SurfSense v0.0.5 beta

- Still need to add delete fuctions but what the hell
This commit is contained in:
DESKTOP-RTLN3BA\$punk 2024-11-11 00:25:28 -08:00
parent 1d67d0bf85
commit b3e2f9fc9c
8 changed files with 980 additions and 578 deletions

View file

@ -12,7 +12,7 @@ SECRET_KEY = "your_secret_key"
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES = "720"
# SEARCHE ENGINES TO USE - FUTURE FEATURE - LEAVE EMPTY FOR NOW
# SEARCHE ENGINES TO USE FOR WEB SEARCH
TAVILY_API_KEY=""

File diff suppressed because one or more lines are too long

View file

@ -1,5 +1,5 @@
import asyncio
from datetime import datetime
import json
from typing import List
from gpt_researcher import GPTResearcher
from langchain_chroma import Chroma
@ -10,18 +10,19 @@ from langchain.docstore.document import Document
from langchain_experimental.text_splitter import SemanticChunker
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import FlashrankRerank
import numpy as np
from sqlalchemy.orm import Session
from fastapi import Depends
from fastapi import Depends, WebSocket
from langchain_core.prompts import PromptTemplate
import os
from dotenv import load_dotenv
from Utils.stringify import stringify
from pydmodels import AIAnswer, Reference
from database import SessionLocal
from models import Documents, User
from prompts import CONTEXT_ANSWER_PROMPT
from models import Documents
load_dotenv()
SMART_LLM = os.environ.get("SMART_LLM")
@ -43,6 +44,26 @@ def get_db():
yield db
finally:
db.close()
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return super().default(obj)
class ConnectionManager:
def __init__(self):
self.active_connections: List[WebSocket] = []
async def connect(self, websocket: WebSocket):
await websocket.accept()
self.active_connections.append(websocket)
def disconnect(self, websocket: WebSocket):
self.active_connections.remove(websocket)
async def send_personal_message(self, message: str, websocket: WebSocket):
await websocket.send_text(message)
class HIndices:
@ -74,7 +95,8 @@ class HIndices:
def summarize_file_doc(self, page_no, doc, search_space):
report_template = """
You are an eagle-eyed researcher, skilled at summarizing lengthy documents with precision and clarity.
You are an eagle-eyed researcher, skilled at summarizing lengthy documents with precision and clarity.
I would like you to assist me in summarizing the following text. Please create a comprehensive summary that captures the main ideas, key details, and essential arguments presented in the text. Your summary should adhere to the following guidelines:
Length and Depth: Provide a detailed summary that is approximately [insert desired word count or length, e.g., 300-500 words]. Ensure that it is thorough enough to convey the core message without losing important nuances.
@ -122,7 +144,6 @@ class HIndices:
# metadict['languages'] = metadict['languages'][0]
return Document(
id=str(page_no),
page_content=response,
metadata=metadict
)
@ -141,14 +162,11 @@ class HIndices:
# metadict['languages'] = metadict['languages'][0]
return Document(
id=str(page_no),
page_content=response.content,
metadata=metadict
)
def summarize_webpage_doc(self, page_no, doc, search_space):
report_template = """
You are an eagle-eyed researcher, skilled at summarizing lengthy documents with precision and clarity.
I would like you to assist me in summarizing the following text. Please create a comprehensive summary that captures the main ideas, key details, and essential arguments presented in the text. Your summary should adhere to the following guidelines:
@ -187,7 +205,6 @@ class HIndices:
response = report_chain.invoke({"document": doc})
return Document(
id=str(page_no),
page_content=response,
metadata={
"filetype": 'WEBPAGE',
@ -207,7 +224,6 @@ class HIndices:
response = report_chain.invoke({"document": doc})
return Document(
id=str(page_no),
page_content=response.content,
metadata={
"filetype": 'WEBPAGE',
@ -223,29 +239,17 @@ class HIndices:
}
)
def encode_docs_hierarchical(self, documents, files_type, search_space='GENERAL', db: Session = Depends(get_db)):
def encode_docs_hierarchical(self, documents, search_space_instance, files_type, db: Session = Depends(get_db)):
"""
Creates and Saves/Updates docs in hierarchical indices and postgres table
"""
prev_doc_idx = len(documents) + 1
# #Save docs in PG
user = db.query(User).filter(User.username == self.username).first()
if(len(user.documents) < prev_doc_idx):
summary_last_id = 0
detail_id_counter = 0
else:
summary_last_id = int(user.documents[-prev_doc_idx].id)
detail_id_counter = int(user.documents[-prev_doc_idx].desc_vector_end)
page_no_offset = len(self.detailed_store.get()['documents'])
