from typing import Optional, List from sqlalchemy.ext.asyncio import AsyncSession from sqlalchemy.exc import SQLAlchemyError from app.db import Document, DocumentType, Chunk from app.schemas import ExtensionDocumentContent from app.config import config from app.prompts import SUMMARY_PROMPT_TEMPLATE from datetime import datetime from app.utils.document_converters import convert_document_to_markdown from langchain_core.documents import Document as LangChainDocument from langchain_community.document_loaders import FireCrawlLoader, AsyncChromiumLoader from langchain_community.document_transformers import MarkdownifyTransformer import validators md = MarkdownifyTransformer() async def add_crawled_url_document( session: AsyncSession, url: str, search_space_id: int ) -> Optional[Document]: try: if not validators.url(url): raise ValueError(f"Url {url} is not a valid URL address") if config.FIRECRAWL_API_KEY: crawl_loader = FireCrawlLoader( url=url, api_key=config.FIRECRAWL_API_KEY, mode="scrape", params={ "formats": ["markdown"], "excludeTags": ["a"], } ) else: crawl_loader = AsyncChromiumLoader(urls=[url], headless=True) url_crawled = await crawl_loader.aload() if type(crawl_loader) == FireCrawlLoader: content_in_markdown = url_crawled[0].page_content elif type(crawl_loader) == AsyncChromiumLoader: content_in_markdown = md.transform_documents(url_crawled)[ 0].page_content # Format document metadata in a more maintainable way metadata_sections = [ ("METADATA", [ f"{key.upper()}: {value}" for key, value in url_crawled[0].metadata.items() ]), ("CONTENT", [ "FORMAT: markdown", "TEXT_START", content_in_markdown, "TEXT_END" ]) ] # Build the document string more efficiently document_parts = [] document_parts.append("") for section_title, section_content in metadata_sections: document_parts.append(f"<{section_title}>") document_parts.extend(section_content) document_parts.append(f"") document_parts.append("") combined_document_string = '\n'.join(document_parts) # Generate summary summary_chain = SUMMARY_PROMPT_TEMPLATE | config.long_context_llm_instance summary_result = await summary_chain.ainvoke({"document": combined_document_string}) summary_content = summary_result.content summary_embedding = config.embedding_model_instance.embed( summary_content) # Process chunks chunks = [ Chunk(content=chunk.text, embedding=config.embedding_model_instance.embed(chunk.text)) for chunk in config.chunker_instance.chunk(content_in_markdown) ] # Create and store document document = Document( search_space_id=search_space_id, title=url_crawled[0].metadata['title'] if type( crawl_loader) == FireCrawlLoader else url_crawled[0].metadata['source'], document_type=DocumentType.CRAWLED_URL, document_metadata=url_crawled[0].metadata, content=summary_content, embedding=summary_embedding, chunks=chunks ) session.add(document) await session.commit() await session.refresh(document) return document except SQLAlchemyError as db_error: await session.rollback() raise db_error except Exception as e: await session.rollback() raise RuntimeError(f"Failed to crawl URL: {str(e)}") async def add_extension_received_document( session: AsyncSession, content: ExtensionDocumentContent, search_space_id: int ) -> Optional[Document]: """ Process and store document content received from the SurfSense Extension. Args: session: Database session content: Document content from extension search_space_id: ID of the search space Returns: Document object if successful, None if failed """ try: # Format document metadata in a more maintainable way metadata_sections = [ ("METADATA", [ f"SESSION_ID: {content.metadata.BrowsingSessionId}", f"URL: {content.metadata.VisitedWebPageURL}", f"TITLE: {content.metadata.VisitedWebPageTitle}", f"REFERRER: {content.metadata.VisitedWebPageReffererURL}", f"TIMESTAMP: {content.metadata.VisitedWebPageDateWithTimeInISOString}", f"DURATION_MS: {content.metadata.VisitedWebPageVisitDurationInMilliseconds}" ]), ("CONTENT", [ "FORMAT: markdown", "TEXT_START", content.pageContent, "TEXT_END" ]) ] # Build the document string more efficiently document_parts = [] document_parts.append("") for section_title, section_content in metadata_sections: document_parts.append(f"<{section_title}>") document_parts.extend(section_content) document_parts.append(f"") document_parts.append("") combined_document_string = '\n'.join(document_parts) # Generate summary summary_chain = SUMMARY_PROMPT_TEMPLATE | config.long_context_llm_instance summary_result = await summary_chain.ainvoke({"document": combined_document_string}) summary_content = summary_result.content summary_embedding = config.embedding_model_instance.embed( summary_content) # Process chunks chunks = [ Chunk(content=chunk.text, embedding=config.embedding_model_instance.embed(chunk.text)) for chunk in config.chunker_instance.chunk(content.pageContent) ] # Create and store document document = Document( search_space_id=search_space_id, title=content.metadata.VisitedWebPageTitle, document_type=DocumentType.EXTENSION, document_metadata=content.metadata.model_dump(), content=summary_content, embedding=summary_embedding, chunks=chunks ) session.add(document) await session.commit() await session.refresh(document) return document except SQLAlchemyError as db_error: await session.rollback() raise db_error except Exception as e: await session.rollback() raise RuntimeError(f"Failed to process extension document: {str(e)}") async def add_received_markdown_file_document( session: AsyncSession, file_name: str, file_in_markdown: str, search_space_id: int ) -> Optional[Document]: try: # Generate summary summary_chain = SUMMARY_PROMPT_TEMPLATE | config.long_context_llm_instance summary_result = await summary_chain.ainvoke({"document": file_in_markdown}) summary_content = summary_result.content summary_embedding = config.embedding_model_instance.embed( summary_content) # Process chunks chunks = [ Chunk(content=chunk.text, embedding=config.embedding_model_instance.embed(chunk.text)) for