SurfSense/surfsense_backend/app/tasks/podcast_tasks.py
DESKTOP-RTLN3BA\$punk 1586a0bd78 chore: Added direct handling for markdown files.
- Fixed podcast imports.
2025-05-07 22:04:57 -07:00

93 lines
2.9 KiB
Python

from app.agents.podcaster.graph import graph as podcaster_graph
from app.agents.podcaster.state import State
from app.db import Chat, Podcast
from sqlalchemy import select
from sqlalchemy.ext.asyncio import AsyncSession
async def generate_document_podcast(
session: AsyncSession,
document_id: int,
search_space_id: int,
user_id: int
):
# TODO: Need to fetch the document chunks, then concatenate them and pass them to the podcast generation model
pass
async def generate_chat_podcast(
session: AsyncSession,
chat_id: int,
search_space_id: int,
podcast_title: str
):
# Fetch the chat with the specified ID
query = select(Chat).filter(
Chat.id == chat_id,
Chat.search_space_id == search_space_id
)
result = await session.execute(query)
chat = result.scalars().first()
if not chat:
raise ValueError(f"Chat with id {chat_id} not found in search space {search_space_id}")
# Create chat history structure
chat_history_str = "<chat_history>"
for message in chat.messages:
if message["role"] == "user":
chat_history_str += f"<user_message>{message['content']}</user_message>"
elif message["role"] == "assistant":
# Last annotation type will always be "ANSWER" here
answer_annotation = message["annotations"][-1]
answer_text = ""
if answer_annotation["type"] == "ANSWER":
answer_text = answer_annotation["content"]
# If content is a list, join it into a single string
if isinstance(answer_text, list):
answer_text = "\n".join(answer_text)
chat_history_str += f"<assistant_message>{answer_text}</assistant_message>"
chat_history_str += "</chat_history>"
# Pass it to the SurfSense Podcaster
config = {
"configurable": {
"podcast_title" : "Surfsense",
}
}
# Initialize state with database session and streaming service
initial_state = State(
source_content=chat_history_str,
)
# Run the graph directly
result = await podcaster_graph.ainvoke(initial_state, config=config)
# Convert podcast transcript entries to serializable format
serializable_transcript = []
for entry in result["podcast_transcript"]:
serializable_transcript.append({
"speaker_id": entry.speaker_id,
"dialog": entry.dialog
})
# Create a new podcast entry
podcast = Podcast(
title=f"{podcast_title}",
podcast_transcript=serializable_transcript,
file_location=result["final_podcast_file_path"],
search_space_id=search_space_id
)
# Add to session and commit
session.add(podcast)
await session.commit()
await session.refresh(podcast)
return podcast