# Process documents
summaries = []
if(files_type=='WEBPAGE'):
batch_summaries = [self.summarize_webpage_doc(page_no = i + summary_last_id, doc=doc, search_space=search_space) for i, doc in enumerate(documents)]
batch_summaries = [self.summarize_webpage_doc(page_no = i + page_no_offset, doc=doc, search_space=search_space_instance.name) for i, doc in enumerate(documents)]
else:
batch_summaries = [self.summarize_file_doc(page_no = i + summary_last_id, doc=doc, search_space=search_space) for i, doc in enumerate(documents)]
batch_summaries = [self.summarize_file_doc(page_no = i + page_no_offset , doc=doc, search_space=search_space_instance.name) for i, doc in enumerate(documents)]
summaries.extend(batch_summaries)
@ -254,21 +258,37 @@ class HIndices:
for i, summary in enumerate(summaries):
# Add single summary in vector store
added_doc_id = self.summary_store.add_documents(filter_complex_metadata([summary]))
if(files_type=='WEBPAGE'):
new_pg_doc = Documents(
title=summary.metadata['VisitedWebPageTitle'],
document_metadata=stringify(summary.metadata),
page_content=documents[i].page_content,
file_type='WEBPAGE',
summary_vector_id=added_doc_id[0],
)
else:
new_pg_doc = Documents(
title=summary.metadata['filename'],
document_metadata=stringify(summary.metadata),
page_content=documents[i].page_content,
file_type=summary.metadata['filetype'],
summary_vector_id=added_doc_id[0],
)
# Store it in PG
search_space_instance.documents.append(new_pg_doc)
db.commit()
# Semantic chucking for better contexual compression
text_splitter = SemanticChunker(embeddings=self.embeddings)
chunks = text_splitter.split_documents([documents[i]])
user.documents[-(len(summaries) - i)].desc_vector_start = detail_id_counter
user.documents[-(len(summaries) - i)].desc_vector_end = detail_id_counter + len(chunks)
db.commit()
# Update metadata for detailed chunks
for i, chunk in enumerate(chunks):
chunk.id = str(detail_id_counter)
chunk.metadata.update({
"chunk_id": detail_id_counter,
"summary": False,
"page": summary.metadata['page'],
})
@ -297,27 +317,15 @@ class HIndices:
chunk.page_content = ieee_content
detail_id_counter += 1
detailed_chunks.extend(chunks)
#update vector stores
self.summary_store.add_documents(filter_complex_metadata(summaries))
self.detailed_store.add_documents(filter_complex_metadata(detailed_chunks))
return self.summary_store, self.detailed_store
def delete_vector_stores(self, summary_ids_to_delete: list[str], db: Session = Depends(get_db)):
self.summary_store.delete(ids=summary_ids_to_delete)
for id in summary_ids_to_delete:
summary_entry = db.query(Documents).filter(Documents.id == int(id) + 1).first()
desc_ids_to_del = [str(id) for id in range(summary_entry.desc_vector_start, summary_entry.desc_vector_end)]
self.detailed_store.delete(ids=desc_ids_to_del)
db.delete(summary_entry)
db.commit()
self.summary_store.delete(ids=summary_ids_to_delete)
return "success"
def summary_vector_search(self,query, search_space='GENERAL'):
@ -344,7 +352,7 @@ class HIndices:
unique_refs = {}
id_mapping = {
ref.id: unique_refs.setdefault(
ref.url, Reference(id=str(len(unique_refs) + 1), title=ref.title, url=ref.url)
ref.source, Reference(id=str(len(unique_refs) + 1), title=ref.title, source=ref.source)
).id
for ref in references
}
@ -356,25 +364,131 @@ class HIndices:
return updated_answer, list(unique_refs.values())
async def get_vectorstore_report(self, query: str, report_type: str, report_source: str, documents: List[Document]) -> str:
researcher = GPTResearcher(query=query, report_type=report_type, report_source=report_source, documents=documents, report_format="IEEE")
async def ws_get_vectorstore_report(self, query: str, report_type: str, report_source: str, documents: List[Document],websocket: WebSocket) -> str:
researcher = GPTResearcher(query=query, report_type=report_type, report_source=report_source, documents=documents, report_format="APA",websocket=websocket)
await researcher.conduct_research()
report = await researcher.write_report()
return report
async def get_web_report(self, query: str, report_type: str, report_source: str) -> str:
researcher = GPTResearcher(query=query, report_type=report_type, report_source=report_source, report_format="IEEE")
async def ws_get_web_report(self, query: str, report_type: str, report_source: str, websocket: WebSocket) -> str:
researcher = GPTResearcher(query=query, report_type=report_type, report_source=report_source, report_format="APA",websocket=websocket)
await researcher.conduct_research()
report = await researcher.write_report()
return report
def new_search(self, query, search_space='GENERAL'):
report_type = "custom_report"
report_source = "langchain_documents"
contextdocs = []
async def ws_experimental_search(self, websocket: WebSocket, manager: ConnectionManager , query, search_space='GENERAL', report_type = "custom_report", report_source = "langchain_documents"):
custom_prompt = """
Please answer the following user query using only the **Document Page Content** provided below, while citing sources exclusively from the **Document Metadata** section, in the format shown. **Do not add any external information.**
**USER QUERY:** """ + query + """
**Answer Requirements:**
- Provide a detailed long response using IEEE-style in-text citations (e.g., [1], [2]) based solely on the **Document Page Content**.
- Use **Document Metadata** only for citation details and format each reference exactly once, with no duplicates.
- Structure references in this format at the end of your response, using this format: (Access Date and Time). [Title or Filename](Source)
FOR EXAMPLE:
EXAMPLE User Query : Explain the impact of artificial intelligence on modern healthcare.
EXAMPLE Given Documents:
=======================================DOCUMENT METADATA==================================== \n"
Source: https://www.reddit.com/r/ChatGPT/comments/13na8yp/highly_effective_prompt_for_summarizing_gpt4/ \n
Title: Artificial intelligence\n
Visited Date and Time : 2024-10-23T22:44:03-07:00 \n
============================DOCUMENT PAGE CONTENT CHUNK===================================== \n
Page Content Chunk: \n\nArtificial intelligence (AI) has significantly transformed modern healthcare by enhancing diagnostic accuracy, personalizing patient care, and optimizing operational efficiency. AI algorithms can analyze vast datasets to identify patterns that may be missed by human practitioners, leading to improved diagnostic outcomes. \n\n
===================================================================================== \n
=======================================DOCUMENT METADATA==================================== \n"
Source: https://github.com/MODSetter/SurfSense \n
Title: MODSetter/SurfSense: Personal AI Assistant for Internet Surfers and Researchers. \n
Visited Date and Time : 2024-10-23T22:44:03-07:00 \n
============================DOCUMENT PAGE CONTENT CHUNK===================================== \n
Page Content Chunk: \n\nAI systems have been deployed in radiology to detect anomalies in medical imaging with high precision, reducing the risk of misdiagnosis and improving patient outcomes. Additionally, AI-powered chatbots and virtual assistants are being used to provide 24/7 support, answer queries, and offer personalized health advice\n\n
===================================================================================== \n
=======================================DOCUMENT METADATA==================================== \n"
Source: https://github.com/MODSetter/SurfSense \n
Title: MODSetter/SurfSense: Personal AI Assistant for Internet Surfers and Researchers. \n
Visited Date and Time : 2024-10-23T22:44:03-07:00 \n
============================DOCUMENT PAGE CONTENT CHUNK===================================== \n
Page Content Chunk: \n\nAI algorithms can analyze a patient's genetic information to predict their risk of certain diseases and recommend tailored treatment plans. \n\n
===================================================================================== \n
=======================================DOCUMENT METADATA==================================== \n"
Source: filename.pdf \n
============================DOCUMENT PAGE CONTENT CHUNK===================================== \n
Page Content Chunk: \n\nApart from diagnostics, AI-driven tools facilitate personalized treatment plans by considering individual patient data, thereby improving patient outcomes\n\n
===================================================================================== \n
Ensure your response is structured something like this:
**OUTPUT FORMAT:**
---
**Answer:**
Artificial intelligence (AI) has significantly transformed modern healthcare by enhancing diagnostic accuracy, personalizing patient care, and optimizing operational efficiency. AI algorithms can analyze vast datasets to identify patterns that may be missed by human practitioners, leading to improved diagnostic outcomes [1]. For instance, AI systems have been deployed in radiology to detect anomalies in medical imaging with high precision [2]. Moreover, AI-driven tools facilitate personalized treatment plans by considering individual patient data, thereby improving patient outcomes [3].
**References:**
1. (2024, October 23). [Artificial intelligence GPT-4 Optimized: r/ChatGPT](https://www.reddit.com/r/ChatGPT/comments/13na8yp/highly_effective_prompt_for_summarizing_gpt4)
