mirror of
https://github.com/MODSetter/SurfSense.git
synced 2025-09-09 13:54:40 +00:00
feat: Add Docling support as ETL_SERVICE option
- Added DOCLING as third ETL_SERVICE option (alongside UNSTRUCTURED/LLAMACLOUD) - Implemented add_received_file_document_using_docling function - Added Docling processing logic in documents_routes.py - Enhanced chunking with configurable overlap support - Added comprehensive document processing service - Supports both CPU and GPU processing with user selection Addresses #161 - Add Docling Support as an ETL_SERVICE Follows same pattern as LlamaCloud integration (PR #123)
This commit is contained in:
parent
f852bcb188
commit
aa00822169
14 changed files with 3125 additions and 2090 deletions
|
@ -459,6 +459,94 @@ async def add_received_file_document_using_llamacloud(
|
|||
raise RuntimeError(f"Failed to process file document using LlamaCloud: {str(e)}")
|
||||
|
||||
|
||||
async def add_received_file_document_using_docling(
|
||||
session: AsyncSession,
|
||||
file_name: str,
|
||||
docling_markdown_document: str,
|
||||
search_space_id: int,
|
||||
user_id: str,
|
||||
) -> Optional[Document]:
|
||||
"""
|
||||
Process and store document content parsed by Docling.
|
||||
|
||||
Args:
|
||||
session: Database session
|
||||
file_name: Name of the processed file
|
||||
docling_markdown_document: Markdown content from Docling parsing
|
||||
search_space_id: ID of the search space
|
||||
user_id: ID of the user
|
||||
|
||||
Returns:
|
||||
Document object if successful, None if failed
|
||||
"""
|
||||
try:
|
||||
file_in_markdown = docling_markdown_document
|
||||
|
||||
content_hash = generate_content_hash(file_in_markdown, search_space_id)
|
||||
|
||||
# Check if document with this content hash already exists
|
||||
existing_doc_result = await session.execute(
|
||||
select(Document).where(Document.content_hash == content_hash)
|
||||
)
|
||||
existing_document = existing_doc_result.scalars().first()
|
||||
|
||||
if existing_document:
|
||||
logging.info(f"Document with content hash {content_hash} already exists. Skipping processing.")
|
||||
return existing_document
|
||||
|
||||
# Get user's long context LLM
|
||||
user_llm = await get_user_long_context_llm(session, user_id)
|
||||
if not user_llm:
|
||||
raise RuntimeError(f"No long context LLM configured for user {user_id}")
|
||||
|
||||
# Generate summary using chunked processing for large documents
|
||||
from app.services.document_processing.docling_service import create_docling_service
|
||||
docling_service = create_docling_service()
|
||||
|
||||
summary_content = await docling_service.process_large_document_summary(
|
||||
content=file_in_markdown,
|
||||
llm=user_llm,
|
||||
document_title=file_name
|
||||
)
|
||||
summary_embedding = config.embedding_model_instance.embed(summary_content)
|
||||
|
||||
# Process chunks
|
||||
chunks = [
|
||||
Chunk(
|
||||
content=chunk.text,
|
||||
embedding=config.embedding_model_instance.embed(chunk.text),
|
||||
)
|
||||
for chunk in config.chunker_instance.chunk(file_in_markdown)
|
||||
]
|
||||
|
||||
# Create and store document
|
||||
document = Document(
|
||||
search_space_id=search_space_id,
|
||||
title=file_name,
|
||||
document_type=DocumentType.FILE,
|
||||
document_metadata={
|
||||
"FILE_NAME": file_name,
|
||||
"ETL_SERVICE": "DOCLING",
|
||||
},
|
||||
content=summary_content,
|
||||
embedding=summary_embedding,
|
||||
chunks=chunks,
|
||||
content_hash=content_hash,
|
||||
)
|
||||
|
||||
session.add(document)
|
||||
await session.commit()
|
||||
await session.refresh(document)
|
||||
|
||||
return document
|
||||
except SQLAlchemyError as db_error:
|
||||
await session.rollback()
|
||||
raise db_error
|
||||
except Exception as e:
|
||||
await session.rollback()
|
||||
raise RuntimeError(f"Failed to process file document using Docling: {str(e)}")
|
||||
|
||||
|
||||
async def add_youtube_video_document(
|
||||
session: AsyncSession, url: str, search_space_id: int, user_id: str
|
||||
):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue