mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-01 18:19:08 +00:00
not-integreated: Add DocumentHybridSearchRetriever
This commit is contained in:
parent
757bedf4e7
commit
ee0c518553
3 changed files with 245 additions and 0 deletions
|
@ -28,6 +28,7 @@ from sqlalchemy.orm import DeclarativeBase, Mapped, declared_attr, relationship
|
|||
|
||||
from app.config import config
|
||||
from app.retriver.chunks_hybrid_search import ChucksHybridSearchRetriever
|
||||
from app.retriver.documents_hybrid_search import DocumentHybridSearchRetriever
|
||||
|
||||
DATABASE_URL = config.DATABASE_URL
|
||||
|
||||
|
@ -179,3 +180,6 @@ async def get_user_db(session: AsyncSession = Depends(get_async_session)):
|
|||
|
||||
async def get_chucks_hybrid_search_retriever(session: AsyncSession = Depends(get_async_session)):
|
||||
return ChucksHybridSearchRetriever(session)
|
||||
|
||||
async def get_documents_hybrid_search_retriever(session: AsyncSession = Depends(get_async_session)):
|
||||
return DocumentHybridSearchRetriever(session)
|
||||
|
|
237
surfsense_backend/app/retriver/documents_hybrid_search.py
Normal file
237
surfsense_backend/app/retriver/documents_hybrid_search.py
Normal file
|
@ -0,0 +1,237 @@
|
|||
class DocumentHybridSearchRetriever:
|
||||
def __init__(self, db_session):
|
||||
"""
|
||||
Initialize the hybrid search retriever with a database session.
|
||||
|
||||
Args:
|
||||
db_session: SQLAlchemy AsyncSession from FastAPI dependency injection
|
||||
"""
|
||||
self.db_session = db_session
|
||||
|
||||
async def vector_search(self, query_text: str, top_k: int, user_id: str, search_space_id: int = None) -> list:
|
||||
"""
|
||||
Perform vector similarity search on documents.
|
||||
|
||||
Args:
|
||||
query_text: The search query text
|
||||
top_k: Number of results to return
|
||||
user_id: The ID of the user performing the search
|
||||
search_space_id: Optional search space ID to filter results
|
||||
|
||||
Returns:
|
||||
List of documents sorted by vector similarity
|
||||
"""
|
||||
from sqlalchemy import select, func
|
||||
from sqlalchemy.orm import joinedload
|
||||
from app.db import Document, SearchSpace
|
||||
from app.config import config
|
||||
|
||||
# Get embedding for the query
|
||||
embedding_model = config.embedding_model_instance
|
||||
query_embedding = embedding_model.embed(query_text)
|
||||
|
||||
# Build the base query with user ownership check
|
||||
query = (
|
||||
select(Document)
|
||||
.options(joinedload(Document.search_space))
|
||||
.join(SearchSpace, Document.search_space_id == SearchSpace.id)
|
||||
.where(SearchSpace.user_id == user_id)
|
||||
)
|
||||
|
||||
# Add search space filter if provided
|
||||
if search_space_id is not None:
|
||||
query = query.where(Document.search_space_id == search_space_id)
|
||||
|
||||
# Add vector similarity ordering
|
||||
query = (
|
||||
query
|
||||
.order_by(Document.embedding.op("<=>")(query_embedding))
|
||||
.limit(top_k)
|
||||
)
|
||||
|
||||
# Execute the query
|
||||
result = await self.db_session.execute(query)
|
||||
documents = result.scalars().all()
|
||||
|
||||
return documents
|
||||
|
||||
async def full_text_search(self, query_text: str, top_k: int, user_id: str, search_space_id: int = None) -> list:
|
||||
"""
|
||||
Perform full-text keyword search on documents.
|
||||
|
||||
Args:
|
||||
query_text: The search query text
|
||||
top_k: Number of results to return
|
||||
user_id: The ID of the user performing the search
|
||||
search_space_id: Optional search space ID to filter results
|
||||
|
||||
Returns:
|
||||
List of documents sorted by text relevance
|
||||
"""
|
||||
from sqlalchemy import select, func, text
|
||||
from sqlalchemy.orm import joinedload
|
||||
from app.db import Document, SearchSpace
|
||||
|
||||
# Create tsvector and tsquery for PostgreSQL full-text search
|
||||
tsvector = func.to_tsvector('english', Document.content)
|
||||
tsquery = func.plainto_tsquery('english', query_text)
|
||||
|
||||
# Build the base query with user ownership check
|
||||
query = (
|
||||
select(Document)
|
||||
.options(joinedload(Document.search_space))
|
||||
.join(SearchSpace, Document.search_space_id == SearchSpace.id)
|
||||
.where(SearchSpace.user_id == user_id)
|
||||
.where(tsvector.op("@@")(tsquery)) # Only include results that match the query
|
||||
)
|
||||
|
||||
# Add search space filter if provided
|
||||
if search_space_id is not None:
|
||||
query = query.where(Document.search_space_id == search_space_id)
|
||||
|
||||
# Add text search ranking
|
||||
query = (
|
||||
query
|
||||
.order_by(func.ts_rank_cd(tsvector, tsquery).desc())
|
||||
.limit(top_k)
|
||||
)
|
||||
|
||||
# Execute the query
|
||||
result = await self.db_session.execute(query)
|
||||
documents = result.scalars().all()
|
||||
|
||||
return documents
|
||||
|
||||
async def hybrid_search(self, query_text: str, top_k: int, user_id: str, search_space_id: int = None, document_type: str = None) -> list:
|
||||
"""
|
||||
Combine vector similarity and full-text search results using Reciprocal Rank Fusion.
