feat: Added Speech to Text support.

- Supports audio & video files.
- Will be useful for Youtube vids which dont have transcripts.
This commit is contained in:
DESKTOP-RTLN3BA\$punk 2025-05-13 21:13:53 -07:00
parent 57987ecc76
commit a8080d2dc7
8 changed files with 172 additions and 73 deletions

View file

@ -27,28 +27,27 @@ https://github.com/user-attachments/assets/bf64a6ca-934b-47ac-9e1b-edac5fe972ec
## Key Features
### 1. Latest
#### 💡 **Idea**:
### 💡 **Idea**:
Have your own highly customizable private NotebookLM and Perplexity integrated with external sources.
#### 📁 **Multiple File Format Uploading Support**
Save content from your own personal files *(Documents, images and supports **27 file extensions**)* to your own personal knowledge base .
#### 🔍 **Powerful Search**
### 📁 **Multiple File Format Uploading Support**
Save content from your own personal files *(Documents, images, videos and supports **34 file extensions**)* to your own personal knowledge base .
### 🔍 **Powerful Search**
Quickly research or find anything in your saved content .
#### 💬 **Chat with your Saved Content**
### 💬 **Chat with your Saved Content**
Interact in Natural Language and get cited answers.
#### 📄 **Cited Answers**
### 📄 **Cited Answers**
Get Cited answers just like Perplexity.
#### 🔔 **Privacy & Local LLM Support**
### 🔔 **Privacy & Local LLM Support**
Works Flawlessly with Ollama local LLMs.
#### 🏠 **Self Hostable**
### 🏠 **Self Hostable**
Open source and easy to deploy locally.
#### 🎙️ Podcasts
### 🎙️ Podcasts
- Blazingly fast podcast generation agent. (Creates a 3-minute podcast in under 20 seconds.)
- Convert your chat conversations into engaging audio content
- Support for multiple TTS providers (OpenAI, Azure, Google Vertex AI)
#### 📊 **Advanced RAG Techniques**
### 📊 **Advanced RAG Techniques**
- Supports 150+ LLM's
- Supports 6000+ Embedding Models.
- Supports all major Rerankers (Pinecode, Cohere, Flashrank etc)
@ -56,7 +55,7 @@ Open source and easy to deploy locally.
- Utilizes Hybrid Search (Semantic + Full Text Search combined with Reciprocal Rank Fusion).
- RAG as a Service API Backend.
#### **External Sources**
### **External Sources**
- Search Engines (Tavily, LinkUp)
- Slack
- Linear
@ -65,7 +64,39 @@ Open source and easy to deploy locally.
- GitHub
- and more to come.....
#### 🔖 Cross Browser Extension
### 📄 **Supported File Extensions**
#### Document
`.doc`, `.docx`, `.odt`, `.rtf`, `.pdf`, `.xml`
#### Text & Markup
`.txt`, `.md`, `.markdown`, `.rst`, `.html`, `.org`
#### Spreadsheets & Tables
`.xls`, `.xlsx`, `.csv`, `.tsv`
#### Audio & Video
`.mp3`, `.mpga`, `.m4a`, `.wav`, `.mp4`, `.mpeg`, `.webm`
#### Images
`.jpg`, `.jpeg`, `.png`, `.bmp`, `.tiff`, `.heic`
#### Email & eBooks
`.eml`, `.msg`, `.epub`
#### PowerPoint Presentations & Other
`.ppt`, `.pptx`, `.p7s`
### 🔖 Cross Browser Extension
- The SurfSense extension can be used to save any webpage you like.
- Its main usecase is to save any webpages protected beyond authentication.
@ -209,16 +240,8 @@ Before installation, make sure to complete the [prerequisite setup steps](https:
## Future Work
- Add More Connectors.
- Patch minor bugs.
- Implement Canvas.
- Complete Hybrid Search. **[Done]**
- Add support for file uploads QA. **[Done]**
- Shift to WebSockets for Streaming responses. **[Deprecated in favor of AI SDK Stream Protocol]**
- Based on feedback, I will work on making it compatible with local models. **[Done]**
- Cross Browser Extension **[Done]**
- Critical Notifications **[Done | PAUSED]**
- Saving Chats **[Done]**
- Basic keyword search page for saved sessions **[Done]**
- Multi & Single Document Chat **[Done]**
- Document Chat **[REIMPLEMENT]**
- Document Podcasts

