SurfSense/surfsense_backend/app/tasks/connectors_indexing_tasks.py
2025-06-02 21:03:50 +07:00

1104 lines
51 KiB
Python

from typing import Optional, Tuple
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.exc import SQLAlchemyError
from sqlalchemy.future import select
from sqlalchemy import delete
from datetime import datetime, timedelta, timezone
from app.db import Document, DocumentType, Chunk, SearchSourceConnector, SearchSourceConnectorType
from app.config import config
from app.prompts import SUMMARY_PROMPT_TEMPLATE
from app.connectors.slack_history import SlackHistory
from app.connectors.notion_history import NotionHistoryConnector
from app.connectors.github_connector import GitHubConnector
from app.connectors.linear_connector import LinearConnector
from app.connectors.discord_connector import DiscordConnector
from discord import DiscordException
from slack_sdk.errors import SlackApiError
import logging
import asyncio
from app.utils.document_converters import generate_content_hash
# Set up logging
logger = logging.getLogger(__name__)
async def index_slack_messages(
session: AsyncSession,
connector_id: int,
search_space_id: int,
update_last_indexed: bool = True
) -> Tuple[int, Optional[str]]:
"""
Index Slack messages from all accessible channels.
Args:
session: Database session
connector_id: ID of the Slack connector
search_space_id: ID of the search space to store documents in
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
Returns:
Tuple containing (number of documents indexed, error message or None)
"""
try:
# Get the connector
result = await session.execute(
select(SearchSourceConnector)
.filter(
SearchSourceConnector.id == connector_id,
SearchSourceConnector.connector_type == SearchSourceConnectorType.SLACK_CONNECTOR
)
)
connector = result.scalars().first()
if not connector:
return 0, f"Connector with ID {connector_id} not found or is not a Slack connector"
# Get the Slack token from the connector config
slack_token = connector.config.get("SLACK_BOT_TOKEN")
if not slack_token:
return 0, "Slack token not found in connector config"
# Initialize Slack client
slack_client = SlackHistory(token=slack_token)
# Calculate date range
end_date = datetime.now()
# Use last_indexed_at as start date if available, otherwise use 365 days ago
if connector.last_indexed_at:
# Convert dates to be comparable (both timezone-naive)
last_indexed_naive = connector.last_indexed_at.replace(tzinfo=None) if connector.last_indexed_at.tzinfo else connector.last_indexed_at
# Check if last_indexed_at is in the future or after end_date
if last_indexed_naive > end_date:
logger.warning(f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead.")
start_date = end_date - timedelta(days=365)
else:
start_date = last_indexed_naive
logger.info(f"Using last_indexed_at ({start_date.strftime('%Y-%m-%d')}) as start date")
else:
start_date = end_date - timedelta(days=365) # Use 365 days as default
logger.info(f"No last_indexed_at found, using {start_date.strftime('%Y-%m-%d')} (30 days ago) as start date")
# Format dates for Slack API
start_date_str = start_date.strftime("%Y-%m-%d")
end_date_str = end_date.strftime("%Y-%m-%d")
# Get all channels
try:
channels = slack_client.get_all_channels()
except Exception as e:
return 0, f"Failed to get Slack channels: {str(e)}"
if not channels:
return 0, "No Slack channels found"
# Track the number of documents indexed
documents_indexed = 0
documents_skipped = 0
skipped_channels = []
# Process each channel
for channel_obj in channels: # Modified loop to iterate over list of channel objects
channel_id = channel_obj["id"]
channel_name = channel_obj["name"]
is_private = channel_obj["is_private"]
is_member = channel_obj["is_member"] # This might be False for public channels too
try:
# If it's a private channel and the bot is not a member, skip.
# For public channels, if they are listed by conversations.list, the bot can typically read history.
# The `not_in_channel` error in get_conversation_history will be the ultimate gatekeeper if history is inaccessible.
if is_private and not is_member:
logger.warning(f"Bot is not a member of private channel {channel_name} ({channel_id}). Skipping.")
skipped_channels.append(f"{channel_name} (private, bot not a member)")
documents_skipped += 1
continue
# Get messages for this channel
# The get_history_by_date_range now uses get_conversation_history,
# which handles 'not_in_channel' by returning [] and logging.
messages, error = slack_client.get_history_by_date_range(
channel_id=channel_id,
start_date=start_date_str,
end_date=end_date_str,
limit=1000 # Limit to 1000 messages per channel
)
if error:
logger.warning(f"Error getting messages from channel {channel_name}: {error}")
skipped_channels.append(f"{channel_name} (error: {error})")
documents_skipped += 1
continue # Skip this channel if there's an error
if not messages:
logger.info(f"No messages found in channel {channel_name} for the specified date range.")
