mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-01 10:09:08 +00:00
Merge pull request #270 from MODSetter/dev
Some checks are pending
pre-commit / pre-commit (push) Waiting to run
Some checks are pending
pre-commit / pre-commit (push) Waiting to run
feat: Fixed Document Summary Content across connectors and processors
This commit is contained in:
commit
ca9614cd5e
19 changed files with 472 additions and 233 deletions
|
@ -513,7 +513,7 @@ async def process_file_in_background(
|
|||
@router.get("/documents/", response_model=list[DocumentRead])
|
||||
async def read_documents(
|
||||
skip: int = 0,
|
||||
limit: int = 300,
|
||||
limit: int = 3000,
|
||||
search_space_id: int | None = None,
|
||||
session: AsyncSession = Depends(get_async_session),
|
||||
user: User = Depends(current_active_user),
|
||||
|
|
|
@ -8,9 +8,7 @@ from datetime import datetime, timedelta
|
|||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
from sqlalchemy.future import select
|
||||
|
||||
from app.config import config
|
||||
from app.db import (
|
||||
Chunk,
|
||||
Document,
|
||||
SearchSourceConnector,
|
||||
SearchSourceConnectorType,
|
||||
|
@ -39,25 +37,6 @@ async def check_duplicate_document_by_hash(
|
|||
return existing_doc_result.scalars().first()
|
||||
|
||||
|
||||
async def create_document_chunks(content: str) -> list[Chunk]:
|
||||
"""
|
||||
Create chunks from document content.
|
||||
|
||||
Args:
|
||||
content: Document content to chunk
|
||||
|
||||
Returns:
|
||||
List of Chunk objects with embeddings
|
||||
"""
|
||||
return [
|
||||
Chunk(
|
||||
content=chunk.text,
|
||||
embedding=config.embedding_model_instance.embed(chunk.text),
|
||||
)
|
||||
for chunk in config.chunker_instance.chunk(content)
|
||||
]
|
||||
|
||||
|
||||
async def get_connector_by_id(
|
||||
session: AsyncSession, connector_id: int, connector_type: SearchSourceConnectorType
|
||||
) -> SearchSourceConnector | None:
|
||||
|
|
|
@ -10,12 +10,16 @@ from sqlalchemy.ext.asyncio import AsyncSession
|
|||
from app.config import config
|
||||
from app.connectors.clickup_connector import ClickUpConnector
|
||||
from app.db import Document, DocumentType, SearchSourceConnectorType
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
check_duplicate_document_by_hash,
|
||||
create_document_chunks,
|
||||
get_connector_by_id,
|
||||
logger,
|
||||
update_connector_last_indexed,
|
||||
|
@ -217,10 +221,34 @@ async def index_clickup_tasks(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Embedding and chunks
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
task_content
|
||||
)
|
||||
# Generate summary with metadata
|
||||
user_llm = await get_user_long_context_llm(session, user_id)
|
||||
|
||||
if user_llm:
|
||||
document_metadata = {
|
||||
"task_id": task_id,
|
||||
"task_name": task_name,
|
||||
"task_status": task_status,
|
||||
"task_priority": task_priority,
|
||||
"task_list": task_list_name,
|
||||
"task_space": task_space_name,
|
||||
"assignees": len(task_assignees),
|
||||
"document_type": "ClickUp Task",
|
||||
"connector_type": "ClickUp",
|
||||
}
|
||||
(
|
||||
summary_content,
|
||||
summary_embedding,
|
||||
) = await generate_document_summary(
|
||||
task_content, user_llm, document_metadata
|
||||
)
|
||||
else:
|
||||
# Fallback to simple summary if no LLM configured
|
||||
summary_content = task_content
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
task_content
|
||||
)
|
||||
|
||||
chunks = await create_document_chunks(task_content)
|
||||
|
||||
document = Document(
|
||||
|
@ -238,7 +266,7 @@ async def index_clickup_tasks(
|
|||
"task_updated": task_updated,
|
||||
"indexed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
||||
},
|
||||
content=task_content,
|
||||
content=summary_content,
|
||||
content_hash=content_hash,
|
||||
embedding=summary_embedding,
|
||||
chunks=chunks,
|
||||
|
|
|
@ -10,13 +10,17 @@ from sqlalchemy.ext.asyncio import AsyncSession
|
|||
from app.config import config
|
||||
from app.connectors.confluence_connector import ConfluenceConnector
|
||||
from app.db import Document, DocumentType, SearchSourceConnectorType
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
calculate_date_range,
|
||||
check_duplicate_document_by_hash,
|
||||
create_document_chunks,
|
||||
get_connector_by_id,
|
||||
logger,
|
||||
update_connector_last_indexed,
|
||||
|
@ -213,21 +217,6 @@ async def index_confluence_pages(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Create a simple summary
|
||||
summary_content = (
|
||||
f"Confluence Page: {page_title}\n\nSpace ID: {space_id}\n\n"
|
||||
)
|
||||
if page_content:
|
||||
# Take first 500 characters of content for summary
|
||||
content_preview = page_content[:500]
|
||||
if len(page_content) > 500:
|
||||
content_preview += "..."