2. (2024, October 23). [MODSetter/SurfSense: Personal AI Assistant for Internet Surfers and Researchers](https://github.com/MODSetter/SurfSense)
3. (2024, October 23). [filename.pdf](filename.pdf)
---
"""
structured_llm = self.llm.with_structured_output(AIAnswer)
if report_source == "web" :
if report_type == "custom_report" :
ret_report = await self.ws_get_web_report(query=custom_prompt, report_type=report_type, report_source="web", websocket=websocket)
else:
ret_report = await self.ws_get_web_report(
query=query,
report_type=report_type,
report_source="web",
websocket=websocket
)
await manager.send_personal_message(
json.dumps({"type": "stream", "content": "Converting to IEEE format..."}),
websocket
)
ret_report = self.llm.invoke("I have a report written in APA format. Please convert it to IEEE format, ensuring that all citations, references, headings, and overall formatting adhere to the IEEE style guidelines. Maintain the original content and structure while applying the correct IEEE formatting rules. Just return the converted report thats it. NOW MY REPORT : " + ret_report).content
for chuck in structured_llm.stream(
"Please extract and separate the references from the main text. "
"References are formatted as follows:"
"[Reference Id]. (Access Date and Time). [Title or Filename](Source or URL). "
"Provide the text and references as distinct outputs. "
"IMPORTANT : Never hallucinate the references. If there is no reference just return nothing in the reference field."
"Here is the content to process: \n\n\n" + ret_report):
# ans, sources = self.deduplicate_references_and_update_answer(answer=chuck.answer, references=chuck.references)
await manager.send_personal_message(
json.dumps({"type": "stream", "sources": [source.model_dump() for source in chuck.references]}),
websocket
)
await manager.send_personal_message(
json.dumps({"type": "stream", "content": ret_report}),
websocket
)
return
contextdocs = []
top_summaries_compressor = FlashrankRerank(top_n=5)
details_compressor = FlashrankRerank(top_n=50)
top_summaries_retreiver = ContextualCompressionRetriever(
@ -383,6 +497,13 @@ class HIndices:
top_summaries_compressed_docs = top_summaries_retreiver.invoke(query)
rel_docs = filter_complex_metadata(top_summaries_compressed_docs)
await manager.send_personal_message(
json.dumps({"type": "stream", "relateddocs": [relateddoc.model_dump() for relateddoc in rel_docs]}, cls=NumpyEncoder),
websocket
)
for summary in top_summaries_compressed_docs:
# For each summary, retrieve relevant detailed chunks
page_number = summary.metadata["page"]
@ -396,66 +517,45 @@ class HIndices:
)
contextdocs.extend(detailed_compressed_docs)
custom_prompt = """
Please answer the following user query in the format shown below, using in-text citations and IEEE-style references based on the provided documents.
USER QUERY : """+ query +"""
Ensure the answer includes:
- A detailed yet concise explanation with IEEE-style in-text citations (e.g., [1], [2]).
- A list of non-duplicated sources only from document's metadata not document's page content at the end, following IEEE format.
- Where applicable, provide sources in the text to back up key points.
- Reference should follow this format : (Access Date and Time). [Title or Filename](Source)
FOR EXAMPLE:
User Query : Explain the impact of artificial intelligence on modern healthcare.
Given Documents:
=======================================DOCUMENT METADATA==================================== \n"
Source: https://www.reddit.com/r/ChatGPT/comments/13na8yp/highly_effective_prompt_for_summarizing_gpt4/ \n
Title: Artificial intelligence\n
Visited Date and Time : 2024-10-23T22:44:03-07:00 \n
============================DOCUMENT PAGE CONTENT CHUNK===================================== \n
Page Content Chunk: \n\nArtificial intelligence (AI) has significantly transformed modern healthcare by enhancing diagnostic accuracy, personalizing patient care, and optimizing operational efficiency. AI algorithms can analyze vast datasets to identify patterns that may be missed by human practitioners, leading to improved diagnostic outcomes. \n\n
===================================================================================== \n
=======================================DOCUMENT METADATA==================================== \n"
Source: https://github.com/MODSetter/SurfSense \n
Title: MODSetter/SurfSense: Personal AI Assistant for Internet Surfers and Researchers. \n
Visited Date and Time : 2024-10-23T22:44:03-07:00 \n
============================DOCUMENT PAGE CONTENT CHUNK===================================== \n