documents_skipped += 1
continue # Skip if no messages
# Format messages with user info
formatted_messages = []
for msg in messages:
# Skip bot messages and system messages
if msg.get("subtype") in ["bot_message", "channel_join", "channel_leave"]:
continue
formatted_msg = slack_client.format_message(msg, include_user_info=True)
formatted_messages.append(formatted_msg)
if not formatted_messages:
logger.info(f"No valid messages found in channel {channel_name} after filtering.")
documents_skipped += 1
continue # Skip if no valid messages after filtering
# Convert messages to markdown format
channel_content = f"# Slack Channel: {channel_name}\n\n"
for msg in formatted_messages:
user_name = msg.get("user_name", "Unknown User")
timestamp = msg.get("datetime", "Unknown Time")
text = msg.get("text", "")
channel_content += f"## {user_name} ({timestamp})\n\n{text}\n\n---\n\n"
# Format document metadata
metadata_sections = [
("METADATA", [
f"CHANNEL_NAME: {channel_name}",
f"CHANNEL_ID: {channel_id}",
# f"START_DATE: {start_date_str}",
# f"END_DATE: {end_date_str}",
f"MESSAGE_COUNT: {len(formatted_messages)}"
]),
("CONTENT", [
"FORMAT: markdown",
"TEXT_START",
channel_content,
"TEXT_END"
])
]
# Build the document string
document_parts = []
document_parts.append("<DOCUMENT>")
for section_title, section_content in metadata_sections:
document_parts.append(f"<{section_title}>")
document_parts.extend(section_content)
document_parts.append(f"</{section_title}>")
document_parts.append("</DOCUMENT>")
combined_document_string = '\n'.join(document_parts)
content_hash = generate_content_hash(combined_document_string)
# Check if document with this content hash already exists
existing_doc_by_hash_result = await session.execute(
select(Document).where(Document.content_hash == content_hash)
)
existing_document_by_hash = existing_doc_by_hash_result.scalars().first()
if existing_document_by_hash:
logger.info(f"Document with content hash {content_hash} already exists for channel {channel_name}. Skipping processing.")
documents_skipped += 1
continue
# Generate summary
summary_chain = SUMMARY_PROMPT_TEMPLATE | config.long_context_llm_instance
summary_result = await summary_chain.ainvoke({"document": combined_document_string})
summary_content = summary_result.content
summary_embedding = config.embedding_model_instance.embed(summary_content)
# Process chunks
chunks = [
Chunk(content=chunk.text, embedding=config.embedding_model_instance.embed(chunk.text))
for chunk in config.chunker_instance.chunk(channel_content)
]
# Create and store new document
document = Document(
search_space_id=search_space_id,
title=f"Slack - {channel_name}",
document_type=DocumentType.SLACK_CONNECTOR,
document_metadata={
"channel_name": channel_name,
"channel_id": channel_id,
"start_date": start_date_str,
"end_date": end_date_str,
"message_count": len(formatted_messages),
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
},
content=summary_content,
embedding=summary_embedding,
chunks=chunks,
content_hash=content_hash,
)
session.add(document)
documents_indexed += 1
logger.info(f"Successfully indexed new channel {channel_name} with {len(formatted_messages)} messages")
except SlackApiError as slack_error:
logger.error(f"Slack API error for channel {channel_name}: {str(slack_error)}")
skipped_channels.append(f"{channel_name} (Slack API error)")
documents_skipped += 1
continue # Skip this channel and continue with others
except Exception as e:
logger.error(f"Error processing channel {channel_name}: {str(e)}")
skipped_channels.append(f"{channel_name} (processing error)")
documents_skipped += 1
continue # Skip this channel and continue with others
# Update the last_indexed_at timestamp for the connector only if requested
# and if we successfully indexed at least one channel
total_processed = documents_indexed
if update_last_indexed and total_processed > 0:
connector.last_indexed_at = datetime.now()
# Commit all changes
await session.commit()
# Prepare result message
result_message = None
if skipped_channels:
result_message = f"Processed {total_processed} channels. Skipped {len(skipped_channels)} channels: {', '.join(skipped_channels)}"
else:
result_message = f"Processed {total_processed} channels."
logger.info(f"Slack indexing completed: {documents_indexed} new channels, {documents_skipped} skipped")
return total_processed, result_message
except SQLAlchemyError as db_error:
await session.rollback()
logger.error(f"Database error: {str(db_error)}")
return 0, f"Database error: {str(db_error)}"
except Exception as e:
await session.rollback()
logger.error(f"Failed to index Slack messages: {str(e)}")
return 0, f"Failed to index Slack messages: {str(e)}"
async def index_notion_pages(
session: AsyncSession,
connector_id: int,
search_space_id: int,
update_last_indexed: bool = True
) -> Tuple[int, Optional[str]]:
"""
Index Notion pages from all accessible pages.