|
||||
summary_content += f"Content Preview: {content_preview}\n\n"
|
||||
|
||||
# Add comment count
|
||||
comment_count = len(comments)
|
||||
summary_content += f"Comments: {comment_count}"
|
||||
|
||||
# Generate content hash
|
||||
content_hash = generate_content_hash(full_content, search_space_id)
|
||||
|
||||
|
@ -243,10 +232,40 @@ async def index_confluence_pages(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Generate embedding for the summary
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
# Generate summary with metadata
|
||||
user_llm = await get_user_long_context_llm(session, user_id)
|
||||
comment_count = len(comments)
|
||||
|
||||
if user_llm:
|
||||
document_metadata = {
|
||||
"page_title": page_title,
|
||||
"page_id": page_id,
|
||||
"space_id": space_id,
|
||||
"comment_count": comment_count,
|
||||
"document_type": "Confluence Page",
|
||||
"connector_type": "Confluence",
|
||||
}
|
||||
(
|
||||
summary_content,
|
||||
summary_embedding,
|
||||
) = await generate_document_summary(
|
||||
full_content, user_llm, document_metadata
|
||||
)
|
||||
else:
|
||||
# Fallback to simple summary if no LLM configured
|
||||
summary_content = (
|
||||
f"Confluence Page: {page_title}\n\nSpace ID: {space_id}\n\n"
|
||||
)
|
||||
if page_content:
|
||||
# Take first 500 characters of content for summary
|
||||
content_preview = page_content[:500]
|
||||
if len(page_content) > 500:
|
||||
content_preview += "..."
|
||||
summary_content += f"Content Preview: {content_preview}\n\n"
|
||||
summary_content += f"Comments: {comment_count}"
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
|
||||
# Process chunks - using the full page content with comments
|
||||
chunks = await create_document_chunks(full_content)
|
||||
|
|
|
@ -8,18 +8,19 @@ from datetime import UTC, datetime, timedelta
|
|||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from app.config import config
|
||||
from app.connectors.discord_connector import DiscordConnector
|
||||
from app.db import Document, DocumentType, SearchSourceConnectorType
|
||||
from app.prompts import SUMMARY_PROMPT_TEMPLATE
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
build_document_metadata_string,
|
||||
check_duplicate_document_by_hash,
|
||||
create_document_chunks,
|
||||
get_connector_by_id,
|
||||
logger,
|
||||
update_connector_last_indexed,
|
||||
|
@ -335,14 +336,19 @@ async def index_discord_messages(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Generate summary using summary_chain
|
||||
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
|
||||
summary_result = await summary_chain.ainvoke(
|
||||
{"document": combined_document_string}
|
||||
)
|
||||
summary_content = summary_result.content
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
# Generate summary with metadata
|
||||
document_metadata = {
|
||||
"guild_name": guild_name,
|
||||
"channel_name": channel_name,
|
||||
"message_count": len(formatted_messages),
|
||||
"document_type": "Discord Channel Messages",
|
||||
"connector_type": "Discord",
|
||||
}
|
||||
(
|
||||
summary_content,
|
||||
summary_embedding,
|
||||
) = await generate_document_summary(
|
||||
combined_document_string, user_llm, document_metadata
|
||||
)
|
||||
|
||||
# Chunks from channel content
|
||||
|
|
|
@ -10,12 +10,16 @@ from sqlalchemy.ext.asyncio import AsyncSession
|
|||
from app.config import config
|
||||
from app.connectors.github_connector import GitHubConnector
|
||||
from app.db import Document, DocumentType, SearchSourceConnectorType
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
check_duplicate_document_by_hash,
|
||||
create_document_chunks,
|
||||
get_connector_by_id,
|
||||
logger,
|
||||
)
|
||||
|
@ -208,12 +212,34 @@ async def index_github_repos(
|
|||
)
