import os import shutil from pathlib import Path from chonkie import AutoEmbeddings, CodeChunker, RecursiveChunker from dotenv import load_dotenv from rerankers import Reranker # Get the base directory of the project BASE_DIR = Path(__file__).resolve().parent.parent.parent env_file = BASE_DIR / ".env" load_dotenv(env_file) def is_ffmpeg_installed(): """ Check if ffmpeg is installed on the current system. Returns: bool: True if ffmpeg is installed, False otherwise. """ return shutil.which("ffmpeg") is not None class Config: # Check if ffmpeg is installed if not is_ffmpeg_installed(): import static_ffmpeg # ffmpeg installed on first call to add_paths(), threadsafe. static_ffmpeg.add_paths() # check if ffmpeg is installed again if not is_ffmpeg_installed(): raise ValueError( "FFmpeg is not installed on the system. Please install it to use the Surfsense Podcaster." ) # Database DATABASE_URL = os.getenv("DATABASE_URL") NEXT_FRONTEND_URL = os.getenv("NEXT_FRONTEND_URL") # Auth AUTH_TYPE = os.getenv("AUTH_TYPE") # Google OAuth GOOGLE_OAUTH_CLIENT_ID = os.getenv("GOOGLE_OAUTH_CLIENT_ID") GOOGLE_OAUTH_CLIENT_SECRET = os.getenv("GOOGLE_OAUTH_CLIENT_SECRET") # Google Calendar redirect URI GOOGLE_CALENDAR_REDIRECT_URI = os.getenv("GOOGLE_CALENDAR_REDIRECT_URI") # LLM instances are now managed per-user through the LLMConfig system # Legacy environment variables removed in favor of user-specific configurations # Chonkie Configuration | Edit this to your needs EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL") embedding_model_instance = AutoEmbeddings.get_embeddings(EMBEDDING_MODEL) chunker_instance = RecursiveChunker( chunk_size=getattr(embedding_model_instance, "max_seq_length", 512) ) code_chunker_instance = CodeChunker( chunk_size=getattr(embedding_model_instance, "max_seq_length", 512) ) # Reranker's Configuration | Pinecode, Cohere etc. Read more at https://github.com/AnswerDotAI/rerankers?tab=readme-ov-file#usage RERANKERS_MODEL_NAME = os.getenv("RERANKERS_MODEL_NAME") RERANKERS_MODEL_TYPE = os.getenv("RERANKERS_MODEL_TYPE") reranker_instance = Reranker( model_name=RERANKERS_MODEL_NAME, model_type=RERANKERS_MODEL_TYPE, ) # OAuth JWT SECRET_KEY = os.getenv("SECRET_KEY") # ETL Service ETL_SERVICE = os.getenv("ETL_SERVICE") if ETL_SERVICE == "UNSTRUCTURED": # Unstructured API Key UNSTRUCTURED_API_KEY = os.getenv("UNSTRUCTURED_API_KEY") elif ETL_SERVICE == "LLAMACLOUD": # LlamaCloud API Key LLAMA_CLOUD_API_KEY = os.getenv("LLAMA_CLOUD_API_KEY") # Firecrawl API Key FIRECRAWL_API_KEY = os.getenv("FIRECRAWL_API_KEY", None) # Litellm TTS Configuration TTS_SERVICE = os.getenv("TTS_SERVICE") TTS_SERVICE_API_BASE = os.getenv("TTS_SERVICE_API_BASE") TTS_SERVICE_API_KEY = os.getenv("TTS_SERVICE_API_KEY") # Litellm STT Configuration STT_SERVICE = os.getenv("STT_SERVICE") STT_SERVICE_API_BASE = os.getenv("STT_SERVICE_API_BASE") STT_SERVICE_API_KEY = os.getenv("STT_SERVICE_API_KEY") # Validation Checks # Check embedding dimension if ( hasattr(embedding_model_instance, "dimension") and embedding_model_instance.dimension > 2000 ): raise ValueError( f"Embedding dimension for Model: {EMBEDDING_MODEL} " f"has {embedding_model_instance.dimension} dimensions, which " f"exceeds the maximum of 2000 allowed by PGVector." ) @classmethod def get_settings(cls): """Get all settings as a dictionary.""" return { key: value for key, value in cls.__dict__.items() if not key.startswith("_") and not callable(value) } # Create a config instance config = Config()