Args:
session: Database session
connector_id: ID of the Notion connector
search_space_id: ID of the search space to store documents in
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
Returns:
Tuple containing (number of documents indexed, error message or None)
"""
try:
# Get the connector
result = await session.execute(
select(SearchSourceConnector)
.filter(
SearchSourceConnector.id == connector_id,
SearchSourceConnector.connector_type == SearchSourceConnectorType.NOTION_CONNECTOR
)
)
connector = result.scalars().first()
if not connector:
return 0, f"Connector with ID {connector_id} not found or is not a Notion connector"
# Get the Notion token from the connector config
notion_token = connector.config.get("NOTION_INTEGRATION_TOKEN")
if not notion_token:
return 0, "Notion integration token not found in connector config"
# Initialize Notion client
logger.info(f"Initializing Notion client for connector {connector_id}")
notion_client = NotionHistoryConnector(token=notion_token)
# Calculate date range
end_date = datetime.now()
# Check for last 1 year of pages
start_date = end_date - timedelta(days=365)
# Format dates for Notion API (ISO format)
start_date_str = start_date.strftime("%Y-%m-%dT%H:%M:%SZ")
end_date_str = end_date.strftime("%Y-%m-%dT%H:%M:%SZ")
logger.info(f"Fetching Notion pages from {start_date_str} to {end_date_str}")
# Get all pages
try:
pages = notion_client.get_all_pages(start_date=start_date_str, end_date=end_date_str)
logger.info(f"Found {len(pages)} Notion pages")
except Exception as e:
logger.error(f"Error fetching Notion pages: {str(e)}", exc_info=True)
return 0, f"Failed to get Notion pages: {str(e)}"
if not pages:
logger.info("No Notion pages found to index")
return 0, "No Notion pages found"
# Track the number of documents indexed
documents_indexed = 0
documents_skipped = 0
skipped_pages = []
# Process each page
for page in pages:
try:
page_id = page.get("page_id")
page_title = page.get("title", f"Untitled page ({page_id})")
page_content = page.get("content", [])
logger.info(f"Processing Notion page: {page_title} ({page_id})")
if not page_content:
logger.info(f"No content found in page {page_title}. Skipping.")
skipped_pages.append(f"{page_title} (no content)")
documents_skipped += 1
continue
# Convert page content to markdown format
markdown_content = f"# Notion Page: {page_title}\n\n"
# Process blocks recursively
def process_blocks(blocks, level=0):
result = ""
for block in blocks:
block_type = block.get("type")
block_content = block.get("content", "")
children = block.get("children", [])
# Add indentation based on level
indent = " " * level
# Format based on block type
if block_type in ["paragraph", "text"]:
result += f"{indent}{block_content}\n\n"
elif block_type in ["heading_1", "header"]:
result += f"{indent}# {block_content}\n\n"
elif block_type == "heading_2":
result += f"{indent}## {block_content}\n\n"
elif block_type == "heading_3":
result += f"{indent}### {block_content}\n\n"
elif block_type == "bulleted_list_item":
result += f"{indent}* {block_content}\n"
elif block_type == "numbered_list_item":
result += f"{indent}1. {block_content}\n"
elif block_type == "to_do":
result += f"{indent}- [ ] {block_content}\n"
elif block_type == "toggle":
result += f"{indent}> {block_content}\n"
elif block_type == "code":
result += f"{indent}```\n{block_content}\n```\n\n"
elif block_type == "quote":
result += f"{indent}> {block_content}\n\n"
elif block_type == "callout":
result += f"{indent}> **Note:** {block_content}\n\n"
elif block_type == "image":
result += f"{indent}![Image]({block_content})\n\n"
else:
# Default for other block types
if block_content:
result += f"{indent}{block_content}\n\n"
# Process children recursively
if children:
result += process_blocks(children, level + 1)
return result
logger.debug(f"Converting {len(page_content)} blocks to markdown for page {page_title}")
markdown_content += process_blocks(page_content)
# Format document metadata
metadata_sections = [
("METADATA", [
f"PAGE_TITLE: {page_title}",
f"PAGE_ID: {page_id}"
]),
("CONTENT", [
"FORMAT: markdown",
"TEXT_START",
markdown_content,
"TEXT_END"
])
]
# Build the document string
document_parts = []
document_parts.append("<DOCUMENT>")
for section_title, section_content in metadata_sections:
document_parts.append(f"<{section_title}>")
document_parts.extend(section_content)
document_parts.append(f"</{section_title}>")
document_parts.append("</DOCUMENT>")
combined_document_string = '\n'.join(document_parts)
content_hash = generate_content_hash(combined_document_string)
# Check if document with this content hash already exists
existing_doc_by_hash_result = await session.execute(
select(Document).where(Document.content_hash == content_hash)
)
existing_document_by_hash = existing_doc_by_hash_result.scalars().first()
if existing_document_by_hash:
logger.info(f"Document with content hash {content_hash} already exists for page {page_title}. Skipping processing.")