Page Content Chunk: \n\nAI systems have been deployed in radiology to detect anomalies in medical imaging with high precision, reducing the risk of misdiagnosis and improving patient outcomes. Additionally, AI-powered chatbots and virtual assistants are being used to provide 24/7 support, answer queries, and offer personalized health advice\n\n
===================================================================================== \n
=======================================DOCUMENT METADATA==================================== \n"
Source: filename.pdf \n
============================DOCUMENT PAGE CONTENT CHUNK===================================== \n
Page Content Chunk: \n\nApart from diagnostics, AI-driven tools facilitate personalized treatment plans by considering individual patient data, thereby improving patient outcomes\n\n
===================================================================================== \n
# local_report = asyncio.run(self.get_vectorstore_report(query=custom_prompt, report_type=report_type, report_source=report_source, documents=contextdocs))
if report_source == "langchain_documents" :
if report_type == "custom_report" :
ret_report = await self.ws_get_vectorstore_report(query=custom_prompt, report_type=report_type, report_source=report_source, documents=contextdocs, websocket=websocket)
else:
ret_report = await self.ws_get_vectorstore_report(query=query, report_type=report_type, report_source=report_source, documents=contextdocs, websocket=websocket)
await manager.send_personal_message(
json.dumps({"type": "stream", "content": "Converting to IEEE format..."}),
websocket
)
ret_report = self.llm.invoke("I have a report written in APA format. Please convert it to IEEE format, ensuring that all citations, references, headings, and overall formatting adhere to the IEEE style guidelines. Maintain the original content and structure while applying the correct IEEE formatting rules. Just return the converted report thats it. NOW MY REPORT : " + ret_report).content
for chuck in structured_llm.stream(
"Please extract and separate the references from the main text. "
"References are formatted as follows:"
"[Reference Id]. (Access Date and Time). [Title or Filename](Source or URL). "
"Provide the text and references as distinct outputs. "
"Ensure that in-text citation numbers such as [1], [2], (1), (2), etc., as well as in-text links or in-text citation links within the content, remain unaltered and are accurately extracted."
"IMPORTANT : Never hallucinate the references. If there is no reference just return nothing in the reference field."
"Here is the content to process: \n\n\n" + ret_report):
ans, sources = self.deduplicate_references_and_update_answer(answer=chuck.answer, references=chuck.references)
await manager.send_personal_message(
json.dumps({"type": "stream", "sources": [source.model_dump() for source in sources]}),
websocket
)
Ensure your response is structured something like this:
---
**Answer:**
Artificial intelligence (AI) has significantly transformed modern healthcare by enhancing diagnostic accuracy, personalizing patient care, and optimizing operational efficiency. AI algorithms can analyze vast datasets to identify patterns that may be missed by human practitioners, leading to improved diagnostic outcomes [1]. For instance, AI systems have been deployed in radiology to detect anomalies in medical imaging with high precision [2]. Moreover, AI-driven tools facilitate personalized treatment plans by considering individual patient data, thereby improving patient outcomes [3].
await manager.send_personal_message(
json.dumps({"type": "stream", "content": ans}),
websocket
)
**References:**
1. (2024, October 23). [Artificial intelligence GPT-4 Optimized: r/ChatGPT.](https://www.reddit.com/r/ChatGPT/comments/13na8yp/highly_effective_prompt_for_summarizing_gpt4/)
2. (2024, October 23). [MODSetter/SurfSense: Personal AI Assistant for Internet Surfers and Researchers.](https://github.com/MODSetter/SurfSense)
3. (2024, October 23). [filename.pdf](filename.pdf)
---
"""
local_report = asyncio.run(self.get_vectorstore_report(query=custom_prompt, report_type=report_type, report_source=report_source, documents=contextdocs))
return
# web_report = asyncio.run(get_web_report(query=custom_prompt, report_type=report_type, report_source="web"))
# structured_llm = self.llm.with_structured_output(AIAnswer)
# out = structured_llm.invoke("Extract exact(i.e without changing) answer string and references information from : \n\n\n" + local_report)
# mod_out = self.deduplicate_references_and_update_answer(answer=out.answer, references=out.references)
return local_report