|
||||
continue
|
||||
|
||||
# Use file_content directly for chunking, maybe summary for main content?
|
||||
# For now, let's use the full content for both, might need refinement
|
||||
summary_content = f"GitHub file: {full_path_key}\n\n{file_content[:1000]}..." # Simple summary
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
# Generate summary with metadata
|
||||
user_llm = await get_user_long_context_llm(session, user_id)
|
||||
if user_llm:
|
||||
# Extract file extension from file path
|
||||
file_extension = (
|
||||
file_path.split(".")[-1] if "." in file_path else None
|
||||
)
|
||||
document_metadata = {
|
||||
"file_path": full_path_key,
|
||||
"repository": repo_full_name,
|
||||
"file_type": file_extension or "unknown",
|
||||
"document_type": "GitHub Repository File",
|
||||
"connector_type": "GitHub",
|
||||
}
|
||||
(
|
||||
summary_content,
|
||||
summary_embedding,
|
||||
) = await generate_document_summary(
|
||||
file_content, user_llm, document_metadata
|
||||
)
|
||||
else:
|
||||
# Fallback to simple summary if no LLM configured
|
||||
summary_content = (
|
||||
f"GitHub file: {full_path_key}\n\n{file_content[:1000]}..."
|
||||
)
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
|
||||
# Chunk the content
|
||||
try:
|
||||
|
|
|
@ -11,11 +11,15 @@ from sqlalchemy.ext.asyncio import AsyncSession
|
|||
from app.config import config
|
||||
from app.connectors.google_calendar_connector import GoogleCalendarConnector
|
||||
from app.db import Document, DocumentType, SearchSourceConnectorType
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
create_document_chunks,
|
||||
get_connector_by_id,
|
||||
logger,
|
||||
update_connector_last_indexed,
|
||||
|
@ -237,18 +241,6 @@ async def index_google_calendar_events(
|
|||
location = event.get("location", "")
|
||||
description = event.get("description", "")
|
||||
|
||||
summary_content = f"Google Calendar Event: {event_summary}\n\n"
|
||||
summary_content += f"Calendar: {calendar_id}\n"
|
||||
summary_content += f"Start: {start_time}\n"
|
||||
summary_content += f"End: {end_time}\n"
|
||||
if location:
|
||||
summary_content += f"Location: {location}\n"
|
||||
if description:
|
||||
desc_preview = description[:300]
|
||||
if len(description) > 300:
|
||||
desc_preview += "..."
|
||||
summary_content += f"Description: {desc_preview}\n"
|
||||
|
||||
content_hash = generate_content_hash(event_markdown, search_space_id)
|
||||
|
||||
# Duplicate check via simple query using helper in base
|
||||
|
@ -266,10 +258,42 @@ async def index_google_calendar_events(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Embeddings and chunks
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
# Generate summary with metadata
|
||||
user_llm = await get_user_long_context_llm(session, user_id)
|
||||
|
||||
if user_llm:
|
||||
document_metadata = {
|
||||
"event_id": event_id,
|
||||
"event_summary": event_summary,
|
||||
"calendar_id": calendar_id,
|
||||
"start_time": start_time,
|
||||
"end_time": end_time,
|
||||
"location": location or "No location",
|
||||
"document_type": "Google Calendar Event",
|
||||
"connector_type": "Google Calendar",
|
||||
}
|
||||
(
|
||||
summary_content,
|
||||
summary_embedding,
|
||||
) = await generate_document_summary(
|
||||
event_markdown, user_llm, document_metadata
|
||||
)
|
||||
else:
|
||||
# Fallback to simple summary if no LLM configured
|
||||
summary_content = f"Google Calendar Event: {event_summary}\n\n"
|
||||
summary_content += f"Calendar: {calendar_id}\n"
|
||||
summary_content += f"Start: {start_time}\n"
|
||||
summary_content += f"End: {end_time}\n"
|
||||
if location:
|
||||
summary_content += f"Location: {location}\n"
|
||||
if description:
|
||||
desc_preview = description[:300]
|
||||
if len(description) > 300:
|
||||
desc_preview += "..."