documents_skipped += 1
continue
# Generate summary
logger.debug(f"Generating summary for page {page_title}")
summary_chain = SUMMARY_PROMPT_TEMPLATE | config.long_context_llm_instance
summary_result = await summary_chain.ainvoke({"document": combined_document_string})
summary_content = summary_result.content
summary_embedding = config.embedding_model_instance.embed(summary_content)
# Process chunks
logger.debug(f"Chunking content for page {page_title}")
chunks = [
Chunk(content=chunk.text, embedding=config.embedding_model_instance.embed(chunk.text))
for chunk in config.chunker_instance.chunk(markdown_content)
]
# Create and store new document
document = Document(
search_space_id=search_space_id,
title=f"Notion - {page_title}",
document_type=DocumentType.NOTION_CONNECTOR,
document_metadata={
"page_title": page_title,
"page_id": page_id,
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
},
content=summary_content,
content_hash=content_hash,
embedding=summary_embedding,
chunks=chunks
)
session.add(document)
documents_indexed += 1
logger.info(f"Successfully indexed new Notion page: {page_title}")
except Exception as e:
logger.error(f"Error processing Notion page {page.get('title', 'Unknown')}: {str(e)}", exc_info=True)
skipped_pages.append(f"{page.get('title', 'Unknown')} (processing error)")
documents_skipped += 1
continue # Skip this page and continue with others
# Update the last_indexed_at timestamp for the connector only if requested
# and if we successfully indexed at least one page
total_processed = documents_indexed
if update_last_indexed and total_processed > 0:
connector.last_indexed_at = datetime.now()
logger.info(f"Updated last_indexed_at for connector {connector_id}")
# Commit all changes
await session.commit()
# Prepare result message
result_message = None
if skipped_pages:
result_message = f"Processed {total_processed} pages. Skipped {len(skipped_pages)} pages: {', '.join(skipped_pages)}"
else:
result_message = f"Processed {total_processed} pages."
logger.info(f"Notion indexing completed: {documents_indexed} new pages, {documents_skipped} skipped")
return total_processed, result_message
except SQLAlchemyError as db_error:
await session.rollback()
logger.error(f"Database error during Notion indexing: {str(db_error)}", exc_info=True)
return 0, f"Database error: {str(db_error)}"
except Exception as e:
await session.rollback()
logger.error(f"Failed to index Notion pages: {str(e)}", exc_info=True)
return 0, f"Failed to index Notion pages: {str(e)}"
async def index_github_repos(
session: AsyncSession,
connector_id: int,
search_space_id: int,
update_last_indexed: bool = True
) -> Tuple[int, Optional[str]]:
"""
Index code and documentation files from accessible GitHub repositories.
Args:
session: Database session
connector_id: ID of the GitHub connector
search_space_id: ID of the search space to store documents in
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
Returns:
Tuple containing (number of documents indexed, error message or None)
"""
documents_processed = 0
errors = []
try:
# 1. Get the GitHub connector from the database
result = await session.execute(
select(SearchSourceConnector)
.filter(
SearchSourceConnector.id == connector_id,
SearchSourceConnector.connector_type == SearchSourceConnectorType.GITHUB_CONNECTOR
)
)
connector = result.scalars().first()
if not connector:
return 0, f"Connector with ID {connector_id} not found or is not a GitHub connector"
# 2. Get the GitHub PAT and selected repositories from the connector config
github_pat = connector.config.get("GITHUB_PAT")
repo_full_names_to_index = connector.config.get("repo_full_names")
if not github_pat:
return 0, "GitHub Personal Access Token (PAT) not found in connector config"
if not repo_full_names_to_index or not isinstance(repo_full_names_to_index, list):
return 0, "'repo_full_names' not found or is not a list in connector config"
# 3. Initialize GitHub connector client
try:
github_client = GitHubConnector(token=github_pat)
except ValueError as e:
return 0, f"Failed to initialize GitHub client: {str(e)}"