View file

@ -18,6 +18,9 @@ LONG_CONTEXT_LLM="gemini/gemini-2.0-flash"
#LiteLLM TTS Provider: https://docs.litellm.ai/docs/text_to_speech#supported-providers
TTS_SERVICE="openai/tts-1"
#LiteLLM STT Provider: https://docs.litellm.ai/docs/audio_transcription#supported-providers
STT_SERVICE="openai/whisper-1"
# Chosen LiteLLM Providers Keys
OPENAI_API_KEY="sk-proj-iA"
GEMINI_API_KEY="AIzaSyB6-1641124124124124124124124124124"
@ -35,3 +38,5 @@ LANGSMITH_PROJECT="surfsense"
FAST_LLM_API_BASE=""
STRATEGIC_LLM_API_BASE=""
LONG_CONTEXT_LLM_API_BASE=""
TTS_SERVICE_API_BASE=""
STT_SERVICE_API_BASE=""

View file

@ -135,14 +135,23 @@ async def create_merged_podcast_audio(state: State, config: RunnableConfig) -> D
filename = f"{temp_dir}/{session_id}_{index}.mp3"
try:
# Generate speech using litellm
response = await aspeech(
model=app_config.TTS_SERVICE,
voice=voice,
input=dialog,
max_retries=2,
timeout=600,
)
if app_config.TTS_SERVICE_API_BASE:
response = await aspeech(
model=app_config.TTS_SERVICE,
api_base=app_config.TTS_SERVICE_API_BASE,
voice=voice,
input=dialog,
max_retries=2,
timeout=600,
)
else:
response = await aspeech(
model=app_config.TTS_SERVICE,
voice=voice,
input=dialog,
max_retries=2,
timeout=600,
)
# Save the audio to a file - use proper streaming method
with open(filename, 'wb') as f:

View file

@ -6,7 +6,7 @@ from chonkie import AutoEmbeddings, CodeChunker, RecursiveChunker
from dotenv import load_dotenv
from langchain_community.chat_models import ChatLiteLLM
from rerankers import Reranker
from litellm import speech
# Get the base directory of the project
BASE_DIR = Path(__file__).resolve().parent.parent.parent
@ -97,6 +97,12 @@ class Config:
# Litellm TTS Configuration
TTS_SERVICE = os.getenv("TTS_SERVICE")
TTS_SERVICE_API_BASE = os.getenv("TTS_SERVICE_API_BASE")
# Litellm STT Configuration
STT_SERVICE = os.getenv("STT_SERVICE")
STT_SERVICE_API_BASE = os.getenv("STT_SERVICE_API_BASE")
# Validation Checks
# Check embedding dimension