View file

@ -1,7 +1,7 @@
from datetime import datetime
from typing import List
# from typing import List
from database import Base, engine
from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, create_engine
from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, Boolean, create_engine
from sqlalchemy.orm import relationship
class BaseModel(Base):
@ -18,8 +18,8 @@ class Chat(BaseModel):
title = Column(String)
chats_list = Column(String)
user_id = Column(ForeignKey('users.id'))
user = relationship('User')
search_space_id = Column(Integer, ForeignKey('searchspaces.id'))
search_space = relationship('SearchSpace', back_populates='chats')
class Documents(BaseModel):
@ -31,30 +31,50 @@ class Documents(BaseModel):
file_type = Column(String)
document_metadata = Column(String)
page_content = Column(String)
desc_vector_start = Column(Integer, default=0)
desc_vector_end = Column(Integer, default=0)
search_space_id = Column(ForeignKey('searchspaces.id'))
search_space = relationship('SearchSpace')
summary_vector_id = Column(String)
search_space_id = Column(Integer, ForeignKey("searchspaces.id"))
search_space = relationship("SearchSpace", back_populates="documents")
class Podcast(BaseModel):
__tablename__ = "podcasts"
title = Column(String)
created_at = Column(DateTime, default=datetime.now)
is_generated = Column(Boolean, default=False)
podcast_content = Column(String, default="")
file_location = Column(String, default="")
search_space_id = Column(Integer, ForeignKey("searchspaces.id"))
search_space = relationship("SearchSpace", back_populates="podcasts")
user_id = Column(ForeignKey('users.id'))
user = relationship('User')
class SearchSpace(BaseModel):
__tablename__ = "searchspaces"
search_space = Column(String, unique=True)
name = Column(String, index=True)
description = Column(String)
created_at = Column(DateTime, default=datetime.now)
documents = relationship(Documents)
user_id = Column(Integer, ForeignKey("users.id"))
user = relationship("User", back_populates="search_spaces")
documents = relationship("Documents", back_populates="search_space", order_by="Documents.id")
podcasts = relationship("Podcast", back_populates="search_space", order_by="Podcast.id")
chats = relationship('Chat', back_populates='search_space', order_by='Chat.id')
class User(BaseModel):
__tablename__ = "users"
username = Column(String, unique=True, index=True)
hashed_password = Column(String)
chats = relationship(Chat, order_by="Chat.id")
documents = relationship(Documents, order_by="Documents.id")
search_spaces = relationship("SearchSpace", back_populates="user")
# Create the database tables if they don't exist
User.metadata.create_all(bind=engine)
User.metadata.create_all(bind=engine)