# 4. Validate selected repositories
# For simplicity, we'll proceed with the list provided.
# If a repo is inaccessible, get_repository_files will likely fail gracefully later.
logger.info(f"Starting indexing for {len(repo_full_names_to_index)} selected repositories.")
# 6. Iterate through selected repositories and index files
for repo_full_name in repo_full_names_to_index:
if not repo_full_name or not isinstance(repo_full_name, str):
logger.warning(f"Skipping invalid repository entry: {repo_full_name}")
continue
logger.info(f"Processing repository: {repo_full_name}")
try:
files_to_index = github_client.get_repository_files(repo_full_name)
if not files_to_index:
logger.info(f"No indexable files found in repository: {repo_full_name}")
continue
logger.info(f"Found {len(files_to_index)} files to process in {repo_full_name}")
for file_info in files_to_index:
file_path = file_info.get("path")
file_url = file_info.get("url")
file_sha = file_info.get("sha")
file_type = file_info.get("type") # 'code' or 'doc'
full_path_key = f"{repo_full_name}/{file_path}"
if not file_path or not file_url or not file_sha:
logger.warning(f"Skipping file with missing info in {repo_full_name}: {file_info}")
continue
# Get file content
file_content = github_client.get_file_content(repo_full_name, file_path)
if file_content is None:
logger.warning(f"Could not retrieve content for {full_path_key}. Skipping.")
continue # Skip if content fetch failed
content_hash = generate_content_hash(file_content)
# Check if document with this content hash already exists
existing_doc_by_hash_result = await session.execute(
select(Document).where(Document.content_hash == content_hash)
)
existing_document_by_hash = existing_doc_by_hash_result.scalars().first()
if existing_document_by_hash:
logger.info(f"Document with content hash {content_hash} already exists for file {full_path_key}. Skipping processing.")
continue
# Use file_content directly for chunking, maybe summary for main content?
# For now, let's use the full content for both, might need refinement
summary_content = f"GitHub file: {full_path_key}\n\n{file_content[:1000]}..." # Simple summary
summary_embedding = config.embedding_model_instance.embed(summary_content)
# Chunk the content
try:
chunks_data = [
Chunk(content=chunk.text, embedding=config.embedding_model_instance.embed(chunk.text))
for chunk in config.code_chunker_instance.chunk(file_content)
]
except Exception as chunk_err:
logger.error(f"Failed to chunk file {full_path_key}: {chunk_err}")
errors.append(f"Chunking failed for {full_path_key}: {chunk_err}")
continue # Skip this file if chunking fails
doc_metadata = {
"repository_full_name": repo_full_name,
"file_path": file_path,
"full_path": full_path_key, # For easier lookup
"url": file_url,
"sha": file_sha,
"type": file_type,
"indexed_at": datetime.now(timezone.utc).isoformat()
}
# Create new document
logger.info(f"Creating new document for file: {full_path_key}")
document = Document(
title=f"GitHub - {file_path}",
document_type=DocumentType.GITHUB_CONNECTOR,
document_metadata=doc_metadata,
content=summary_content, # Store summary
content_hash=content_hash,
embedding=summary_embedding,
search_space_id=search_space_id,
chunks=chunks_data # Associate chunks directly
)
session.add(document)
documents_processed += 1
except Exception as repo_err:
logger.error(f"Failed to process repository {repo_full_name}: {repo_err}")
errors.append(f"Failed processing {repo_full_name}: {repo_err}")
# Commit all changes at the end
await session.commit()
logger.info(f"Finished GitHub indexing for connector {connector_id}. Processed {documents_processed} files.")
except SQLAlchemyError as db_err:
await session.rollback()
logger.error(f"Database error during GitHub indexing for connector {connector_id}: {db_err}")
errors.append(f"Database error: {db_err}")
return documents_processed, "; ".join(errors) if errors else str(db_err)
except Exception as e:
await session.rollback()
logger.error(f"Unexpected error during GitHub indexing for connector {connector_id}: {e}", exc_info=True)
errors.append(f"Unexpected error: {e}")
return documents_processed, "; ".join(errors) if errors else str(e)
error_message = "; ".join(errors) if errors else None
return documents_processed, error_message
async def index_linear_issues(
session: AsyncSession,
connector_id: int,
search_space_id: int,
update_last_indexed: bool = True
) -> Tuple[int, Optional[str]]:
"""
Index Linear issues and comments.
