feat: Added Linear Connector

This commit is contained in:
DESKTOP-RTLN3BA\$punk 2025-04-15 23:10:35 -07:00
parent 2b7a1b1082
commit e0eb9d4b8b
16 changed files with 1419 additions and 38 deletions

View file

@ -10,6 +10,7 @@ from app.prompts import SUMMARY_PROMPT_TEMPLATE
from app.connectors.slack_history import SlackHistory
from app.connectors.notion_history import NotionHistoryConnector
from app.connectors.github_connector import GitHubConnector
from app.connectors.linear_connector import LinearConnector
from slack_sdk.errors import SlackApiError
import logging
@ -60,8 +61,20 @@ async def index_slack_messages(
end_date = datetime.now()
# Use last_indexed_at as start date if available, otherwise use 365 days ago
start_date = end_date - timedelta(days=365)
if connector.last_indexed_at:
# Convert dates to be comparable (both timezone-naive)
last_indexed_naive = connector.last_indexed_at.replace(tzinfo=None) if connector.last_indexed_at.tzinfo else connector.last_indexed_at
# Check if last_indexed_at is in the future or after end_date
if last_indexed_naive > end_date:
logger.warning(f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 30 days ago instead.")
start_date = end_date - timedelta(days=30)
else:
start_date = last_indexed_naive
logger.info(f"Using last_indexed_at ({start_date.strftime('%Y-%m-%d')}) as start date")
else:
start_date = end_date - timedelta(days=30) # Use 30 days instead of 365 to catch recent issues
logger.info(f"No last_indexed_at found, using {start_date.strftime('%Y-%m-%d')} (30 days ago) as start date")
# Format dates for Slack API
start_date_str = start_date.strftime("%Y-%m-%d")
@ -782,3 +795,280 @@ async def index_github_repos(
error_message = "; ".join(errors) if errors else None
return documents_processed, error_message
async def index_linear_issues(
session: AsyncSession,
connector_id: int,
search_space_id: int,
update_last_indexed: bool = True
) -> Tuple[int, Optional[str]]:
"""
Index Linear issues and comments.
Args:
session: Database session
connector_id: ID of the Linear connector
search_space_id: ID of the search space to store documents in
update_last_indexed: Whether to update the last_indexed_at timestamp (default: True)
Returns:
Tuple containing (number of documents indexed, error message or None)
"""
try:
# Get the connector
result = await session.execute(
select(SearchSourceConnector)
.filter(
SearchSourceConnector.id == connector_id,
SearchSourceConnector.connector_type == SearchSourceConnectorType.LINEAR_CONNECTOR
)
)
connector = result.scalars().first()
if not connector:
return 0, f"Connector with ID {connector_id} not found or is not a Linear connector"
# Get the Linear token from the connector config
linear_token = connector.config.get("LINEAR_API_KEY")
if not linear_token:
return 0, "Linear API token not found in connector config"
# Initialize Linear client
linear_client = LinearConnector(token=linear_token)
# Calculate date range
end_date = datetime.now()
# Use last_indexed_at as start date if available, otherwise use 365 days ago
if connector.last_indexed_at:
# Convert dates to be comparable (both timezone-naive)
last_indexed_naive = connector.last_indexed_at.replace(tzinfo=None) if connector.last_indexed_at.tzinfo else connector.last_indexed_at
# Check if last_indexed_at is in the future or after end_date
if last_indexed_naive > end_date:
logger.warning(f"Last indexed date ({last_indexed_naive.strftime('%Y-%m-%d')}) is in the future. Using 30 days ago instead.")
start_date = end_date - timedelta(days=30)
else:
start_date = last_indexed_naive
logger.info(f"Using last_indexed_at ({start_date.strftime('%Y-%m-%d')}) as start date")
else:
start_date = end_date - timedelta(days=30) # Use 30 days instead of 365 to catch recent issues
logger.info(f"No last_indexed_at found, using {start_date.strftime('%Y-%m-%d')} (30 days ago) as start date")
# Format dates for Linear API
start_date_str = start_date.strftime("%Y-%m-%d")
end_date_str = end_date.strftime("%Y-%m-%d")
logger.info(f"Fetching Linear issues from {start_date_str} to {end_date_str}")
# Get issues within date range
try:
issues, error = linear_client.get_issues_by_date_range(
start_date=start_date_str,
end_date=end_date_str,
include_comments=True
)
if error:
logger.error(f"Failed to get Linear issues: {error}")
# Don't treat "No issues found" as an error that should stop indexing
if "No issues found" in error:
logger.info("No issues found is not a critical error, continuing with update")
if update_last_indexed:
connector.last_indexed_at = datetime.now()
await session.commit()
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found")
return 0, None
else:
return 0, f"Failed to get Linear issues: {error}"
logger.info(f"Retrieved {len(issues)} issues from Linear API")
except Exception as e:
logger.error(f"Exception when calling Linear API: {str(e)}", exc_info=True)
return 0, f"Failed to get Linear issues: {str(e)}"
if not issues:
logger.info("No Linear issues found for the specified date range")
if update_last_indexed:
connector.last_indexed_at = datetime.now()
await session.commit()
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at} despite no issues found")
return 0, None # Return None instead of error message when no issues found
# Log issue IDs and titles for debugging
logger.info("Issues retrieved from Linear API:")
for idx, issue in enumerate(issues[:10]): # Log first 10 issues
logger.info(f" {idx+1}. {issue.get('identifier', 'Unknown')} - {issue.get('title', 'Unknown')} - Created: {issue.get('createdAt', 'Unknown')} - Updated: {issue.get('updatedAt', 'Unknown')}")
if len(issues) > 10:
logger.info(f" ...and {len(issues) - 10} more issues")
# Get existing documents for this search space and connector type to prevent duplicates
existing_docs_result = await session.execute(
select(Document)
.filter(