chunk in config.chunker_instance.chunk(file_in_markdown) ] # Create and store document document = Document( search_space_id=search_space_id, title=file_name, document_type=DocumentType.FILE, document_metadata={ "FILE_NAME": file_name, "SAVED_AT": datetime.now().strftime("%Y-%m-%d %H:%M:%S") }, content=summary_content, embedding=summary_embedding, chunks=chunks ) session.add(document) await session.commit() await session.refresh(document) return document except SQLAlchemyError as db_error: await session.rollback() raise db_error except Exception as e: await session.rollback() raise RuntimeError(f"Failed to process file document: {str(e)}") async def add_received_file_document( session: AsyncSession, file_name: str, unstructured_processed_elements: List[LangChainDocument], search_space_id: int ) -> Optional[Document]: try: file_in_markdown = await convert_document_to_markdown(unstructured_processed_elements) # TODO: Check if file_markdown exceeds token limit of embedding model # Generate summary summary_chain = SUMMARY_PROMPT_TEMPLATE | config.long_context_llm_instance summary_result = await summary_chain.ainvoke({"document": file_in_markdown}) summary_content = summary_result.content summary_embedding = config.embedding_model_instance.embed( summary_content) # Process chunks chunks = [ Chunk(content=chunk.text, embedding=config.embedding_model_instance.embed(chunk.text)) for chunk in config.chunker_instance.chunk(file_in_markdown) ] # Create and store document document = Document( search_space_id=search_space_id, title=file_name, document_type=DocumentType.FILE, document_metadata={ "FILE_NAME": file_name, "SAVED_AT": datetime.now().strftime("%Y-%m-%d %H:%M:%S") }, content=summary_content, embedding=summary_embedding, chunks=chunks ) session.add(document) await session.commit() await session.refresh(document) return document except SQLAlchemyError as db_error: await session.rollback() raise db_error except Exception as e: await session.rollback() raise RuntimeError(f"Failed to process file document: {str(e)}") async def add_youtube_video_document( session: AsyncSession, url: str, search_space_id: int ): """ Process a YouTube video URL, extract transcripts, and add as document. """ try: from youtube_transcript_api import YouTubeTranscriptApi # Extract video ID from URL def get_youtube_video_id(url: str): from urllib.parse import urlparse, parse_qs parsed_url = urlparse(url) hostname = parsed_url.hostname if hostname == "youtu.be": return parsed_url.path[1:] if hostname in ("www.youtube.com", "youtube.com"): if parsed_url.path == "/watch": query_params = parse_qs(parsed_url.query) return query_params.get("v", [None])[0] if parsed_url.path.startswith("/embed/"): return parsed_url.path.split("/")[2] if parsed_url.path.startswith("/v/"): return parsed_url.path.split("/")[2] return None # Get video ID video_id = get_youtube_video_id(url) if not video_id: raise ValueError(f"Could not extract video ID from URL: {url}") # Get video metadata import json from urllib.parse import urlencode from urllib.request import urlopen params = {"format": "json", "url": f"https://www.youtube.com/watch?v={video_id}"} oembed_url = "https://www.youtube.com/oembed" query_string = urlencode(params) full_url = oembed_url + "?" + query_string with urlopen(full_url) as response: response_text = response.read() video_data = json.loads(response_text.decode()) # Get video transcript try: captions = YouTubeTranscriptApi.get_transcript(video_id) # Include complete caption information with timestamps transcript_segments = [] for line in captions: start_time = line.get("start", 0) duration = line.get("duration", 0) text = line.get("text", "") timestamp = f"[{start_time:.2f}s-{start_time + duration:.2f}s]" transcript_segments.append(f"{timestamp} {text}") transcript_text = "\n".join(transcript_segments) except Exception as e: transcript_text = f"No captions available for this video. Error: {str(e)}" # Format document metadata in a more maintainable way metadata_sections = [ ("METADATA", [ f"TITLE: {video_data.get('title', 'YouTube Video')}", f"URL: {url}", f"VIDEO_ID: {video_id}", f"AUTHOR: {video_data.get('author_name', 'Unknown')}", f"THUMBNAIL: {video_data.get('thumbnail_url', '')}" ]), ("CONTENT", [ "FORMAT: transcript", "TEXT_START", transcript_text, "TEXT_END" ]) ] # Build the document string more efficiently document_parts = [] document_parts.append("") for section_title, section_content in metadata_sections: document_parts.append(f"<{section_title}>") document_parts.extend(section_content) document_parts.append(f"") document_parts.append("") combined_document_string = '\n'.join(document_parts) # Generate summary summary_chain = SUMMARY_PROMPT_TEMPLATE | config.long_context_llm_instance summary_result = await summary_chain.ainvoke({"document": combined_document_string}) summary_content = summary_result.content summary_embedding = config.embedding_model_instance.embed( summary_content) # Process chunks chunks = [ Chunk(content=chunk.text, embedding=config.embedding_model_instance.embed(chunk.text)) for chunk in config.chunker_instance.chunk(transcript_text) ] # Create document from app.db import Document, DocumentType document = Document( title=video_data.get("title", "YouTube Video"), document_type=DocumentType.YOUTUBE_VIDEO, document_metadata={ "url": url, "video_id": video_id, "video_title": video_data.get("title", "YouTube Video"), "author": video_data.get("author_name", "Unknown"), "thumbnail": video_data.get("thumbnail_url", "") }, content=summary_content, embedding=summary_embedding, chunks=chunks, search_space_id=search_space_id ) session.add(document) await session.commit() await session.refresh(document) return document except SQLAlchemyError as db_error: await session.rollback() raise db_error except Exception as e: await session.rollback() import logging logging.error(f"Failed to process YouTube video: {str(e)}") raise