Args:
session: Database session
connector_id: ID of the Linear connector
search_space_id: ID of the search space to store documents in
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
Returns:
Tuple containing (number of documents indexed, error message or None)
"""
try:
# Get the connector
result = await session.execute(
select(SearchSourceConnector)
.filter(
SearchSourceConnector.id == connector_id,
SearchSourceConnector.connector_type == SearchSourceConnectorType.LINEAR_CONNECTOR
)
)
connector = result.scalars().first()
if not connector:
return 0, f"Connector with ID {connector_id} not found or is not a Linear connector"
# Get the Linear token from the connector config
linear_token = connector.config.get("LINEAR_API_KEY")
if not linear_token:
return 0, "Linear API token not found in connector config"
# Initialize Linear client
linear_client = LinearConnector(token=linear_token)
# Calculate date range
end_date = datetime.now()
# Use last_indexed_at as start date if available, otherwise use 365 days ago
if connector.last_indexed_at:
# Convert dates to be comparable (both timezone-naive)
last_indexed_naive = connector.last_indexed_at.replace(tzinfo=None) if connector.last_indexed_at.tzinfo else connector.last_indexed_at
# Check if last_indexed_at is in the future or after end_date
if last_indexed_naive > end_date:
logger.warning(f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 365 days ago instead.")
start_date = end_date - timedelta(days=365)
else:
start_date = last_indexed_naive
logger.info(f"Using last_indexed_at ({start_date.strftime('%Y-%m-%d')}) as start date")
else:
start_date = end_date - timedelta(days=365) # Use 365 days as default
logger.info(f"No last_indexed_at found, using {start_date.strftime('%Y-%m-%d')} (365 days ago) as start date")
# Format dates for Linear API
start_date_str = start_date.strftime("%Y-%m-%d")
end_date_str = end_date.strftime("%Y-%m-%d")
logger.info(f"Fetching Linear issues from {start_date_str} to {end_date_str}")
# Get issues within date range
try:
issues, error = linear_client.get_issues_by_date_range(
start_date=start_date_str,
end_date=end_date_str,
include_comments=True
)
if error:
logger.error(f"Failed to get Linear issues: {error}")
# Don't treat "No issues found" as an error that should stop indexing
if "No issues found" in error:
logger.info("No issues found is not a critical error, continuing with update")
if update_last_indexed:
connector.last_indexed_at = datetime.now()
await session.commit()
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found")
return 0, None
else:
return 0, f"Failed to get Linear issues: {error}"
logger.info(f"Retrieved {len(issues)} issues from Linear API")
except Exception as e:
logger.error(f"Exception when calling Linear API: {str(e)}", exc_info=True)
return 0, f"Failed to get Linear issues: {str(e)}"
if not issues:
logger.info("No Linear issues found for the specified date range")
if update_last_indexed:
connector.last_indexed_at = datetime.now()
await session.commit()
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found")
return 0, None # Return None instead of error message when no issues found
# Log issue IDs and titles for debugging
logger.info("Issues retrieved from Linear API:")
for idx, issue in enumerate(issues[:10]): # Log first 10 issues
logger.info(f" {idx+1}. {issue.get('identifier', 'Unknown')} - {issue.get('title', 'Unknown')} - Created: {issue.get('createdAt', 'Unknown')} - Updated: {issue.get('updatedAt', 'Unknown')}")
if len(issues) > 10:
logger.info(f" ...and {len(issues) - 10} more issues")
# Track the number of documents indexed
documents_indexed = 0
documents_skipped = 0
skipped_issues = []
# Process each issue
for issue in issues:
try:
issue_id = issue.get("id")
issue_identifier = issue.get("identifier", "")
issue_title = issue.get("title", "")
if not issue_id or not issue_title:
logger.warning(f"Skipping issue with missing ID or title: {issue_id or 'Unknown'}")
skipped_issues.append(f"{issue_identifier or 'Unknown'} (missing data)")
documents_skipped += 1
continue
# Format the issue first to get well-structured data
formatted_issue = linear_client.format_issue(issue)
# Convert issue to markdown format
issue_content = linear_client.format_issue_to_markdown(formatted_issue)
if not issue_content:
logger.warning(f"Skipping issue with no content: {issue_identifier} - {issue_title}")
skipped_issues.append(f"{issue_identifier} (no content)")
documents_skipped += 1
continue
# Create a short summary for the embedding
# This avoids using the LLM and just uses the issue data directly
state = formatted_issue.get("state", "Unknown")
description = formatted_issue.get("description", "")
# Truncate description if it's too long for the summary
if description and len(description) > 500:
description = description[:497] + "..."