Document.search_space_id == search_space_id,
Document.document_type == DocumentType.LINEAR_CONNECTOR
)
)
existing_docs = existing_docs_result.scalars().all()
# Create a lookup dictionary of existing documents by issue_id
existing_docs_by_issue_id = {}
for doc in existing_docs:
if "issue_id" in doc.document_metadata:
existing_docs_by_issue_id[doc.document_metadata["issue_id"]] = doc
logger.info(f"Found {len(existing_docs_by_issue_id)} existing Linear documents in database")
# Log existing document IDs for debugging
if existing_docs_by_issue_id:
logger.info("Existing Linear document issue IDs in database:")
for idx, (issue_id, doc) in enumerate(list(existing_docs_by_issue_id.items())[:10]): # Log first 10
logger.info(f" {idx+1}. {issue_id} - {doc.document_metadata.get('issue_identifier', 'Unknown')} - {doc.document_metadata.get('issue_title', 'Unknown')}")
if len(existing_docs_by_issue_id) > 10:
logger.info(f" ...and {len(existing_docs_by_issue_id) - 10} more existing documents")
# Track the number of documents indexed
documents_indexed = 0
documents_updated = 0
documents_skipped = 0
skipped_issues = []
# Process each issue
for issue in issues:
try:
issue_id = issue.get("id")
issue_identifier = issue.get("identifier", "")
issue_title = issue.get("title", "")
if not issue_id or not issue_title:
logger.warning(f"Skipping issue with missing ID or title: {issue_id or 'Unknown'}")
skipped_issues.append(f"{issue_identifier or 'Unknown'} (missing data)")
documents_skipped += 1
continue
# Format the issue first to get well-structured data
formatted_issue = linear_client.format_issue(issue)
# Convert issue to markdown format
issue_content = linear_client.format_issue_to_markdown(formatted_issue)
if not issue_content:
logger.warning(f"Skipping issue with no content: {issue_identifier} - {issue_title}")
skipped_issues.append(f"{issue_identifier} (no content)")
documents_skipped += 1
continue
# Create a short summary for the embedding
# This avoids using the LLM and just uses the issue data directly
state = formatted_issue.get("state", "Unknown")
description = formatted_issue.get("description", "")
# Truncate description if it's too long for the summary
if description and len(description) > 500:
description = description[:497] + "..."
# Create a simple summary from the issue data
summary_content = f"Linear Issue {issue_identifier}: {issue_title}\n\nStatus: {state}\n\n"
if description:
summary_content += f"Description: {description}\n\n"
# Add comment count
comment_count = len(formatted_issue.get("comments", []))
summary_content += f"Comments: {comment_count}"
# Generate embedding for the summary
summary_embedding = config.embedding_model_instance.embed(summary_content)
# Process chunks - using the full issue content with comments
chunks = [
Chunk(content=chunk.text, embedding=chunk.embedding)
for chunk in config.chunker_instance.chunk(issue_content)
]
# Check if this issue already exists in our database
existing_document = existing_docs_by_issue_id.get(issue_id)
if existing_document:
# Update existing document instead of creating a new one
logger.info(f"Updating existing document for issue {issue_identifier} - {issue_title}")
# Update document fields
existing_document.title = f"Linear - {issue_identifier}: {issue_title}"
existing_document.document_metadata = {
"issue_id": issue_id,
"issue_identifier": issue_identifier,
"issue_title": issue_title,
"state": state,
"comment_count": comment_count,
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"last_updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
existing_document.content = summary_content
existing_document.embedding = summary_embedding
# Delete existing chunks and add new ones
await session.execute(
delete(Chunk)
.where(Chunk.document_id == existing_document.id)
)
# Assign new chunks to existing document
for chunk in chunks:
chunk.document_id = existing_document.id
session.add(chunk)
documents_updated += 1
else:
# Create and store new document
logger.info(f"Creating new document for issue {issue_identifier} - {issue_title}")
document = Document(
search_space_id=search_space_id,
title=f"Linear - {issue_identifier}: {issue_title}",
document_type=DocumentType.LINEAR_CONNECTOR,
document_metadata={
"issue_id": issue_id,
"issue_identifier": issue_identifier,
"issue_title": issue_title,
"state": state,
"comment_count": comment_count,
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
},
content=summary_content,
embedding=summary_embedding,
chunks=chunks
)
session.add(document)
documents_indexed += 1
logger.info(f"Successfully indexed new issue {issue_identifier} - {issue_title}")
except Exception as e:
logger.error(f"Error processing issue {issue.get('identifier', 'Unknown')}: {str(e)}", exc_info=True)
skipped_issues.append(f"{issue.get('identifier', 'Unknown')} (processing error)")
documents_skipped += 1
continue # Skip this issue and continue with others
# Update the last_indexed_at timestamp for the connector only if requested
total_processed = documents_indexed + documents_updated
if update_last_indexed:
connector.last_indexed_at = datetime.now()
logger.info(f"Updated last_indexed_at to {connector.last_indexed_at}")
# Commit all changes
await session.commit()
logger.info(f"Successfully committed all Linear document changes to database")
logger.info(f"Linear indexing completed: {documents_indexed} new issues, {documents_updated} updated, {documents_skipped} skipped")
return total_processed, None # Return None as the error message to indicate success
except SQLAlchemyError as db_error:
await session.rollback()
logger.error(f"Database error: {str(db_error)}", exc_info=True)
return 0, f"Database error: {str(db_error)}"
except Exception as e:
await session.rollback()
logger.error(f"Failed to index Linear issues: {str(e)}", exc_info=True)
return 0, f"Failed to index Linear issues: {str(e)}"