View file

@ -1,3 +1,4 @@
from litellm import atranscription
from fastapi import APIRouter, Depends, BackgroundTasks, UploadFile, Form, HTTPException
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.future import select
@ -7,6 +8,7 @@ from app.schemas import DocumentsCreate, DocumentUpdate, DocumentRead
from app.users import current_active_user
from app.utils.check_ownership import check_ownership
from app.tasks.background_tasks import add_received_markdown_file_document, add_extension_received_document, add_received_file_document, add_crawled_url_document, add_youtube_video_document
from app.config import config as app_config
# Force asyncio to use standard event loop before unstructured imports
import asyncio
try:
@ -17,9 +19,9 @@ import os
os.environ["UNSTRUCTURED_HAS_PATCHED_LOOP"] = "1"
router = APIRouter()
@router.post("/documents/")
async def create_documents(
request: DocumentsCreate,
@ -30,19 +32,19 @@ async def create_documents(
try:
# Check if the user owns the search space
await check_ownership(session, SearchSpace, request.search_space_id, user)
if request.document_type == DocumentType.EXTENSION:
for individual_document in request.content:
fastapi_background_tasks.add_task(
process_extension_document_with_new_session,
individual_document,
process_extension_document_with_new_session,
individual_document,
request.search_space_id
)
elif request.document_type == DocumentType.CRAWLED_URL:
for url in request.content:
for url in request.content:
fastapi_background_tasks.add_task(
process_crawled_url_with_new_session,
url,
process_crawled_url_with_new_session,
url,
request.search_space_id
)
elif request.document_type == DocumentType.YOUTUBE_VIDEO:
@ -57,7 +59,7 @@ async def create_documents(
status_code=400,
detail="Invalid document type"
)
await session.commit()
return {"message": "Documents processed successfully"}
except HTTPException:
@ -69,6 +71,7 @@ async def create_documents(
detail=f"Failed to process documents: {str(e)}"
)
@router.post("/documents/fileupload")
async def create_documents(
files: list[UploadFile],
@ -79,26 +82,26 @@ async def create_documents(
):
try:
await check_ownership(session, SearchSpace, search_space_id, user)
if not files:
raise HTTPException(status_code=400, detail="No files provided")
for file in files:
try:
# Save file to a temporary location to avoid stream issues
import tempfile
import aiofiles
import os
# Create temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as temp_file:
temp_path = temp_file.name
# Write uploaded file to temp file
content = await file.read()
with open(temp_path, "wb") as f:
f.write(content)
# Process in background to avoid uvloop conflicts
fastapi_background_tasks.add_task(
process_file_in_background_with_new_session,
@ -111,7 +114,7 @@ async def create_documents(
status_code=422,
detail=f"Failed to process file {file.filename}: {str(e)}"
)
await session.commit()
return {"message": "Files uploaded for processing"}
except HTTPException:
@ -136,14 +139,14 @@ async def process_file_in_background(
# For markdown files, read the content directly
with open(file_path, 'r', encoding='utf-8') as f:
markdown_content = f.read()
# Clean up the temp file
import os
try:
os.unlink(file_path)
except:
pass
# Process markdown directly through specialized function
await add_received_markdown_file_document(
session,
@ -151,10 +154,46 @@ async def process_file_in_background(
markdown_content,
search_space_id
)
# Check if the file is an audio file
elif filename.lower().endswith(('.mp3', '.mp4', '.mpeg', '.mpga', '.m4a', '.wav', '.webm')):
# Open the audio file for transcription
with open(file_path, "rb") as audio_file:
# Use LiteLLM for audio transcription
if app_config.STT_SERVICE_API_BASE:
transcription_response = await atranscription(
model=app_config.STT_SERVICE,
file=audio_file,
api_base=app_config.STT_SERVICE_API_BASE
)
else:
transcription_response = await atranscription(
model=app_config.STT_SERVICE,
file=audio_file
)
# Extract the transcribed text
transcribed_text = transcription_response.get("text", "")
# Add metadata about the transcription
transcribed_text = f"# Transcription of {filename}\n\n{transcribed_text}"
# Clean up the temp file
try:
os.unlink(file_path)
except:
pass
# Process transcription as markdown document
await add_received_markdown_file_document(
session,
filename,
transcribed_text,
search_space_id
)
else:
# Use synchronous unstructured API to avoid event loop issues
from langchain_unstructured import UnstructuredLoader
# Process the file
loader = UnstructuredLoader(
file_path,
@ -165,16 +204,16 @@ async def process_file_in_background(
include_metadata=False,
strategy="auto",
)
docs = await loader.aload()
# Clean up the temp file
import os
try:
os.unlink(file_path)
except:
pass