# Create a simple summary from the issue data
summary_content = f"Linear Issue {issue_identifier}: {issue_title}\n\nStatus: {state}\n\n"
if description:
summary_content += f"Description: {description}\n\n"
# Add comment count
comment_count = len(formatted_issue.get("comments", []))
summary_content += f"Comments: {comment_count}"
content_hash = generate_content_hash(issue_content)
# Check if document with this content hash already exists
existing_doc_by_hash_result = await session.execute(
select(Document).where(Document.content_hash == content_hash)
)
existing_document_by_hash = existing_doc_by_hash_result.scalars().first()
if existing_document_by_hash:
logger.info(f"Document with content hash {content_hash} already exists for issue {issue_identifier}. Skipping processing.")
documents_skipped += 1
continue
# Generate embedding for the summary
summary_embedding = config.embedding_model_instance.embed(summary_content)
# Process chunks - using the full issue content with comments
chunks = [
Chunk(content=chunk.text, embedding=config.embedding_model_instance.embed(chunk.text))
for chunk in config.chunker_instance.chunk(issue_content)
]
# Create and store new document
logger.info(f"Creating new document for issue {issue_identifier} - {issue_title}")
document = Document(
search_space_id=search_space_id,
title=f"Linear - {issue_identifier}: {issue_title}",
document_type=DocumentType.LINEAR_CONNECTOR,
document_metadata={
"issue_id": issue_id,
"issue_identifier": issue_identifier,
"issue_title": issue_title,
"state": state,
"comment_count": comment_count,
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
},
content=summary_content,
content_hash=content_hash,
embedding=summary_embedding,
chunks=chunks
)
session.add(document)
documents_indexed += 1
logger.info(f"Successfully indexed new issue {issue_identifier} - {issue_title}")
except Exception as e:
logger.error(f"Error processing issue {issue.get('identifier', 'Unknown')}: {str(e)}", exc_info=True)
skipped_issues.append(f"{issue.get('identifier', 'Unknown')} (processing error)")
documents_skipped += 1
continue # Skip this issue and continue with others
# Update the last_indexed_at timestamp for the connector only if requested
total_processed = documents_indexed
if update_last_indexed:
connector.last_indexed_at = datetime.now()
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
# Commit all changes
await session.commit()
logger.info(f"Successfully committed all Linear document changes to database")
logger.info(f"Linear indexing completed: {documents_indexed} new issues, {documents_skipped} skipped")
return total_processed, None # Return None as the error message to indicate success
except SQLAlchemyError as db_error:
await session.rollback()
logger.error(f"Database error: {str(db_error)}", exc_info=True)
return 0, f"Database error: {str(db_error)}"
except Exception as e:
await session.rollback()
logger.error(f"Failed to index Linear issues: {str(e)}", exc_info=True)
return 0, f"Failed to index Linear issues: {str(e)}"
async def index_discord_messages(
session: AsyncSession,
connector_id: int,
search_space_id: int,
update_last_indexed: bool = True
) -> Tuple[int, Optional[str]]:
"""
Index Discord messages from all accessible channels.