View file

@ -1,75 +1,6 @@
from langchain_core.prompts.prompt import PromptTemplate
# Need to move new prompts to here will move after testing some more
# from langchain_core.prompts.prompt import PromptTemplate
from datetime import datetime, timezone
DATE_TODAY = "Today's date is " + datetime.now(timezone.utc).astimezone().isoformat() + '\n'
# Create a prompt template for sub-query decomposition
SUBQUERY_DECOMPOSITION_TEMPLATE = DATE_TODAY + """You are an AI assistant tasked with breaking down complex queries into simpler sub-queries for a vector store.
Given the original query, decompose it into 2-4 simpler sub-queries for vector search that helps in expanding context.
Original query: {original_query}
IMPORTANT INSTRUCTION: Make sure to only return sub-queries and no explanation.
EXAMPLE:
User Query: What are the impacts of climate change on the environment?
AI Answer:
What are the impacts of climate change on biodiversity?
How does climate change affect the oceans?
What are the effects of climate change on agriculture?
What are the impacts of climate change on human health?
"""
# SUBQUERY_DECOMPOSITION_TEMPLATE_TWO = DATE_TODAY + """You are an AI language model assistant. Your task is to generate five
# different versions of the given user question to retrieve relevant documents from a vector
# database. By generating multiple perspectives on the user question, your goal is to help
# the user overcome some of the limitations of the distance-based similarity search.
# Provide these alternative questions separated by newlines.
# Original question: {original_query}"""
SUBQUERY_DECOMPOSITION_PROMT = PromptTemplate(
input_variables=["original_query"],
template=SUBQUERY_DECOMPOSITION_TEMPLATE
)
CONTEXT_ANSWER_TEMPLATE = DATE_TODAY + """You are a phd in english litrature. You are given the task to give detailed research report and explanation to the user query based on the given context.
IMPORTANT INSTRUCTION: Only return answer if you can find it in given context otherwise just say you don't know.
Context: {context}
User Query: {query}
Detailed Report:"""
ANSWER_WITH_CITATIONS = DATE_TODAY + """You're a helpful AI assistant. Given a user question and some Webpage article snippets, \
answer the user question and provide citations. If none of the articles answer the question, just say you don't know.
Remember, you must return both an answer and citations. Citation information is given in Document Metadata.
Here are the Webpage article snippets:
{context}
User Query: {query}
Your Answer:"""
CONTEXT_ANSWER_PROMPT = PromptTemplate(
input_variables=["context","query"],
template=ANSWER_WITH_CITATIONS
)
DATE_TODAY = "Today's date is " + datetime.now(timezone.utc).astimezone().isoformat() + '\n'

View file

@ -1,3 +1,4 @@
# This have many unused shit will clean in future
from pydantic import BaseModel, Field
from typing import List, Optional
@ -24,15 +25,28 @@ class DocMeta(BaseModel):
# VisitedWebPageContent: Optional[str] = Field(default=None, description="Visited WebPage Content in markdown of Document")
class CreatePodcast(BaseModel):
token: str
search_space_id: int
title: str
wordcount: int
podcast_content: str
class CreateStorageSpace(BaseModel):
name: str
description: str
token : str
class Reference(BaseModel):
id: str = Field(..., description="reference no")
title: str = Field(..., description="reference title")
url: str = Field(..., description="reference url")
title: str = Field(..., description="reference title.")
source: str = Field(..., description="reference Source or URL. Prefer URL only include file names if no URL available.")
class AIAnswer(BaseModel):
answer: str = Field(..., description="Given Answer including its intext citation no's like [1], [2] etc.")
answer: str = Field(..., description="The provided answer, excluding references, but including in-text citation numbers such as [1], [2], (1), (2), etc.")
references: List[Reference] = Field(..., description="References")
@ -42,13 +56,16 @@ class DocWithContent(BaseModel):
class DocumentsToDelete(BaseModel):
ids_to_delete: List[str]
openaikey: str
token: str
class UserQuery(BaseModel):
query: str
search_space: str
openaikey: str
token: str
class MainUserQuery(BaseModel):
query: str
search_space: str
token: str
class ChatHistory(BaseModel):
@ -58,7 +75,6 @@ class ChatHistory(BaseModel):
class UserQueryWithChatHistory(BaseModel):
chat: List[ChatHistory]
query: str
openaikey: str
token: str
class DescriptionResponse(BaseModel):
@ -70,14 +86,18 @@ class RetrivedDocListItem(BaseModel):
class RetrivedDocList(BaseModel):
documents: List[RetrivedDocListItem]
search_space: str | None
openaikey: str
search_space_id: int
token: str
class UserQueryResponse(BaseModel):
response: str
relateddocs: List[DocWithContent]
class NewUserQueryResponse(BaseModel):
response: str
sources: List[Reference]
relateddocs: List[DocWithContent]
class NewUserChat(BaseModel):
token: str
type: str

View file

@ -24,4 +24,7 @@ gpt_researcher
langgraph-cli
weasyprint
json5
loguru
loguru
ffmpeg
podcastfy
wsproto

File diff suppressed because it is too large Load diff