# Pass the documents to the existing background task
await add_received_file_document(
session,
@ -186,6 +225,7 @@ async def process_file_in_background(
import logging
logging.error(f"Error processing file in background: {str(e)}")
@router.get("/documents/", response_model=List[DocumentRead])
async def read_documents(
skip: int = 0,
@ -195,17 +235,18 @@ async def read_documents(
user: User = Depends(current_active_user)
):
try:
query = select(Document).join(SearchSpace).filter(SearchSpace.user_id == user.id)
query = select(Document).join(SearchSpace).filter(
SearchSpace.user_id == user.id)
# Filter by search_space_id if provided
if search_space_id is not None:
query = query.filter(Document.search_space_id == search_space_id)
result = await session.execute(
query.offset(skip).limit(limit)
)
db_documents = result.scalars().all()
# Convert database objects to API-friendly format
api_documents = []
for doc in db_documents:
@ -218,7 +259,7 @@ async def read_documents(
created_at=doc.created_at,
search_space_id=doc.search_space_id
))
return api_documents
except Exception as e:
raise HTTPException(
@ -226,6 +267,7 @@ async def read_documents(
detail=f"Failed to fetch documents: {str(e)}"
)
@router.get("/documents/{document_id}", response_model=DocumentRead)
async def read_document(
document_id: int,
@ -239,13 +281,13 @@ async def read_document(
.filter(Document.id == document_id, SearchSpace.user_id == user.id)
)
document = result.scalars().first()
if not document:
raise HTTPException(
status_code=404,
detail=f"Document with id {document_id} not found"
)
# Convert database object to API-friendly format
return DocumentRead(
id=document.id,
@ -262,6 +304,7 @@ async def read_document(
detail=f"Failed to fetch document: {str(e)}"
)
@router.put("/documents/{document_id}", response_model=DocumentRead)
async def update_document(
document_id: int,
@ -277,19 +320,19 @@ async def update_document(
.filter(Document.id == document_id, SearchSpace.user_id == user.id)
)
db_document = result.scalars().first()
if not db_document:
raise HTTPException(
status_code=404,
detail=f"Document with id {document_id} not found"
)
update_data = document_update.model_dump(exclude_unset=True)
for key, value in update_data.items():
setattr(db_document, key, value)
await session.commit()
await session.refresh(db_document)
# Convert to DocumentRead for response
return DocumentRead(
id=db_document.id,
@ -309,6 +352,7 @@ async def update_document(
detail=f"Failed to update document: {str(e)}"
)
@router.delete("/documents/{document_id}", response_model=dict)
async def delete_document(
document_id: int,
@ -323,13 +367,13 @@ async def delete_document(
.filter(Document.id == document_id, SearchSpace.user_id == user.id)
)
document = result.scalars().first()
if not document:
raise HTTPException(
status_code=404,
detail=f"Document with id {document_id} not found"
)
await session.delete(document)
await session.commit()
return {"message": "Document deleted successfully"}
@ -340,16 +384,16 @@ async def delete_document(
raise HTTPException(
status_code=500,
detail=f"Failed to delete document: {str(e)}"
)
)
async def process_extension_document_with_new_session(
individual_document,
search_space_id: int
):
"""Create a new session and process extension document."""
from app.db import async_session_maker
async with async_session_maker() as session:
try:
await add_extension_received_document(session, individual_document, search_space_id)
@ -357,13 +401,14 @@ async def process_extension_document_with_new_session(
import logging
logging.error(f"Error processing extension document: {str(e)}")
async def process_crawled_url_with_new_session(
url: str,
search_space_id: int
):
"""Create a new session and process crawled URL."""
from app.db import async_session_maker
async with async_session_maker() as session:
try:
await add_crawled_url_document(session, url, search_space_id)
@ -371,6 +416,7 @@ async def process_crawled_url_with_new_session(
import logging
logging.error(f"Error processing crawled URL: {str(e)}")
async def process_file_in_background_with_new_session(
file_path: str,
filename: str,
@ -378,21 +424,21 @@ async def process_file_in_background_with_new_session(
):
"""Create a new session and process file."""
from app.db import async_session_maker
async with async_session_maker() as session:
await process_file_in_background(file_path, filename, search_space_id, session)
async def process_youtube_video_with_new_session(
url: str,
search_space_id: int
):
"""Create a new session and process YouTube video."""
from app.db import async_session_maker
async with async_session_maker() as session:
try:
await add_youtube_video_document(session, url, search_space_id)
except Exception as e:
import logging
logging.error(f"Error processing YouTube video: {str(e)}")

