_KEY`
- For Google Gemini models: `GEMINI_API_KEY`
- For other providers, refer to the [LiteLLM documentation](https://docs.litellm.ai/docs/providers)
**Optional LangSmith Observability:**
| ENV VARIABLE | DESCRIPTION |
|--------------|-------------|
| LANGSMITH_TRACING | Enable LangSmith tracing (e.g., `true`) |
| LANGSMITH_ENDPOINT | LangSmith API endpoint (e.g., `https://api.smith.langchain.com`) |
| LANGSMITH_API_KEY | Your LangSmith API key |
| LANGSMITH_PROJECT | LangSmith project name (e.g., `surfsense`) |
**Optional LiteLLM API Base URLs:**
| ENV VARIABLE | DESCRIPTION |
|--------------|-------------|
| FAST_LLM_API_BASE | Custom API base URL for the fast LLM |
| STRATEGIC_LLM_API_BASE | Custom API base URL for the strategic LLM |
| LONG_CONTEXT_LLM_API_BASE | Custom API base URL for the long context LLM |
### 2. Install Dependencies
Install the backend dependencies using `uv`:
**Linux/macOS:**
```bash
# Install uv if you don't have it
curl -fsSL https://astral.sh/uv/install.sh | bash
# Install dependencies
uv sync
```
**Windows (PowerShell):**
```powershell
# Install uv if you don't have it
iwr -useb https://astral.sh/uv/install.ps1 | iex
# Install dependencies
uv sync
```
**Windows (Command Prompt):**
```cmd
# Install dependencies with uv (after installing uv)
uv sync
```
### 3. Run the Backend
Start the backend server:
**Linux/macOS/Windows:**
```bash
# Run without hot reloading
uv run main.py
# Or with hot reloading for development
uv run main.py --reload
```
If everything is set up correctly, you should see output indicating the server is running on `http://localhost:8000`.
## Frontend Setup
### 1. Environment Configuration
Set up the frontend environment:
**Linux/macOS:**
```bash
cd surfsense_web
cp .env.example .env
```
**Windows (Command Prompt):**
```cmd
cd surfsense_web
copy .env.example .env
```
**Windows (PowerShell):**
```powershell
cd surfsense_web
Copy-Item -Path .env.example -Destination .env
```
Edit the `.env` file and set:
| ENV VARIABLE | DESCRIPTION |
| ------------------------------- | ------------------------------------------- |
| NEXT_PUBLIC_FASTAPI_BACKEND_URL | Backend URL (e.g., `http://localhost:8000`) |
### 2. Install Dependencies
Install the frontend dependencies:
**Linux/macOS:**
```bash
# Install pnpm if you don't have it
npm install -g pnpm
# Install dependencies
pnpm install
```
**Windows:**
```powershell
# Install pnpm if you don't have it
npm install -g pnpm
# Install dependencies
pnpm install
```
### 3. Run the Frontend
Start the Next.js development server:
**Linux/macOS/Windows:**
```bash
pnpm run dev
```
The frontend should now be running at `http://localhost:3000`.
## Browser Extension Setup (Optional)
The SurfSense browser extension allows you to save any webpage, including those protected behind authentication.
### 1. Environment Configuration
**Linux/macOS:**
```bash
cd surfsense_browser_extension
cp .env.example .env
```
**Windows (Command Prompt):**
```cmd
cd surfsense_browser_extension
copy .env.example .env
```
**Windows (PowerShell):**
```powershell
cd surfsense_browser_extension
Copy-Item -Path .env.example -Destination .env
```
Edit the `.env` file:
| ENV VARIABLE | DESCRIPTION |
| ------------------------- | ----------------------------------------------------- |
| PLASMO_PUBLIC_BACKEND_URL | SurfSense Backend URL (e.g., `http://127.0.0.1:8000`) |
### 2. Build the Extension
Build the extension for your browser using the [Plasmo framework](https://docs.plasmo.com/framework/workflows/build#with-a-specific-target).
**Linux/macOS/Windows:**
```bash
# Install dependencies
pnpm install
# Build for Chrome (default)
pnpm build
# Or for other browsers
pnpm build --target=firefox
pnpm build --target=edge
```
### 3. Load the Extension
Load the extension in your browser's developer mode and configure it with your SurfSense API key.
## Verification
To verify your installation:
1. Open your browser and navigate to `http://localhost:3000`
2. Sign in with your Google account
3. Create a search space and try uploading a document
4. Test the chat functionality with your uploaded content
## Troubleshooting
- **Database Connection Issues**: Verify your PostgreSQL server is running and pgvector is properly installed
- **Authentication Problems**: Check your Google OAuth configuration and ensure redirect URIs are set correctly
- **LLM Errors**: Confirm your LLM API keys are valid and the selected models are accessible
- **File Upload Failures**: Validate your Unstructured.io API key
- **Windows-specific**: If you encounter path issues, ensure you're using the correct path separator (`\` instead of `/`)
- **macOS-specific**: If you encounter permission issues, you may need to use `sudo` for some installation commands
## Next Steps
Now that you have SurfSense running locally, you can explore its features:
- Create search spaces for organizing your content
- Upload documents or use the browser extension to save webpages
- Ask questions about your saved content
- Explore the advanced RAG capabilities
For production deployments, consider setting up:
- A reverse proxy like Nginx
- SSL certificates for secure connections
- Proper database backups
- User access controls