|
||||
|
||||
Args:
|
||||
query_text: The search query text
|
||||
top_k: Number of results to return
|
||||
user_id: The ID of the user performing the search
|
||||
search_space_id: Optional search space ID to filter results
|
||||
document_type: Optional document type to filter results (e.g., "FILE", "CRAWLED_URL")
|
||||
|
||||
Returns:
|
||||
List of dictionaries containing document data and relevance scores
|
||||
"""
|
||||
from sqlalchemy import select, func, text
|
||||
from sqlalchemy.orm import joinedload
|
||||
from app.db import Document, SearchSpace, DocumentType
|
||||
from app.config import config
|
||||
|
||||
# Get embedding for the query
|
||||
embedding_model = config.embedding_model_instance
|
||||
query_embedding = embedding_model.embed(query_text)
|
||||
|
||||
# Constants for RRF calculation
|
||||
k = 60 # Constant for RRF calculation
|
||||
n_results = top_k * 2 # Get more results for better fusion
|
||||
|
||||
# Create tsvector and tsquery for PostgreSQL full-text search
|
||||
tsvector = func.to_tsvector('english', Document.content)
|
||||
tsquery = func.plainto_tsquery('english', query_text)
|
||||
|
||||
# Base conditions for document filtering
|
||||
base_conditions = [SearchSpace.user_id == user_id]
|
||||
|
||||
# Add search space filter if provided
|
||||
if search_space_id is not None:
|
||||
base_conditions.append(Document.search_space_id == search_space_id)
|
||||
|
||||
# Add document type filter if provided
|
||||
if document_type is not None:
|
||||
# Convert string to enum value if needed
|
||||
if isinstance(document_type, str):
|
||||
try:
|
||||
doc_type_enum = DocumentType[document_type]
|
||||
base_conditions.append(Document.document_type == doc_type_enum)
|
||||
except KeyError:
|
||||
# If the document type doesn't exist in the enum, return empty results
|
||||
return []
|
||||
else:
|
||||
base_conditions.append(Document.document_type == document_type)
|
||||
|
||||
# CTE for semantic search with user ownership check
|
||||
semantic_search_cte = (
|
||||
select(
|
||||
Document.id,
|
||||
func.rank().over(order_by=Document.embedding.op("<=>")(query_embedding)).label("rank")
|
||||
)
|
||||
.join(SearchSpace, Document.search_space_id == SearchSpace.id)
|
||||
.where(*base_conditions)
|
||||
)
|
||||
|
||||
semantic_search_cte = (
|
||||
semantic_search_cte
|
||||
.order_by(Document.embedding.op("<=>")(query_embedding))
|
||||
.limit(n_results)
|
||||
.cte("semantic_search")
|
||||
)
|
||||
|
||||
# CTE for keyword search with user ownership check
|
||||
keyword_search_cte = (
|
||||
select(
|
||||
Document.id,
|
||||
func.rank().over(order_by=func.ts_rank_cd(tsvector, tsquery).desc()).label("rank")
|
||||
)
|
||||
.join(SearchSpace, Document.search_space_id == SearchSpace.id)
|
||||
.where(*base_conditions)
|
||||
.where(tsvector.op("@@")(tsquery))
|
||||
)
|
||||
|
||||
keyword_search_cte = (
|
||||
keyword_search_cte
|
||||
.order_by(func.ts_rank_cd(tsvector, tsquery).desc())
|
||||
.limit(n_results)
|
||||
.cte("keyword_search")
|
||||
)
|
||||
|
||||
# Final combined query using a FULL OUTER JOIN with RRF scoring
|
||||
final_query = (
|
||||
select(
|
||||
Document,
|
||||
(
|
||||
func.coalesce(1.0 / (k + semantic_search_cte.c.rank), 0.0) +
|
||||
func.coalesce(1.0 / (k + keyword_search_cte.c.rank), 0.0)
|
||||
).label("score")
|
||||
)
|
||||
.select_from(
|
||||
semantic_search_cte.outerjoin(
|
||||
keyword_search_cte,
|
||||
semantic_search_cte.c.id == keyword_search_cte.c.id,
|
||||
full=True
|
||||
)
|
||||
)
|
||||
.join(
|
||||
Document,
|
||||
Document.id == func.coalesce(semantic_search_cte.c.id, keyword_search_cte.c.id)
|
||||
)
|
||||
.options(joinedload(Document.search_space))
|
||||
.order_by(text("score DESC"))
|
||||
.limit(top_k)
|
||||
)
|
||||
|
||||
# Execute the query
|
||||
result = await self.db_session.execute(final_query)
|
||||
documents_with_scores = result.all()
|
||||
|
||||
# If no results were found, return an empty list
|
||||
if not documents_with_scores:
|
||||
return []
|
||||
|
||||
# Convert to serializable dictionaries
|
||||
serialized_results = []
|
||||
for document, score in documents_with_scores:
|
||||
serialized_results.append({
|
||||
"document_id": document.id,
|
||||
"title": document.title,
|
||||
"content": document.content,
|
||||
"document_type": document.document_type.value if hasattr(document, 'document_type') else None,
|
||||
"metadata": document.document_metadata,
|
||||
"score": float(score), # Ensure score is a Python float
|
||||
"search_space_id": document.search_space_id
|
||||
})
|
||||
|
||||
return serialized_results
|
|
@ -135,6 +135,10 @@ async def process_file_in_background(
|
|||
file_path,
|
||||
mode="elements",
|
||||
post_processors=[],
|
||||
languages=["eng"],
|
||||
include_orig_elements=False,
|
||||
include_metadata=False,
|
||||
strategy="auto",
|
||||
)
|
||||
|
||||
docs = loader.load()
|
||||
|
|
Loading…
Add table
Reference in a new issue