View file

@ -53,7 +53,7 @@ export default function FileUploader() {
'text/html': ['.html'],
'image/jpeg': ['.jpeg', '.jpg'],
'image/png': ['.png'],
'text/markdown': ['.md'],
'text/markdown': ['.md', '.markdown'],
'application/vnd.ms-outlook': ['.msg'],
'application/vnd.oasis.opendocument.text': ['.odt'],
'text/x-org': ['.org'],
@ -69,6 +69,10 @@ export default function FileUploader() {
'application/vnd.ms-excel': ['.xls'],
'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': ['.xlsx'],
'application/xml': ['.xml'],
'audio/mpeg': ['.mp3', '.mpeg', '.mpga'],
'audio/mp4': ['.mp4', '.m4a'],
'audio/wav': ['.wav'],
'audio/webm': ['.webm'],
}
const supportedExtensions = Array.from(new Set(Object.values(acceptedFileTypes).flat())).sort()

View file

@ -94,6 +94,7 @@ Before you begin, ensure you have:
| UNSTRUCTURED_API_KEY | API key for Unstructured.io service for document parsing |
| FIRECRAWL_API_KEY | API key for Firecrawl service for web crawling |
| TTS_SERVICE | Text-to-Speech API provider for Podcasts (e.g., `openai/tts-1`, `azure/neural`, `vertex_ai/`). See [supported providers](https://docs.litellm.ai/docs/text_to_speech#supported-providers) |
| STT_SERVICE | Speech-to-Text API provider for Podcasts (e.g., `openai/whisper-1`). See [supported providers](https://docs.litellm.ai/docs/audio_transcription#supported-providers) |
Include API keys for the LLM providers you're using. For example:
@ -114,6 +115,8 @@ Include API keys for the LLM providers you're using. For example:
| FAST_LLM_API_BASE | Custom API base URL for the fast LLM |
| STRATEGIC_LLM_API_BASE | Custom API base URL for the strategic LLM |
| LONG_CONTEXT_LLM_API_BASE | Custom API base URL for the long context LLM |
| TTS_SERVICE_API_BASE | Custom API base URL for the Text-to-Speech (TTS) service |
| STT_SERVICE_API_BASE | Custom API base URL for the Speech-to-Text (STT) service |
For other LLM providers, refer to the [LiteLLM documentation](https://docs.litellm.ai/docs/providers).

View file

@ -65,6 +65,7 @@ Edit the `.env` file and set the following variables:
| UNSTRUCTURED_API_KEY | API key for Unstructured.io service |
| FIRECRAWL_API_KEY | API key for Firecrawl service (if using crawler) |
| TTS_SERVICE | Text-to-Speech API provider for Podcasts (e.g., `openai/tts-1`, `azure/neural`, `vertex_ai/`). See [supported providers](https://docs.litellm.ai/docs/text_to_speech#supported-providers) |
| STT_SERVICE | Speech-to-Text API provider for Podcasts (e.g., `openai/whisper-1`). See [supported providers](https://docs.litellm.ai/docs/audio_transcription#supported-providers) |
**Important**: Since LLM calls are routed through LiteLLM, include API keys for the LLM providers you're using:
@ -86,6 +87,8 @@ Edit the `.env` file and set the following variables:
| FAST_LLM_API_BASE | Custom API base URL for the fast LLM |
| STRATEGIC_LLM_API_BASE | Custom API base URL for the strategic LLM |
| LONG_CONTEXT_LLM_API_BASE | Custom API base URL for the long context LLM |
| TTS_SERVICE_API_BASE | Custom API base URL for the Text-to-Speech (TTS) service |
| STT_SERVICE_API_BASE | Custom API base URL for the Speech-to-Text (STT) service |
### 2. Install Dependencies