|
||||
summary_content += f"Description: {desc_preview}\n"
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
chunks = await create_document_chunks(event_markdown)
|
||||
|
||||
document = Document(
|
||||
|
|
|
@ -15,12 +15,16 @@ from app.db import (
|
|||
DocumentType,
|
||||
SearchSourceConnectorType,
|
||||
)
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
check_duplicate_document_by_hash,
|
||||
create_document_chunks,
|
||||
get_connector_by_id,
|
||||
logger,
|
||||
update_connector_last_indexed,
|
||||
|
@ -186,11 +190,6 @@ async def index_google_gmail_messages(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Create a simple summary
|
||||
summary_content = f"Google Gmail Message: {subject}\n\n"
|
||||
summary_content += f"Sender: {sender}\n"
|
||||
summary_content += f"Date: {date_str}\n"
|
||||
|
||||
# Generate content hash
|
||||
content_hash = generate_content_hash(markdown_content, search_space_id)
|
||||
|
||||
|
@ -206,10 +205,33 @@ async def index_google_gmail_messages(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Generate embedding for the summary
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
# Generate summary with metadata
|
||||
user_llm = await get_user_long_context_llm(session, user_id)
|
||||
|
||||
if user_llm:
|
||||
document_metadata = {
|
||||
"message_id": message_id,
|
||||
"thread_id": thread_id,
|
||||
"subject": subject,
|
||||
"sender": sender,
|
||||
"date": date_str,
|
||||
"document_type": "Gmail Message",
|
||||
"connector_type": "Google Gmail",
|
||||
}
|
||||
(
|
||||
summary_content,
|
||||
summary_embedding,
|
||||
) = await generate_document_summary(
|
||||
markdown_content, user_llm, document_metadata
|
||||
)
|
||||
else:
|
||||
# Fallback to simple summary if no LLM configured
|
||||
summary_content = f"Google Gmail Message: {subject}\n\n"
|
||||
summary_content += f"Sender: {sender}\n"
|
||||
summary_content += f"Date: {date_str}\n"
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
chunks = await create_document_chunks(markdown_content)
|
||||
|
@ -228,7 +250,7 @@ async def index_google_gmail_messages(
|
|||
"date": date_str,
|
||||
"connector_id": connector_id,
|
||||
},
|
||||
content=markdown_content,
|
||||
content=summary_content,
|
||||
content_hash=content_hash,
|
||||
embedding=summary_embedding,
|
||||
chunks=chunks,
|
||||
|
|
|
@ -10,13 +10,17 @@ from sqlalchemy.ext.asyncio import AsyncSession
|
|||
from app.config import config
|
||||
from app.connectors.jira_connector import JiraConnector
|
||||
from app.db import Document, DocumentType, SearchSourceConnectorType
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
calculate_date_range,
|
||||
check_duplicate_document_by_hash,
|
||||
create_document_chunks,
|
||||
get_connector_by_id,
|
||||
logger,
|
||||
update_connector_last_indexed,
|
||||
|
@ -196,17 +200,6 @@ async def index_jira_issues(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Create a simple summary
|
||||
summary_content = f"Jira Issue {issue_identifier}: {issue_title}\n\nStatus: {formatted_issue.get('status', 'Unknown')}\n\n"
|
||||
if formatted_issue.get("description"):
|
||||
summary_content += (
|
||||
f"Description: {formatted_issue.get('description')}\n\n"
|
||||
)
|
||||
|
||||
# Add comment count
|
||||
comment_count = len(formatted_issue.get("comments", []))
|
||||
summary_content += f"Comments: {comment_count}"
|
||||
|
||||
# Generate content hash
|
||||
content_hash = generate_content_hash(issue_content, search_space_id)
|
||||
|
||||
|
@ -222,10 +215,37 @@ async def index_jira_issues(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Generate embedding for the summary
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
# Generate summary with metadata
|
||||
user_llm = await get_user_long_context_llm(session, user_id)
|
||||
comment_count = len(formatted_issue.get("comments", []))
|
||||
|
||||
if user_llm:
|
||||
document_metadata = {
|
||||
"issue_key": issue_identifier,
|
||||
"issue_title": issue_title,
|
||||
"status": formatted_issue.get("status", "Unknown"),
|
||||
"priority": formatted_issue.get("priority", "Unknown"),
|
||||
"comment_count": comment_count,
|
||||
"document_type": "Jira Issue",
|
||||
"connector_type": "Jira",
|
||||
}
|
||||
(
|
||||
summary_content,
|
||||
summary_embedding,
|
||||
) = await generate_document_summary(
|
||||
issue_content, user_llm, document_metadata
|
||||
)
|
||||
else:
|
||||
# Fallback to simple summary if no LLM configured
|
||||
summary_content = f"Jira Issue {issue_identifier}: {issue_title}\n\nStatus: {formatted_issue.get('status', 'Unknown')}\n\n"
|
||||
if formatted_issue.get("description"):
|
||||
summary_content += (
|
||||
f"Description: {formatted_issue.get('description')}\n\n"
|
||||
)
|
||||
summary_content += f"Comments: {comment_count}"
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
|
||||
# Process chunks - using the full issue content with comments
|
||||
chunks = await create_document_chunks(issue_content)
|
||||
|
|
|
@ -10,13 +10,17 @@ from sqlalchemy.ext.asyncio import AsyncSession
|
|||
from app.config import config
|
||||
from app.connectors.linear_connector import LinearConnector
|
||||
from app.db import Document, DocumentType, SearchSourceConnectorType
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
calculate_date_range,
|
||||
check_duplicate_document_by_hash,
|
||||
create_document_chunks,
|
||||
get_connector_by_id,
|
||||
logger,
|
||||
update_connector_last_indexed,
|
||||
|
@ -209,22 +213,6 @@ async def index_linear_issues(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Create a short summary for the embedding
|
||||
state = formatted_issue.get("state", "Unknown")
|
||||
description = formatted_issue.get("description", "")
|
||||
# Truncate description if it's too long for the summary
|
||||
if description and len(description) > 500:
|
||||
description = description[:497] + "..."