Args:
session: Database session
connector_id: ID of the Discord connector
search_space_id: ID of the search space to store documents in
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
Returns:
Tuple containing (number of documents indexed, error message or None)
"""
try:
# Get the connector
result = await session.execute(
select(SearchSourceConnector)
.filter(
SearchSourceConnector.id == connector_id,
SearchSourceConnector.connector_type == SearchSourceConnectorType.DISCORD_CONNECTOR
)
)
connector = result.scalars().first()
if not connector:
return 0, f"Connector with ID {connector_id} not found or is not a Discord connector"
# Get the Discord token from the connector config
discord_token = connector.config.get("DISCORD_BOT_TOKEN")
if not discord_token:
return 0, "Discord token not found in connector config"
logger.info(f"Starting Discord indexing for connector {connector_id}")
# Initialize Discord client
discord_client = DiscordConnector(token=discord_token)
# Calculate date range
end_date = datetime.now(timezone.utc)
# Use last_indexed_at as start date if available, otherwise use 365 days ago
if connector.last_indexed_at:
start_date = connector.last_indexed_at.replace(tzinfo=timezone.utc)
logger.info(f"Using last_indexed_at ({start_date.strftime('%Y-%m-%d')}) as start date")
else:
start_date = end_date - timedelta(days=365) # Use 365 days as default
logger.info(f"No last_indexed_at found, using {start_date.strftime('%Y-%m-%d')} (365 days ago) as start date")
# Format dates for Discord API
start_date_str = start_date.isoformat()
end_date_str = end_date.isoformat()
documents_indexed = 0
documents_skipped = 0
skipped_guilds = []
try:
logger.info("Starting Discord bot to fetch guilds")
discord_client._bot_task = asyncio.create_task(discord_client.start_bot())
await discord_client._wait_until_ready()
logger.info("Fetching Discord guilds")
guilds = await discord_client.get_guilds()
logger.info(f"Found {len(guilds)} guilds")
except Exception as e:
logger.error(f"Failed to get Discord guilds: {str(e)}", exc_info=True)
await discord_client.close_bot()
return 0, f"Failed to get Discord guilds: {str(e)}"
if not guilds:
logger.info("No Discord guilds found to index")
await discord_client.close_bot()
return 0, "No Discord guilds found"
# Process each guild
for guild in guilds:
guild_id = guild["id"]
guild_name = guild["name"]
logger.info(f"Processing guild: {guild_name} ({guild_id})")
try:
channels = await discord_client.get_text_channels(guild_id)
if not channels:
logger.info(f"No channels found in guild {guild_name}. Skipping.")
skipped_guilds.append(f"{guild_name} (no channels)")
documents_skipped += 1
continue
for channel in channels:
channel_id = channel["id"]
channel_name = channel["name"]
try:
messages = await discord_client.get_channel_history(
channel_id=channel_id,
start_date=start_date_str,
end_date=end_date_str,
)
except Exception as e:
logger.error(f"Failed to get messages for channel {channel_name}: {str(e)}")
documents_skipped += 1
continue
if not messages:
continue
for message in messages:
try:
content = message.get("content", "")
if not content:
continue
content_hash = generate_content_hash(content)
existing_doc_by_hash_result = await session.execute(
select(Document).where(Document.content_hash == content_hash)
)
existing_document_by_hash = existing_doc_by_hash_result.scalars().first()
if existing_document_by_hash:
documents_skipped += 1
continue
summary_content = f"Discord message by {message.get('author_name', 'Unknown')} in {channel_name} ({guild_name})\n\n{content}"
summary_embedding = config.embedding_model_instance.embed(summary_content)
chunks = [
Chunk(content=chunk.text, embedding=config.embedding_model_instance.embed(chunk.text))
for chunk in config.chunker_instance.chunk(content)
]
document = Document(
search_space_id=search_space_id,
title=f"Discord - {guild_name}#{channel_name}",
document_type=DocumentType.DISCORD_CONNECTOR,
document_metadata={
"guild_id": guild_id,
"guild_name": guild_name,
"channel_id": channel_id,
"channel_name": channel_name,
"message_id": message.get("id"),
"author_id": message.get("author_id"),
"author_name": message.get("author_name"),
"created_at": message.get("created_at"),
"indexed_at": datetime.now(timezone.utc).isoformat()
},
content=summary_content,
content_hash=content_hash,
embedding=summary_embedding,
chunks=chunks
)
session.add(document)
documents_indexed += 1
except Exception as e:
logger.error(f"Error processing Discord message: {str(e)}", exc_info=True)
documents_skipped += 1
continue
except Exception as e:
logger.error(f"Error processing guild {guild_name}: {str(e)}", exc_info=True)
skipped_guilds.append(f"{guild_name} (processing error)")
documents_skipped += 1
continue
if update_last_indexed and documents_indexed > 0:
connector.last_indexed_at = datetime.now(timezone.utc)
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
await session.commit()
await discord_client.close_bot()
logger.info(f"Discord indexing completed: {documents_indexed} new messages, {documents_skipped} skipped")
return documents_indexed, None
except SQLAlchemyError as db_error:
await session.rollback()
logger.error(f"Database error during Discord indexing: {str(db_error)}", exc_info=True)
return 0, f"Database error: {str(db_error)}"
except Exception as e:
await session.rollback()
logger.error(f"Failed to index Discord messages: {str(e)}", exc_info=True)
return 0, f"Failed to index Discord messages: {str(e)}"