|
||||
|
||||
# Create a simple summary from the issue data
|
||||
summary_content = f"Linear Issue {issue_identifier}: {issue_title}\n\nStatus: {state}\n\n"
|
||||
if description:
|
||||
summary_content += f"Description: {description}\n\n"
|
||||
|
||||
# Add comment count
|
||||
comment_count = len(formatted_issue.get("comments", []))
|
||||
summary_content += f"Comments: {comment_count}"
|
||||
|
||||
content_hash = generate_content_hash(issue_content, search_space_id)
|
||||
|
||||
# Check if document with this content hash already exists
|
||||
|
@ -239,10 +227,40 @@ async def index_linear_issues(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Generate embedding for the summary
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
# Generate summary with metadata
|
||||
user_llm = await get_user_long_context_llm(session, user_id)
|
||||
state = formatted_issue.get("state", "Unknown")
|
||||
description = formatted_issue.get("description", "")
|
||||
comment_count = len(formatted_issue.get("comments", []))
|
||||
|
||||
if user_llm:
|
||||
document_metadata = {
|
||||
"issue_id": issue_identifier,
|
||||
"issue_title": issue_title,
|
||||
"state": state,
|
||||
"priority": formatted_issue.get("priority", "Unknown"),
|
||||
"comment_count": comment_count,
|
||||
"document_type": "Linear Issue",
|
||||
"connector_type": "Linear",
|
||||
}
|
||||
(
|
||||
summary_content,
|
||||
summary_embedding,
|
||||
) = await generate_document_summary(
|
||||
issue_content, user_llm, document_metadata
|
||||
)
|
||||
else:
|
||||
# Fallback to simple summary if no LLM configured
|
||||
# Truncate description if it's too long for the summary
|
||||
if description and len(description) > 500:
|
||||
description = description[:497] + "..."
|
||||
summary_content = f"Linear Issue {issue_identifier}: {issue_title}\n\nStatus: {state}\n\n"
|
||||
if description:
|
||||
summary_content += f"Description: {description}\n\n"
|
||||
summary_content += f"Comments: {comment_count}"
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
)
|
||||
|
||||
# Process chunks - using the full issue content with comments
|
||||
chunks = await create_document_chunks(issue_content)
|
||||
|
|
|
@ -7,18 +7,19 @@ from datetime import datetime, timedelta
|
|||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from app.config import config
|
||||
from app.connectors.notion_history import NotionHistoryConnector
|
||||
from app.db import Document, DocumentType, SearchSourceConnectorType
|
||||
from app.prompts import SUMMARY_PROMPT_TEMPLATE
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
build_document_metadata_string,
|
||||
check_duplicate_document_by_hash,
|
||||
create_document_chunks,
|
||||
get_connector_by_id,
|
||||
logger,
|
||||
update_connector_last_indexed,
|
||||
|
@ -302,15 +303,16 @@ async def index_notion_pages(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Generate summary
|
||||
# Generate summary with metadata
|
||||
logger.debug(f"Generating summary for page {page_title}")
|
||||
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
|
||||
summary_result = await summary_chain.ainvoke(
|
||||
{"document": combined_document_string}
|
||||
)
|
||||
summary_content = summary_result.content
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
document_metadata = {
|
||||
"page_title": page_title,
|
||||
"page_id": page_id,
|
||||
"document_type": "Notion Page",
|
||||
"connector_type": "Notion",
|
||||
}
|
||||
summary_content, summary_embedding = await generate_document_summary(
|
||||
markdown_content, user_llm, document_metadata
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
|
|
|
@ -8,19 +8,20 @@ from slack_sdk.errors import SlackApiError
|
|||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from app.config import config
|
||||
from app.connectors.slack_history import SlackHistory
|
||||
from app.db import Document, DocumentType, SearchSourceConnectorType
|
||||
from app.prompts import SUMMARY_PROMPT_TEMPLATE
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
build_document_metadata_string,
|
||||
calculate_date_range,
|
||||
check_duplicate_document_by_hash,
|
||||
create_document_chunks,
|
||||
get_connector_by_id,
|
||||
logger,
|
||||
update_connector_last_indexed,
|
||||
|
@ -289,14 +290,16 @@ async def index_slack_messages(
|
|||
documents_skipped += 1
|
||||
continue
|
||||
|
||||
# Generate summary
|
||||
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
|
||||
summary_result = await summary_chain.ainvoke(
|
||||
{"document": combined_document_string}
|
||||
)
|
||||
summary_content = summary_result.content
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
summary_content
|
||||
# Generate summary with metadata
|
||||
document_metadata = {
|
||||
"channel_name": channel_name,
|
||||
"channel_id": channel_id,
|
||||
"message_count": len(formatted_messages),
|
||||
"document_type": "Slack Channel Messages",
|
||||
"connector_type": "Slack",
|
||||
}
|
||||
summary_content, summary_embedding = await generate_document_summary(
|
||||
combined_document_string, user_llm, document_metadata
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
|
|
|
@ -6,9 +6,7 @@ from langchain_community.document_transformers import MarkdownifyTransformer
|
|||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
from sqlalchemy.future import select
|
||||
|
||||
from app.config import config
|
||||
from app.db import Chunk, Document
|
||||
from app.prompts import SUMMARY_PROMPT_TEMPLATE
|
||||
from app.db import Document
|
||||
|
||||
# Initialize markdown transformer
|
||||
md = MarkdownifyTransformer()
|
||||
|
@ -31,44 +29,3 @@ async def check_duplicate_document(
|
|||
select(Document).where(Document.content_hash == content_hash)
|
||||
)
|
||||
return existing_doc_result.scalars().first()
|
||||
|
||||
|
||||
async def create_document_chunks(content: str) -> list[Chunk]:
|
||||
"""
|
||||
Create chunks from document content.
|
||||
|
||||
Args:
|
||||
content: Document content to chunk
|
||||
|
||||
Returns:
|
||||
List of Chunk objects with embeddings
|
||||
"""
|
||||
return [
|
||||
Chunk(
|
||||
content=chunk.text,
|
||||
embedding=config.embedding_model_instance.embed(chunk.text),
|
||||
)
|
||||
for chunk in config.chunker_instance.chunk(content)
|
||||
]
|
||||
|
||||
|
||||
async def generate_document_summary(
|
||||
content: str, user_llm, document_title: str = ""
|
||||
) -> tuple[str, list[float]]:
|
||||
"""
|
||||
Generate summary and embedding for document content.
|
||||
|
||||
Args:
|
||||
content: Document content
|
||||
user_llm: User's LLM instance
|
||||
document_title: Optional document title for context
|
||||
|
||||
Returns:
|
||||
Tuple of (summary_content, summary_embedding)
|
||||
"""
|
||||
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
|
||||
summary_result = await summary_chain.ainvoke({"document": content})
|
||||
summary_content = summary_result.content
|
||||
summary_embedding = config.embedding_model_instance.embed(summary_content)
|
||||
|
||||
return summary_content, summary_embedding
|
||||
|
|
|
@ -11,12 +11,14 @@ from app.db import Document, DocumentType
|
|||
from app.schemas import ExtensionDocumentContent
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
check_duplicate_document,
|
||||
create_document_chunks,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
|
||||
|
@ -106,9 +108,18 @@ async def add_extension_received_document(
|
|||
if not user_llm:
|
||||
raise RuntimeError(f"No long context LLM configured for user {user_id}")
|
||||
|
||||
# Generate summary
|
||||
# Generate summary with metadata
|
||||
document_metadata = {
|
||||
"session_id": content.metadata.BrowsingSessionId,
|
||||
"url": content.metadata.VisitedWebPageURL,
|
||||
"title": content.metadata.VisitedWebPageTitle,
|
||||
"referrer": content.metadata.VisitedWebPageReffererURL,
|
||||
"timestamp": content.metadata.VisitedWebPageDateWithTimeInISOString,
|
||||
"duration_ms": content.metadata.VisitedWebPageVisitDurationInMilliseconds,
|
||||
"document_type": "Browser Extension Capture",
|
||||
}
|
||||
summary_content, summary_embedding = await generate_document_summary(
|
||||
combined_document_string, user_llm
|
||||
combined_document_string, user_llm, document_metadata
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
|
|
|
@ -12,13 +12,13 @@ from app.db import Document, DocumentType
|
|||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.utils.document_converters import (
|
||||
convert_document_to_markdown,
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
check_duplicate_document,
|
||||
create_document_chunks,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
|
||||
|
@ -64,9 +64,14 @@ async def add_received_file_document_using_unstructured(
|
|||
if not user_llm:
|
||||
raise RuntimeError(f"No long context LLM configured for user {user_id}")
|
||||
|
||||
# Generate summary
|
||||
# Generate summary with metadata
|
||||
document_metadata = {
|
||||
"file_name": file_name,
|
||||
"etl_service": "UNSTRUCTURED",
|
||||
"document_type": "File Document",
|
||||
}
|
||||
summary_content, summary_embedding = await generate_document_summary(
|
||||
file_in_markdown, user_llm
|
||||
file_in_markdown, user_llm, document_metadata
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
|
@ -139,9 +144,14 @@ async def add_received_file_document_using_llamacloud(
|
|||
if not user_llm:
|
||||
raise RuntimeError(f"No long context LLM configured for user {user_id}")
|
||||
|
||||
# Generate summary
|
||||
# Generate summary with metadata
|
||||
document_metadata = {
|
||||
"file_name": file_name,
|
||||
"etl_service": "LLAMACLOUD",
|
||||
"document_type": "File Document",
|
||||
}
|
||||
summary_content, summary_embedding = await generate_document_summary(
|
||||
file_in_markdown, user_llm
|
||||
file_in_markdown, user_llm, document_metadata
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
|
@ -224,9 +234,30 @@ async def add_received_file_document_using_docling(
|
|||
content=file_in_markdown, llm=user_llm, document_title=file_name
|
||||
)
|
||||
|
||||
# Enhance summary with metadata
|
||||
document_metadata = {
|
||||
"file_name": file_name,
|
||||
"etl_service": "DOCLING",
|
||||
"document_type": "File Document",
|
||||
}
|
||||
metadata_parts = []
|
||||
metadata_parts.append("# DOCUMENT METADATA")
|
||||
|
||||
for key, value in document_metadata.items():
|
||||
if value: # Only include non-empty values
|
||||
formatted_key = key.replace("_", " ").title()
|
||||
metadata_parts.append(f"**{formatted_key}:** {value}")
|
||||
|
||||
metadata_section = "\n".join(metadata_parts)
|
||||
enhanced_summary_content = (
|
||||
f"{metadata_section}\n\n# DOCUMENT SUMMARY\n\n{summary_content}"
|
||||
)
|
||||
|
||||
from app.config import config
|
||||
|
||||
summary_embedding = config.embedding_model_instance.embed(summary_content)
|
||||
summary_embedding = config.embedding_model_instance.embed(
|
||||
enhanced_summary_content
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
chunks = await create_document_chunks(file_in_markdown)
|
||||
|
@ -240,7 +271,7 @@ async def add_received_file_document_using_docling(
|
|||
"FILE_NAME": file_name,
|
||||
"ETL_SERVICE": "DOCLING",
|
||||
},
|
||||
content=summary_content,
|
||||
content=enhanced_summary_content,
|
||||
embedding=summary_embedding,
|
||||
chunks=chunks,
|
||||
content_hash=content_hash,
|
||||
|
|
|
@ -10,12 +10,14 @@ from sqlalchemy.ext.asyncio import AsyncSession
|
|||
from app.db import Document, DocumentType
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
check_duplicate_document,
|
||||
create_document_chunks,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
|
||||
|
@ -77,9 +79,13 @@ async def add_received_markdown_file_document(
|
|||
if not user_llm:
|
||||
raise RuntimeError(f"No long context LLM configured for user {user_id}")
|
||||
|
||||
# Generate summary
|
||||
# Generate summary with metadata
|
||||
document_metadata = {
|
||||
"file_name": file_name,
|
||||
"document_type": "Markdown File Document",
|
||||
}
|
||||
summary_content, summary_embedding = await generate_document_summary(
|
||||
file_in_markdown, user_llm
|
||||
file_in_markdown, user_llm, document_metadata
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
|
|
|
@ -13,12 +13,14 @@ from app.config import config
|
|||
from app.db import Document, DocumentType
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
check_duplicate_document,
|
||||
create_document_chunks,
|
||||
generate_document_summary,
|
||||
md,
|
||||
)
|
||||
|
||||
|
@ -170,8 +172,15 @@ async def add_crawled_url_document(
|
|||
{"stage": "summary_generation"},
|
||||
)
|
||||
|
||||
# Generate summary with metadata
|
||||
document_metadata = {
|
||||
"url": url,
|
||||
"title": url_crawled[0].metadata.get("title", url),
|
||||
"document_type": "Crawled URL Document",
|
||||
"crawler_type": type(crawl_loader).__name__,
|
||||
}
|
||||
summary_content, summary_embedding = await generate_document_summary(
|
||||
combined_document_string, user_llm
|
||||
combined_document_string, user_llm, document_metadata
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
|
|
|
@ -13,12 +13,14 @@ from youtube_transcript_api import YouTubeTranscriptApi
|
|||
from app.db import Document, DocumentType
|
||||
from app.services.llm_service import get_user_long_context_llm
|
||||
from app.services.task_logging_service import TaskLoggingService
|
||||
from app.utils.document_converters import generate_content_hash
|
||||
from app.utils.document_converters import (
|
||||
create_document_chunks,
|
||||
generate_content_hash,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
from .base import (
|
||||
check_duplicate_document,
|
||||
create_document_chunks,
|
||||
generate_document_summary,
|
||||
)
|
||||
|
||||
|
||||
|
@ -242,8 +244,18 @@ async def add_youtube_video_document(
|
|||
{"stage": "summary_generation"},
|
||||
)
|
||||
|
||||
# Generate summary with metadata
|
||||
document_metadata = {
|
||||
"url": url,
|
||||
"video_id": video_id,
|
||||
"title": video_data.get("title", "YouTube Video"),
|
||||
"author": video_data.get("author_name", "Unknown"),
|
||||
"thumbnail": video_data.get("thumbnail_url", ""),
|
||||
"document_type": "YouTube Video Document",
|
||||
"has_transcript": "No captions available" not in transcript_text,
|
||||
}
|
||||
summary_content, summary_embedding = await generate_document_summary(
|
||||
combined_document_string, user_llm
|
||||
combined_document_string, user_llm, document_metadata
|
||||
)
|
||||
|
||||
# Process chunks
|
||||
|
|
|
@ -1,5 +1,71 @@
|
|||
import hashlib
|
||||
|
||||
from app.config import config
|
||||
from app.db import Chunk
|
||||
from app.prompts import SUMMARY_PROMPT_TEMPLATE
|
||||
|
||||
|
||||
async def generate_document_summary(
|
||||
content: str,
|
||||
user_llm,
|
||||
document_metadata: dict | None = None,
|
||||
) -> tuple[str, list[float]]:
|
||||
"""
|
||||
Generate summary and embedding for document content with metadata.
|
||||
|
||||
Args:
|
||||
content: Document content
|
||||
user_llm: User's LLM instance
|
||||
document_metadata: Optional metadata dictionary to include in summary
|
||||
|
||||
Returns:
|
||||
Tuple of (enhanced_summary_content, summary_embedding)
|
||||
"""
|
||||
summary_chain = SUMMARY_PROMPT_TEMPLATE | user_llm
|
||||
content_with_metadata = f"<DOCUMENT><DOCUMENT_METADATA>\n\n{document_metadata}\n\n</DOCUMENT_METADATA>\n\n<DOCUMENT_CONTENT>\n\n{content}\n\n</DOCUMENT_CONTENT></DOCUMENT>"
|
||||
summary_result = await summary_chain.ainvoke({"document": content_with_metadata})
|
||||
summary_content = summary_result.content
|
||||
|
||||
# Combine summary with metadata if provided
|
||||
if document_metadata:
|
||||
metadata_parts = []
|
||||
metadata_parts.append("# DOCUMENT METADATA")
|
||||
|
||||
for key, value in document_metadata.items():
|
||||
if value: # Only include non-empty values
|
||||
formatted_key = key.replace("_", " ").title()
|
||||
metadata_parts.append(f"**{formatted_key}:** {value}")
|
||||
|
||||
metadata_section = "\n".join(metadata_parts)
|
||||
enhanced_summary_content = (
|
||||
f"{metadata_section}\n\n# DOCUMENT SUMMARY\n\n{summary_content}"
|
||||
)
|
||||
else:
|
||||
enhanced_summary_content = summary_content
|
||||
|
||||
summary_embedding = config.embedding_model_instance.embed(enhanced_summary_content)
|
||||
|
||||
return enhanced_summary_content, summary_embedding
|
||||
|
||||
|
||||
async def create_document_chunks(content: str) -> list[Chunk]:
|
||||
"""
|
||||
Create chunks from document content.
|
||||
|
||||
Args:
|
||||
content: Document content to chunk
|
||||
|
||||
Returns:
|
||||
List of Chunk objects with embeddings
|
||||
"""
|
||||
return [
|
||||
Chunk(
|
||||
content=chunk.text,
|
||||
embedding=config.embedding_model_instance.embed(chunk.text),
|
||||
)
|
||||
for chunk in config.chunker_instance.chunk(content)
|
||||
]
|
||||
|
||||
|
||||
async def convert_element_to_markdown(element) -> str:
|
||||
"""
|
||||
|
|
Loading…
Add table
Reference in a new issue